the complexity of bfs and dfs

Answers

Answer 1

Answer:

BFS uses Queue to find the shortest path. DFS uses Stack to find the shortest path. ... Time Complexity of BFS = O(V+E) where V is vertices and E is edges. Time Complexity of DFS is also O(V+E) where V is vertices and E is edges.

Explanation:


Related Questions

When framing a wall, temporary bracing is
used to support, plumb, and straighten the wall.
used to support, level, and straighten the wall.
used to square the wall before it is erected.
removed before the next level is constructed.

Answers

Yes! That is true!
When framing a wall, temporary bracing is
used to support, plumb, and straighten the wall.
used to support, level, and straighten the wall.
used to square the wall before it is erected.
removed before the next level is constructed.

Calculate the rms value.

Answers

Answer:

  (√6)/3 ≈ 0.8165

Explanation:

The RMS value is the square root of the mean of the square of the waveform over one period. It will be ...

  [tex]\displaystyle\sqrt{\frac{1}{T}\left(\int_{\frac{T}{4}}^{\frac{3T}{4}}{1^2}\,dt+\int_{\frac{3t}{4}}^{\frac{5t}{4}}{(\frac{-4}{T}}(t-T))^2\,dt\right)}=\sqrt{\frac{1}{T}\left(\frac{T}{2}+\left.\frac{16}{T^2}\cdot\frac{1}{3}(t-T)^3\right|_{\frac{3t}{4}}^{\frac{5t}{4}}\right)}\\\\=\sqrt{\frac{1}{T}\left(\frac{T}{2}+\frac{T}{6}\right)}=\sqrt{\frac{2}{3}}=\boxed{\frac{\sqrt{6}}{3}\approx0.8165}[/tex]

g A thin-walled pressure vessel 6-cm thick originally contained a small semicircular flaw (radius 0.50-cm) located at the inner surface and oriented normal to the hoop stress direction. Repeated pressure cycling enabled the crack to grow larger. If the fracture toughness of the material is , the yield strength equal to 1250 MPa, and the hoop stress equal to 300 MPa, would the vessel leak before it ruptured

Answers

This question is not complete, the complete question is;

A thin-walled pressure vessel 6-cm thick originally contained a small semicircular flaw (radius 0.50-cm) located at the inner surface and oriented normal to the hoop stress direction. Repeated pressure cycling enabled the crack to grow larger. If the fracture toughness of the material is [tex]88 Mpam^\frac{1}{2}[/tex] , the yield strength equal to 1250 MPa, and the hoop stress equal to 300 MPa, would the vessel leak before it ruptured

Answer:

length of crack is 5.585 cm

we will observe that, the length of crack (5.585 cm) is less than the vessel thickness (6 cm) Hence, vessel will not leak before it ruptures

Explanation:

Given the data in the question;

vessel thickness = 6 cm

fracture toughness k = [tex]88 Mpam^\frac{1}{2}[/tex]

yield strength = 1250 MPa

hoop stress equal = 300 MPa

we know that, the relation between fracture toughness and crack length is expressed as;

k = (1.1)(2/π)(r√(πa))  

where k is the fracture toughness, r is hoop stress and a is length of crack

so we rearrange to find  length of crack

a = 1/π[( k / 1.1(r)(2/π)]²

a = 1/π[( kπ / 1.1(r)(2)]²

so we substitute  

a = 1/π [( 88π / 1.1(300)(2/π)]²    

a = 1/π[ 0.1754596 ]

a = 0.05585 m

a = 0.05585 × 100 cm

a = 5.585 cm  

so, length of crack is 5.585 cm

we will observe that, the length of crack (5.585 cm) is less than the vessel thickness (6 cm) Hence, vessel will not leak before it ruptures

2. The following segment of carotid artery has an inlet velocity of 50 cm/s (diameter of 15 mm). The outlet has a diameter of 11mm. The pressure at inlet is 110 mm of Hg and pressure at outlet is 95 mm of Hg. Determine the forces required to keep the artery in place (consider steady state, ignore the mass of blood in the vessel and the mass of blood vessel; blood density is 1050 kg/m3)

Answers

This question is incomplete, the missing diagram is uploaded along this answer below.

Answer:

the forces required to keep the artery in place is 1.65 N

Explanation:

Given the data in the question;

Inlet velocity V₁ = 50 cm/s = 0.5 m/s

diameter d₁ = 15 mm = 0.015 m

radius r₁ = 0.0075 m

diameter d₂ = 11 mm = 0.011 m

radius r₂ = 0.0055 m

A₁ = πr² = 3.14( 0.0075 )² =  1.76625 × 10⁻⁴ m²

A₂ = πr² = 3.14( 0.0055 )² =  9.4985 × 10⁻⁵ m²

pressure at inlet P₁ = 110 mm of Hg = 14665.5 pascal

pressure at outlet P₂ = 95 mm of Hg = 12665.6 pascal

Inlet volumetric flowrate = A₁V₁ = 1.76625 × 10⁻⁴ × 0.5 = 8.83125 × 10⁻⁵ m³/s

given that; blood density is 1050 kg/m³

mass going in m' = 8.83125 × 10⁻⁵ m³/s × 1050 kg/m³ = 0.092728 kg/s

Now, using continuity equation

A₁V₁ = A₂V₂

V₂ = A₁V₁ / A₂ = (d₁/d₂)² × V₁

we substitute

V₂ =  (0.015 / 0.011 )² × 0.5

V₂ = 0.92975 m/s

from the diagram, force balance in x-direction;

0 - P₂A₂ × cos(60°) + Rₓ = m'( V₂cos(60°) - 0 )    

so we substitute in our values

0 - (12665.6 × 9.4985 × 10⁻⁵)  × cos(60°) + Rₓ = 0.092728( 0.92975 cos(60°) - 0 )    

0 - 0.6014925 + Rₓ =  0.043106929 - 0

Rₓ = 0.043106929 + 0.6014925

Rₓ = 0.6446 N

Also, we do the same force balance in y-direction;

P₁A₁ - P₂A₂ × sin(60°) + R[tex]_y[/tex] = m'( V₂sin(60°) - 0.5 )  

we substitute

⇒ (14665.5 × 1.76625 × 10⁻⁴) - (12665.6 × 9.4985 × 10⁻⁵) × sin(60°) + R[tex]_y[/tex] = 0.092728( 0.92975sin(60°) - 0.5 )

⇒ 1.5484 + R[tex]_y[/tex] = 0.092728( 0.305187 )

⇒ 1.5484 + R[tex]_y[/tex] = 0.028299    

R[tex]_y[/tex] = 0.028299 - 1.5484

R[tex]_y[/tex] = -1.52 N

Hence reaction force required will be;

R = √( Rₓ² + R[tex]_y[/tex]² )

we substitute

R = √( (0.6446)² + (-1.52)² )

R = √( 0.41550916 + 2.3104 )

R = √( 2.72590916 )

R = 1.65 N

Therefore, the forces required to keep the artery in place is 1.65 N

 

A long cylindrical black surface fuel rod of diameter 25 mm is shielded by a surface concentric to the rod. The shield has diameter of 50 mm, and its outer surface is exposed to surrounding air at 300 K with a convection heat transfer coefficient of 15 W/m2.K. Inner and outer surfaces of the shield have an emissivity of 0.05, and the gap between the fuel rod and the shield is a vacuum. If the shield maintains a uniform temperature of 335 K, determine the surface temperature of the fuel rod

Answers

Answer:

surface temp of fuel rod = 678.85 K

Explanation:

Given data :

D1 = 25 mm

D2 = 50 mm

T2 = 335 k

T∞ = 300 k

hconv = 0.15 w/m^2.k

ε2 = 0.05

ε1 = 1

Determine energy at Q23

Q23 = Qconv + Qrad

attached below is the detailed solution

Insert given values into equation 1 attached below to obtain the surface temperature of the fuel rod ( T1 )

The three-point suspension system of a powered industrial truck forms an imaginary triangle that represents the stability zone of the truck

Answers

Answer:

True.

Explanation:

The three-point suspension system can be found on all industrial trucks and this is what promotes stability to the truck. This system forms a triangle with imaginary lines, which represents the zone of stability as shown in the question above. This is because the truck's steering axle stabilizes on a pivot pin that is placed in the center of the axle, this being the first point of the suspension system. This point is projected through imaginary lines to two diagonal points, forming the center of stability.

A non-cold-worked 1040 steel cylindrical rod has an initial length of 100 mm and initial diameter of 7.50 mm. is to be deformed using a tensile load of 18,000 N. It must not experience either plastic deformation or a diameter reduction of more than 1.5 x 10-2 mm. Would the 1040 steel be a possible candidate for this application

Answers

Answer:

1040 steel will be a possible candidate for this application since : Yield strength > stress

Explanation:

The 1040 steel would  be a possible candidate for this application because the stress experienced by the load is Lesser than its Yield strength

Given that 1040 steel has the following parameter values

Modulus of elasticity ( GPa )  = 205

Yield strength ( Mpa ) =  450

Poisson's ratio = 0.27

limitation of = 1.5 x 10^-2 mm.

stress = Tensile load / area of steel

          = 18,000 N / 4.418 * 10^-5 m^2

          = 407 .424 Mpa

Which equation best captures the following logic: A car starts when doing all of the following: the keyless fob is within a specified proximity, the driver presses the brake, the driver presses the start button. Inputs: k: key within a specified proximity, b: brake pressed, s: start button pressed Output: c: car starts.
c = (k + b)s
c=k(b + s)
c= kbs
k + b +5

Answers

Answer:

c = kbs

Explanation:

The equation that best captures the following logic is ; C = kbs

because for the car to start all the outlined functions must be ON if any of the function is OFF the car won't start hence all functions have to be ON simultaneously . The equation that represents this is :  C = kbs

23 PM Sat Apr 10
42%
AA
A f2.app.edmentum.com
+
Previous
5
Next
Post Test: Manufacturing Busii
Submit Test
Reader Tools
0 Info
+ Save & Exit
Garth is a recruitment executive in a firm and knows the eight stages of recruitment. What activity or incident should Garth carry out or
expect to occur at each stage of the process?
place an advertisement in a job portal
vacancyWhat activity should Garth

Answers

Uhm I’m not understanding the question

Here are the eight stages of the recruitment process and what Garth might expect to occur or carry out at each stage in the explanation part.

What is recruitment?

The process of identifying, attracting, and selecting qualified candidates for a job opening in an organisation is known as recruitment.

Here are the eight stages of the recruitment process, as well as what Garth might expect to happen or do at each stage:

Identifying the Need for the Position: Garth should review the company's staffing needs and determine if a position needs to be filled. Once a decision has been made, he should create a job description and identify the position's requirements.

Garth should create a recruitment plan that includes a timeline for the recruitment process, a list of recruitment sources, and an advertising strategy.

Garth should actively seek qualified candidates through various recruitment channels such as job boards, social media, referrals, and recruiting events.

Screening Candidates: Garth should go over resumes, cover letters, and other application materials to see if candidates meet the job requirements.

Garth should conduct interviews with the most qualified candidates to assess their skills, experience, and fit for the position.

Garth should review all of the information gathered during the recruitment process and choose the best candidate for the position.

Garth should ensure that the new hire has all of the necessary information and resources to succeed in their new role.

Evaluating the Recruitment Process: Garth should go over the recruitment process to see where he can improve.

Thus, these are the stages of recruitment.

For more details regarding recruitment, visit:

https://brainly.com/question/30086296

#SPJ7

Stirrups are used in a concrete beam:_______

a. to increase the beam's compressive strength.
b. to provide tensile strength in the beam since concrtete's tensile strength is negligible.
c. to increase the tensile strength of the beam beyond that provided by concrete.
d. to provide shear strength in the beam because concrete's shear strength is negligible.
e. to increase the shear strength of the beam beyond that provided by the concrete.

Answers

The answer is E to increase the shear strength of the beam beyond that provided by the concrete

At steady state, a thermodynamic cycle operating between hot and cold reservoirs at 1000 K and 500 K, respectively, receives energy by heat transfer from the hot reservoir at a rate of 1500 kW, discharges energy by heat transfer to the cold reservoir, and develops 1000 kW of power. Determine the rate of entropy production and then comment on whether this cycle is possible or impossible, and why.

Answers

Answer:

Wmax =  750 kw  < power developed ( 1000kw ) for a reversible    the cycle is Impossible

Explanation:

Hot reservoir Temperature = 1000 K

Cold reservoir Temperature = 500 K

Heat transfer ( energy received by Hot reservoir ) ( Q ) = 1500 kW

Heat transfer ( energy received by Cold reservoir via Hot reservoir ) = 1000 Kw

Calculate the rate of entropy production

The higher the entropy production the less efficient the system

Δs = Cp In ( T2 / T1 )

power developed = 1000 kW

considering that the cycle is reversible and the constant volume or constant pressure of the substance in the thermodynamic cycle is not given we will use the efficiency to determine if the cycle is possible or not

Л = efficiency

∴Л = 1 - T2 / T1 = 1 - ( 500 / 1000 ) = 0.5

note as well that;  Л = work output / work input = Wmax / Q

                                  = 0.5 = Wmax / Q

∴ rate of entropy production = Q ( 0.5 ) = 1500 * 0.5 = 750 kw

Given that Wmax =  750 kw  < power developed ( 1000kw ) for a reversible    the cycle is Impossible

A hypothetical metal alloy has a grain diameter of 1.7 102 mm. After a heat treatment at 450C for 250 min, the grain diameter has increased to 4.5 102 mm. Compute the time required for a specimen of this same material (i.e., d 0 1.7 102 mm) to achieve a grain diameter of 8.7 102 mm while being heated at 450C. Assume the n grain diameter exponent has a value of 2.1.

Answers

Answer:

the required time for the specimen is  1109.4 min

Explanation:

Given that;

diameter of metal alloy d₀ = 1.7 × 10² mm

Temperature of heat treatment T = 450°C = 450 + 273 = 723 K

Time period of heat treatment t = 250 min

Increased grain diameter 4.5 × 10² mm

grain diameter exponent n = 2.1

First we calculate the time independent constant K

dⁿ - d₀ⁿ = Kt

K = (dⁿ - d₀ⁿ) / t

we substitute

K = (( 4.5 × 10² )²'¹ - ( 1.7 × 10² )²'¹) / 250

K = (373032.163378 - 48299.511117) / 250

K = 1298.9306 mm²/min

Now, we calculate the time required for the specimen to achieve the given grain diameter ( 8.7 × 10² mm )

dⁿ - d₀ⁿ = Kt

t = (dⁿ - d₀ⁿ) / K

t = (( 8.7 × 10² )²'¹ - ( 1.7 × 10² )²'¹) / 1298.9306

t = ( 1489328.26061158 - 48299.511117) / 1298.9306

t = 1441028.74949458 / 1298.9306

t = 1109.4 min

Therefore, the required time for the specimen is  1109.4 min

To which part of the system does the actuator connect to in an automobile cruise control system?

A. Piston
B. Wheel
C. Throttle
D. Gearbox

Answers

I think it is C sorry if I’m wrong

Answer:

C. throttle

Explanation:

see the picture hope this helps someone

Fracture Mechanics: A specimen of a 4340 steel alloy having a plane strain fracture toughness of 45 MPa m ( ) is exposed to a stress of 1000 MPa (145,000 psi). Assume that the parameter Y has a value of 1.0. a) Calculate the critical stress for brittle fracture of this specimen if it is known that the largest surface crack is 0.75 mm (0.03 in.) long. b) Will this specimen experience fracture

Answers

Answer:

a)  927 MPa

b)The specimen will experience fracture

Explanation:

a) Calculate critical stress for brittle fracture

σ = fracture toughness / (y √ π * surface crack)

  = 45  /  ( 1  [tex]\sqrt{\pi * ( 0.75*10^-3)}[/tex]  )

  = 927 MPa

b) since critical stress( 927 MPa)  < 1000 MPa

hence : The fracture will occur

A low-resistance path in a circuit, commonly called a _____ can cause a circuit breaker to trip
A. short circuit
B. closed circuit
C. parallel connection
D. series connection

Answers

Answer:

b

Explanation:

6) A deep underground cavern Contains 980 cuft
of methane gas (CH4) at a pressure of 230
psia and temperature of 150°F. How many
(omllbmol of methane does this gas
deposit contain?​

Answers

Answer:

15625 moles of methane is present in this gas  deposit

Explanation:

As we know,

PV = nRT

P = Pressure = 230 psia = 1585.79 kPA

V = Volume = 980 cuft = 27750.5 Liters

n = number of moles

R = ideal gas constant = 8.315

T = Temperature = 150°F = 338.706 Kelvin

Substituting the given values, we get -

1585.79 kPA * 27750.5 Liters = n * 8.315 * 338.706 Kelvin

n = (1585.79*27750.5)/(8.315 * 338.706) = 15625

) If the blood viscosity is 2.7x10-3 Pa.s, length of the blood vessel is 1 m, radius of the blood vessel is 1 mm, calculate the tubular resistance of the blood vessel (in GPa.S/m3 ). If the blood pressure at the inlet of the above vessel is 43 mm Hg and if the blood pressure at the outlet of the above vessel is 38 mm Hg. Calculate the flow rate (in ml/min).

Answers

Answer:

a) the tubular resistance of the blood vessel is 6.88 Gpa.s/m³.

b) the flow rate is 5.8 ml/min

Explanation:

Given the data in the question;

Length of blood vessel L = 1 m

radius r = 1 mm = 0.001 m

blood viscosity μ = 2.7 × 10⁻³ pa.s = 2.7 × 10⁻³ × 10⁻⁹ Gpa.s = 2.7 × 10⁻¹² Gpa.s

Now, we know that Resistance = 8μL / πr⁴

so we substitute

Resistance = [8 × (2.7 × 10⁻¹²) × 1] / [π(0.001)⁴]

Resistance = [2.16 × 10⁻¹¹] / [3.14159 × 10⁻¹²]

Resistance = 6.8755 ≈ 6.88 Gpa.s/m³

Therefore, the tubular resistance of the blood vessel is 6.88 Gpa.s/m³.

b)

blood pressure at the inlet of the vessel = 43 mm Hg

blood pressure at the outlet of the vessel = 38 mm Hg

flow rate = ?

we know that;

flow rate Q = ΔP / R

where ΔP is change in pressure and R is resistance.

ΔP = Inlet pressure - Outlet pressure = 43 - 38 = 5 mm Hg =  665 pa

R = 6.8755 Gpa.s/m³ = { 6.8755 × 10⁹ / 60 × 10⁶ } = 114.5916 pa.min.ml⁻¹

so we substitute

Q =  665 pa / 114.5916 pa.m.ml⁻¹

Q = 5.8 ml/min

Therefore, the flow rate is 5.8 ml/min

A 20 mm diameter rod made of ductile material with a yield strength of 350 MN/m2 is subjected to a torque of 100 N.m, and a bending moment of 150 N.m. An axial tensile force is then gradually applied. What is the value of the axial force when yielding of the rod occurs using: a. The maximum-shear-stress theory b. The maximum-distortional-energy theory.

Answers

Answer:

a) 42.422 KN

b) 44.356 KN

Explanation:

Given data :

Diameter = 20 mm

yield strength = 350 MN/m^2

Torque ( T )  = 100 N.m

Bending moment = 150 N.m

Determine the value of the applied axial tensile force when yielding of rod occurs

first we will calculate the shear stress and normal stress

shear stress ( г ) = Tr / J = [( 100 * 10^3)  * 10 ]  /  [tex]\pi /32[/tex] * ( 20)^4  

                                       = 63.662 MPa

Normal stress(  Гb + Гa )  = MY/ I  +  P/A

= [( 150 * 10^3)  * 10 ]  /  [tex]\pi /32[/tex] * ( 20)^4   + 4P / [tex]\pi * 20^2[/tex]

= 190.9859 + 4P / [tex]\pi * 20^2[/tex]  MPa

a) Using MSS theory

value of axial force = 42.422 KN

solution attached below

b) Using MDE  theory

value of axial force = 44.356 KN

solution attached below

g Three unequal point masses are attached to a vertical shaft with light rods. Two masses, m and 3m, are at a distance a from the shaft. The third mass, 2m, is at a distance 2a from the shaft. The three masses and the shaft rotate as a single unit about the vertical axis through the shaft. What is the moment of inertia of this system about the vertical axis

Answers

Answer:

12ma²

Explanation:

The moment of inertia I = ∑mr² where m = mass and r = distance from shaft

Since we have three masses,

So, I = m₁r₁² + m₂r₂² + m₃r₃² where m₁ = first mass = m, m₂ = second mass = 3m and m₃ = third mass = 2m. Also, r₁ = distance of first mass from shaft = a, r₂ = distance of second mass from shaft = a and r₃ = distance of third mass from shaft = 2a.

I = m₁r₁² + m₂r₂² + m₃r₃²

I = ma² + 3ma² + 2m(2a)²

I = ma² + 3ma² + 2m(4a²)

I = ma² + 3ma² + 8ma²

I = 12ma²

A wastewater treatment plant discharges 1 m3/s of effluent with an ultimate BOD of 40 mg/L into a stream flowing at 10 m3/s. Just upstream of the discharge point, the stream has an ultimate BOD of 3 mg/L. The deoxygenation constant (kd) is estimated to be 0.22 1/d. (a) Assuming complete and instantaneous mixing, find the ultimate BOD of the mixture of the waste and the river just downstream of the outfall. (b) Assuming a constant cross-sectional area for the stream equal to 55 m2, what ultimate BOD would you expect to find at a point 10,000 m downstream

Answers

Answer:

(a) 6.36 mg/L

(b) 5.60 mg/L

Explanation:

(a)

Using the formula below to find the required ultimate BOD of the mixture.

[tex]L_o = \dfrac{Q_wL_w+ Q_rL_r}{Q_W+Q_r}[/tex]

where;

Q_w = volumetric flow rate wastewater

Q_r = volumetric flow rate of the river just upstream of the discharge point

L_w = ultimate BOD of wastewater

Replacing the given values:

[tex]L_o = \dfrac{(1 \ m^3/L ) (40 \ mg/L) + (10 \ m^3/L) (3 \mg/L)}{(1m^3/L) +(10 \ m^3/L)} \\ \\ L_o = 6.36 \ mg/L[/tex]

(b)

The Ultimate BOD is estimated as follows:

Recall that:

[tex]time(t) = \dfrac{distance }{speed}[/tex]

replacing;

distance with 10000 m and speed with [tex]\dfrac{11 \ m^3/s}{55 \ m^2}[/tex]

[tex]time =\dfrac{10000 \ m}{\Bigg(\dfrac{11 \ m^3/s}{55 \ m^2}\Bigg)}\Bigg(\dfrac{1 \ hr}{3600 \ s}\Bigg) \Bigg(\dfrac{1 \ day}{24 hr}\Bigg)[/tex]

time (t) = 0.578 days

Finally; [tex]L_t = L_oe^{-kt}[/tex]

here;

k = rate of coefficient reaction

[tex]L_ t= (6.36) \times e^{-(0.22/day)(0.5758 \ days)}\\ \\ \mathbf{L_t =5.60 \ mg/L}[/tex]

Thus, the ultimate BOD = 5.60 mg/L

Five kg of nitrogen gas (N2) in a rigid, insulated container fitted with a paddle wheel is initially at 300 K, 150 kPa. The N2 gas receives work from the paddle wheel until the gas is at 500 K and 250 kPa. Assuming the ideal gas model with a constant specific heat (i.e., use a constant specific heat of N2 at 300K), neglect kinetic energy and potential energy effects

Required:
a. Draw a system schematic and set up states.
b. Determine the amount of work received from the paddle wheel (kJ).
c. Determine the amount of entropy generated (kJ/K).

Answers

Answer:

A) attached below

B) 743 KJ

C) 1.8983 KJ/K

Explanation:

A) Diagram of system schematic and set up states

attached below

B) Calculate the amount of work received from the paddle wheel

assuming ideal gas situation

v1 = v2 ( for a constant volume process )

work generated by paddle wheel = system internal energy

dw = mCv dT .     where ; Cv = 0.743 KJ/kgk

     = 5 * 0.743 * ( 500 - 300 )

     = 3.715 * 200 = 743 KJ

C) calculate the amount of entropy generated  ( KJ/K )

S2 - S1 = 1.8983 KJ/K

attached below is the detailed solution

Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 30 m3/min and exits at 12 bar, 400 K. Heat transfer occurs at a rate of 5 kW from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in kW.

Answers

Answer:

power input = -66.2798 kW

Explanation:

Steady state pressure ( Cp ) = 1.05 bar,

Temperature ( T1 ) = 300 K

Volumetric flow rate = 30 m^3/min

exit pressure = 12 bar

exit temperature ( T2 ) = 400 K

Heat transfer rate ( Q ) = 5 kW

Calculate the power input in kW

p1v1 = m RT

m = p1v1 / RT1

   = (1.05 * 10^2 * ( 30/60 )) / ( 0.287 * 300 )

   = 0.60975 m^3/sec

also

h1 + Q = h2 + w

∴ w = m ( h1 - h2 ) + Q  

      = mCp ( t1 - t2 ) + Q ----- ( 1 )

where : ( Q ) = 5 kW ,  Cp  = 1.05 bar, t1 = 300 K,  t2 = 400 k  ( input values into equation 1 )

w = -66.2798 kW

A 3-ft-diameter duct is used to carry ventilating air ( , ) into a vehicular tunnel at a rate of 11000 ft3/min. Tests show that the pressure drop is 1.2 in. of water per 1500 ft of duct. What is (a) the value of the friction factor for this duct and (b) the approximate size of the equivalent roughness of the surface of the duct

Answers

Answer:

a) Friction factor for this duct = 0.0239

b) ε = 0.006 ft

Explanation:

Given data :

Flow rate = 11000 ft^3 /min

Pressure drop = 1.2 in per 1500 ft of duct

a) Determine the value of the friction factor for this duct

  Friction factor for this duct = 0.0239

b) Determine the approximate size of the equivalent roughness of the surface of the duct

ε = 0.006 ft

attached below is the detailed solution to the given problem

A high-voltage discharge tube is often used to study atomic spectra. The tubes require a large voltage across their terminals to operate. To get the large voltage, a step-up transformer is connected to a line voltage (120 V rms) and is designed to provide 5000 V rms to the discharge tube and to dissipate 75.0 W. (a) What is the ratio of the number of turns in the secondary to the number of turns in the primary

Answers

Answer:

a. 41

b. i. 15 mA ii. 625 mA

c. 192 Ω

Explanation:

Here is the complete question

A high-voltage discharge tube is often used to study atomic spectra. The tubes require a large voltage across their terminals to operate. To get the large voltage, a step-up transformer is connected to a line voltage (120 V rms) and is designed to provide 5000 V (rms) to the discharge tube and to dissipate 75.0 W. (a) What is the ratio of the number of turns in the secondary to the number of turns in the primary? (b) What are the rms currents in the primary and secondary coils of the transformer? (c) What is the effective resistance that the 120-V source is subjected to?

Solution

(a) What is the ratio of the number of turns in the secondary to the number of turns in the primary?

For a transformer N₂/N₁ = V₂/V₁

where N₁ = number of turns of primary coil, N₂ =number of coil of secondary, V₁ = voltage of primary coil = 120 V and V₂ = voltage of secondary coil = 5000 V

So,  N₂/N₁ = V₂/V₁

N₂/N₁ = 5000 V/120 V = 41.6 ≅ 41 (rounded down because we cannot have a decimal number of turns)

(b) What are the rms currents in the primary and secondary coils of the transformer?

i. The rms current in the secondary

We need to find the current in the secondary from

P = IV where P = power dissipated in secondary coil = 75.0 W, I =rms current in secondary coil and V = rms voltage in secondary coil = 5000 V

P = IV

I = P/V = 75.0 W/5000 V = 15 × 10⁻³ A = 15 mA

ii. The rms current in the primary

Since N₂/N₁ = V₂/V₁ = I₁/I₂

where N₁ = number of turns of primary coil, N₂ =number of coil of secondary, V₁ = voltage of primary coil = 120 V, V₂ = voltage of secondary coil = 5000 V, I₁ = current in primary coil and I₂ = current in secondary coil = 15 mA

So, V₂/V₁ = I₁/I₂

V₂I₂/V₁ = I₁

I₁ = V₂I₂/V₁

= P/V₁

= 75.0 W/120 V

= 0.625 A

= 625 mA

(c) What is the effective resistance that the 120-V source is subjected to?

Using V = IR where V =  voltage = 120 V, I = current in primary = 0.625 A and R = resistance of primary coil

R = V/I

= 120 V/0.625 A

= 192 V/A

= 192 Ω

14. The flow water in a 10-in Schedule 40 pipe is to be metered. The temperature of the water is

100oF, and the static pressure upstream of the meter is 20 psig, The density of the water is 62

Ibm/ft3

, Assume the flow meter is a square-edged orifice with a diameter ratio of 0.5 . When the

flow rate is 1,200 gpm and the flow coefficient is 0.5. the pressure drop across the orifice

(ibf/in2

) is Pipe ID = 10.002 in.​

Answers

Answer:

I don't know plead hrdffffdddffff

A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mistboundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate

Answers

Answer:

hello your question has some missing values below are the missing values

Mirror Radius (mm) Bending Failure Stress (MPa)

.603                                         225

.203                                         368

.162                                          442

answer : 191 mPa

Explanation:

Determine the stress present at the time of fracture for the original plate

Bending stress ∝ 1 / ( mirror radius )^n ------ ( 1 )

at 0.603  bending stress = 225

at 0.203  bending stress = 368

at 0.162  bending stress = 442

applying equation 1   determine the value of n for several combinations

 ( 225 / 368 ) = ( 0.203 / 0.603 )^n

hence : n = 0.452

also

 ( 368/442 ) = ( 0.162 / 0.203 ) ^n

hence : n = 0.821

also

( 225 / 442 ) = ( 0.162 / 0.603 ) ^n

hence : n = 0.514

Next determine the average value of n

n ( mean value ) =  ( 0.452 + 0.821 + 0.514 ) / 3 = 0.596

Calculate estimated stress present at the time of fracture for the original plate

= bending stress at x =  0.796 / bending stress at x = 0.603

= x / 225 = ( 0.603 / 0.796 ) ^ 0.596

therefore X ( stress present at the time of fracture of original plate )

     = 225 * 0.84747

     =  191 mPa

Consider a mixing tank with a volume of 4 m3. Glycerinflows into a mixing tank through pipe A with an average velocity of 6 m/s, and oil flow into the tank through pipe B at 3 m/s. Determine the average density of the mixture that flows out through the pipe at C. Assumeuniform mixing of the fluids occurs within the 4 m3 tank.

Answers

This question is incomplete, the complete question as well as the missing diagram is uploaded below;

Consider a mixing tank with a volume of 4 m³. Glycerin flows into a mixing tank through pipe A with an average velocity of 6 m/s, and oil flow into the tank through pipe B at 3 m/s. Determine the average density of the mixture that flows out through the pipe at C. Assume uniform mixing of the fluids occurs within the 4 m³ tank.

Take [tex]p_o[/tex] = 880 kg/m³ and [tex]p_{glycerol[/tex] = 1260 kg/m³    

 

Answer:

the average density of the mixture that flows out through the pipe at C is 1167.8 kg/m³  

Explanation:

Given that;

Inlet velocity of Glycerin, [tex]V_A[/tex] = 6 m/s

Inlet velocity of oil, [tex]V_B[/tex] = 3 m/s  

Density velocity of glycerin, [tex]p_{glycerol[/tex] = 1260 kg/m³

Density velocity of glycerin, Take [tex]p_o[/tex] = 880 kg/m³

Volume of tank V = 4 m

from the diagram;

Diameter of glycerin pipe, [tex]d_A[/tex] = 100 mm = 0.1 m

Diameter of oil pipe, [tex]d_B[/tex] = 80 mm = 0.08 m

Diameter of outlet pipe [tex]d_C[/tex] = 120 mm = 0.12 m

Now, Appling the discharge flow equation;

[tex]Q_A + Q_B = Q_C[/tex]

[tex]A_Av_A + A_Bv_B = A_Cv_C[/tex]

π/4 × ([tex]d_A[/tex])²[tex]v_A[/tex] + π/4 × ([tex]d_B[/tex] )²[tex]v_B[/tex] = π/4 × ([tex]d_C[/tex])²[tex]v_C[/tex]

we substitute

π/4 × (0.1 )² × 6 + π/4 × (0.08 )² × 3 = π/4 × (0.12)²[tex]v_C[/tex]

0.04712 + 0.0150796 = 0.0113097[tex]v_C[/tex]

0.0621996 = 0.0113097[tex]v_C[/tex]

[tex]v_C[/tex] = 0.0621996 / 0.0113097

[tex]v_C[/tex]  = 5.5 m/s

Now we apply the mass flow rate condition

[tex]m_A + m_B = m_C[/tex]

[tex]p_{glycerin}A_Av_A + p_0A_Bv_B = pA_Cv_C[/tex]  

so we substitute

1260 × π/4 × (0.1 )² × 6 + 880 × π/4 × (0.08 )² × 3 = p × π/4 × (0.12)² × 5.5

1260 × 0.04712 + 880 × 0.0150796 = p × 0.06220335

59.3712 + 13.27 = 0.06220335p  

72.6412 = 0.06220335p    

p = 72.6412 / 0.06220335

p =  1167.8 kg/m³  

Therefore, the average density of the mixture that flows out through the pipe at C is 1167.8 kg/m³  

Consider a 3-km2 urban catchment. The main channel has a slope of 0.9% and a Manning n of 0.10. The catchment is 50% impervious. The distance along the main channel from the catchment boundary to the outlet is 1100 m. The urban catchment has an average curve number of 60. Determine the peak flow (m3 /s) of the NRCS unit hydrograph for a 20-min rainfall excess.

Answers

Answer:

The right answer is "5.105×10⁸ m³/sec".

Explanation:

The given values are:

Catchment area,

A = 3 km²

Length to watershed,

L = 1100 m

Average watershed slope,

S = 0.9% i.e., 0.009

Curve number,

CN = 60

Rainfall duration,

D = 20 min

Let,

Time form beginning of the rainfall will be "[tex]t_p[/tex]".Lag time will be "[tex]t_1[/tex]".

Now,

⇒  [tex]t_1=\frac{L^{0.8}\times (\frac{1000}{CN} -9)^{0.7}}{19000S^{0.5}}[/tex]

On substituting the values, we get

⇒  [tex]t_1=\frac{1100^{0.8}\times (\frac{1000}{60} -9)^{0.7}}{19000\times 0.009^{0.5}}[/tex]

⇒      [tex]=0.625 \ hours[/tex]

then,

⇒  [tex]T_p=\frac{D}{2}+t_1[/tex]

⇒       [tex]=\frac{0.33}{2}+0.625[/tex]

⇒       [tex]=\frac{0.33+1.25}{2}[/tex]

⇒       [tex]=\frac{1.58}{2}[/tex]

⇒       [tex]=0.79 \ hr[/tex]

hence,

The peak flow will be:

⇒  [tex]Q_p=\frac{484A}{t_p}[/tex]

⇒       [tex]=\frac{484\times 3}{0.79}[/tex]

⇒       [tex]=\frac{1452}{0.79}[/tex]

⇒       [tex]=1837.97 \ km^3/hr[/tex]

or,

⇒       [tex]=5.105\times 10^8 \ m^3/sec[/tex]



Solar azimuth is the horizontal angle of the sun as measured from a predetermined direction. For the northern hemisphere, the 0°
direction is due

Answers

A⁣⁣nswer i⁣⁣⁣⁣s i⁣⁣⁣⁣n a p⁣⁣⁣⁣hoto. I c⁣⁣⁣⁣ouldn't a⁣⁣⁣⁣ttach i⁣⁣⁣⁣t h⁣⁣⁣⁣ere, b⁣⁣⁣⁣ut I u⁣⁣⁣⁣ploaded i⁣⁣⁣⁣t t⁣⁣⁣⁣o a f⁣⁣⁣⁣ile h⁣⁣⁣⁣osting. l⁣⁣⁣⁣ink b⁣⁣⁣⁣elow! G⁣⁣⁣⁣ood L⁣⁣⁣⁣uck!

bit.[tex]^{}[/tex]ly/3a8Nt8n


Describe ways Texas and its citizens contributed to the Allied war effort during World War II. (Site 1)

Answers

Well it was all Texas fault
Other Questions
Does all of the liquid water in the atmosphere fall as rain? Why or why not? Read the poem and answer the question.Hard Luck Langston Hughes When hard luck overtakes youNothin' for you to do.When hard luck overtakes youNothin' for you to do.Gather up yo' fine clothesAn' sell 'em to de Jew.Jew takes yo' fine clothes,Gives you a dollar an' a half.Jew takes yo' fine clothes,Gives you a dollar an' a half.Go to de bootleg's,Git some gin to make you laugh.If I was a mule I'dGit me a waggon to haul.If I was a mule I'dGit a waggon to haul.I'm so low-down IAin't even got a stall.Who is the speaker? Why did they write the poem? 2Select the correct answer from the drop-down menu.Subtracting 3 xy2 from 8 xy2 gives the same result as the expressionReset 3xy^2 - xy^2-7xy^2 - 2xy^27xy^2 - 2xy^2 327 8 please help me im d.u.m.b (ILL MARK YOU AS BRAINLEST) The ratio of the interior angles of a triangle is 1: 1: 4 What are the angles measures? Write the angel measures from least to greatest. In what ways are food allergies and food intolerance similar?bodyoteinA. Affected persons must see a doctor for medical treatmentB. Both have mild symptoms that are easily treatedfoodfishC. They both are caused by an immune system reaction.DThey both involve the body's reaction to certain foods all the marbles in a bag for a game two are red and three are blue Sandra will randomly choose one marble from the bag fill in the blank Parts A&BA: the probability that Sandra would choose a red marble from the break is _ out of _ or ____ it is blank that sounds really choose a red marble from the bagB: It is ________ that Sandra will choose a red marbLe from the bagfor parts be is it A,B,C,or Dimpossiblecertainlikelyunlikely Why is population important when fighting a war? A packing box measures 36 centimeters by 14 centimeters by 20 centimeters. What is the volume of the box? Beaus aquarium has 12 fish.Five of the fish are guppies. Which equation can be used to be determine the number of other fish in his aquirium A scientist isolated a molecule with nucleotide bases A, C, G, and U and ribose sugars. What is it?a. rnab. an amino acidc. glucosed. dnae. a fatty acid 4. In the diagram below, segment BD is parallel to segment CE with AB = 6, 2 pointsBC = 9, AD = 8, and DE = 12. Which of the following mappings of triangleBAD would justify that it is similar to triangle CAE?*A dilation by a factor of 3/2centered at AA dilation by a factor of 4/3 centered at CA dilation by a factor of 5/2 centered at AA dilation by a factor of 3/4 centered at C Choose the equation of the line that is parallel to the x-axis.A. x = 4B. x + y = 0C. x = yD. y = 4 e=?answer this and ill bump your streaks nd junk for brainliest nd whatnot.. Just answer what does it mean tip??? What is the value, in degrees, of x? What's the best SYNONYM (the word or phrase most nearly the same)3. a political ZEOLOTa. activist b. leader c. visionary d. specter e. fanatic in the story the big one is yuri lucky to have sinai? is sinai lucky to have yuri PLSS HELP!Which of the following keywords would have information around it about the fish and amphibians living in Yellowstone National Park? Bison Geysers Old Faithful Wetlands Simplify 16m^7n^3/4m^3n