Answer:
€ 270
Step-by-step explanation:
Since the production cost C(x,y) = 2x² + 5y² + 120 is less than or equal to 250, we have 2x² + 5y² + 120 ≤ 250
The selling price S(x,y) = 40x + 80y
The profit P(x,y) = S(x,y) - C(x,y) = 40x + 80y - 2x² - 5y² - 120
Using the principle of lagrange multipliers, we want to maximize the profit P(x,y) under the condition that C(x.y) ≤ 250.
So, dP/dx = 40 - 4x , dC/dx = 4x, dP/dy = 80 - 10y , dC/dy = 10y
dP/dx + λdC/dx = 0
40 - 4x + 4λx = 0 (1)
4λx = 4x - 40
λ = (x - 10)/x
dP/dy + λdC/dy = 0
80 - 10y + 10λy = 0 (2)
substituting λ into (2), we have
80 - 10y + 10(x - 10)y/x = 0
multiplying through by x, we have
80x - 10xy + 10xy - 100y = 0
80x - 100y = 0
80x = 100y
x = 100y/80
x = 5y/4
substituting x into C(x,y) ≤ 250, we have
2(5y/4)² + 5y² + 120 ≤ 250
25y²/8 + 5y² + 120 ≤ 250
25y² + 40y² + 960 ≤ 2000
65y² ≤ 2000 - 960
65y² ≤ 1040
y² ≤ 1040/65
y² ≤ 16
y ≤ ±√16
y ≤ ± 4 since its quantity, we take the positive value.
So x = 5y/4 = 5(± 4)/4 = ± 5
So, x ≤ ± 5
For the maximum value for the profit, P(x,y), we take the maximum values of x and y which are x = 5 and y = 4. Substituting these values into P(x,y), we have
P(5,4) = 40(5) + 80(4) - 2(5)² - 5(4)² - 120
= 200 + 320 - 50 - 80 - 120
= 520 - 250
= 270
So, the maximum profit obtained is € 270
Please answer this correctly
Answer:
4
Step-by-step explanation:
Set the height of the missing bar to 4 as there are 4 quantities between 21-25.
What is the next number in the sequence: 3, 8, 12, 48, 29, __
Answer:
144
Step-by-step explanation:
Answer:
116
Step-by-step explanation:
3x4=12
12x4=48
8x4=32
32-3=29
29x4=116
Hope it's clear
What’s the degree of the rotation?
Answer: The answer is C 90
Step-by-step explanation: Rotations is ¼ and the Radians is π/2
Express the following ratio in its simplest form.
4:12
Answer:
1:3
Step-by-step explanation:
divide 4 ...............
.............
ps: idk the explanation
the length of a ruler is 170cm,if the ruler broke into four equal parts.what will be the sum of the length of three parts
Answer:
Step-by-step explanation:Srry it's bit rough...
Please answer this correctly
Answer:
Set the height up to 4
Step-by-step explanation:
Since there are 4 numbers between 1-5, set the height up to 4
Answer:
4 temperature recordings.
Step-by-step explanation:
2, 2, 4, 5
There are 4 recordings in the range of 1-5°C.
The lengths of pregnancies in a small rural village are normally distributed with a mean of 267 days and a standard deviation of 15 days. A distribution of values is normal with a mean of 267 and a standard deviation of 15. What percentage of pregnancies last beyond 246 days? P(X > 246 days) =
Answer:
91.92% of pregnancies last beyond 246 days
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 267, \sigma = 15[/tex]
What percentage of pregnancies last beyond 246 days?
We have to find 1 subtracted by the pvalue of Z when X = 246. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{246 - 267}{15}[/tex]
[tex]Z = -1.4[/tex]
[tex]Z = -1.4[/tex] has a pvalue of 0.0808
1 - 0.0808 = 0.9192
91.92% of pregnancies last beyond 246 days
01
The list below shows the prices of T-shirts at a clothing store.
{8, 10, 10, 12, 15, 15, 18)
Which statement best describes the mean of this ser?
the difference between the least and greatest prices
the sum of the prices
the quotient of the difference between the least and greatest prices divided by 7
the sum of the prices divided by 7
dem
Answer:
the sum of the prices divided by 7
Step-by-step explanation:
The mean is the sum of the elements of a set, divided by the number of elements in the set. This set has 7 members, so its mean is ...
the sum of the prices divided by 7
5.44 Teaching descriptive statistics: A study compared five different methods for teaching descriptive statistics. The five methods were traditional lecture and discussion, programmed textbook instruction, programmed text with lectures, computer instruction, and computer instruction with lectures. 45 students were randomly assigned, 9 to each method. After completing the course, students took a 1-hour exam. (a) What are the hypotheses for evaluating if the average test scores are different for the different teaching methods?
Answer:
The null hypothesis is that all the different teaching methods have the same average test scores.
H0: μ1 = μ2 = μ3 = μ4 = μ5
The alternative hypothesis is that at least one of the teaching methods have a different mean.
Ha: at least one mean is different. (μ1 ≠ μi)
Step-by-step explanation:
The null hypothesis (H0) tries to show that no significant variation exists between variables or that a single variable is no different than its mean. While an alternative Hypothesis (Ha) attempt to prove that a new theory is true rather than the old one. That a variable is significantly different from the mean.
For the case above, let μ represent the average test scores for the teaching methods:
The null hypothesis is that all the different teaching methods have the same average test scores.
H0: μ1 = μ2 = μ3 = μ4 = μ5
The alternative hypothesis is that at least one of the teaching methods have a different mean.
Ha: at least one mean is different. (μ1 ≠ μi)
What is the perimeter of the shape below?
Answer:
I think it is 288.6 ft. Lol hope this helps
Step-by-step explanation:
Andrei wants to fill a glass tank with marbles, and then fill the remaining space with water. WWW represents the volume of water Andrei uses (in liters) if he uses nnn marbles. W=32-0.05nW=32−0.05nW, equals, 32, minus, 0, point, 05, n What is the glass tank's volume?
Before Andrei adds the marbles to the glass tank, the glass tank was empty. This means that the volume of the empty tank is when n = 0 and the volume is 32 liters.
Given that:
[tex]W = 32 - 0.05n[/tex]
A linear function is represented as:
[tex]y = b + mx[/tex]
Where
[tex]b \to[/tex] y intercept
Literally, the y intercept is the initial value of the function.
In this function, the y intercept means the initial volume of the glass tank before filling it with marbles.
Compare [tex]y = b + mx[/tex] and [tex]W = 32 - 0.05n[/tex]
[tex]b = 32[/tex]
This means that the volume of the glass tank is 32 liters.
Read more about linear functions at:
https://brainly.com/question/21107621
Answer:
0.05
Step-by-step explanation:
The escape time (sec) for oil workers in a simulated exercise, gave the sample mean 370.69, sample standard deviation 24.36, and number of observations as n =26. Suppose the investigators had believed a priori that true average escape time would be at most 6 minutes. Does the data contradict this prior belief? Assuming normality, test the appropriate hypothesis using a significance level of .05.
Answer:
Null hypothesis:[tex]\mu \leq 6[/tex]
Alternative hypothesis:[tex]\mu > 6[/tex]
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
Replacing the info we got:
[tex]t=\frac{6.178-6}{\frac{0.68}{\sqrt{26}}}=1.335[/tex]
[tex]p_v =P(t_{25}>1.335)=0.097[/tex]
And for this case the p value is higher than the significance level so then we FAIL to reject the null hypothesis and we can conclude that the true mean is at most 6 minutes
Step-by-step explanation:
Information given
[tex]\bar X=370.69/60 =6.178[/tex] represent the sample mean
[tex]s=24.36/36=0.68[/tex] represent the standard deviation for the sample
[tex]n=26[/tex] sample size
[tex]\mu_o =6[/tex] represent the value to verify
[tex]\alpha=0.05[/tex] represent the significance level
t would represent the statistic
[tex]p_v[/tex] represent the p value
System of hypothesis
We want to test if the true mean is at least 6 minutes, the system of hypothesis would be:
Null hypothesis:[tex]\mu \leq 6[/tex]
Alternative hypothesis:[tex]\mu > 6[/tex]
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
Replacing the info we got:
[tex]t=\frac{6.178-6}{\frac{0.68}{\sqrt{26}}}=1.335[/tex]
The degrees of freedom are:
[tex]df=n-1=26-1=25[/tex]
The p value would be given by:
[tex]p_v =P(t_{25}>1.335)=0.097[/tex]
And for this case the p value is higher than the significance level so then we FAIL to reject the null hypothesis and we can conclude that the true mean is at most 6 minutes.
Joshua ate 2/6 of his sandwich in the afternoon and 2/6 more for a snack later that day. How much of Joshua’s sandwich is left?
Answer:
1/3 left
Step-by-step explanation:
The total sandwich is 1 or in fraction form 6/6
He ate 2/6
6/6 -2/6 = 4/6
Then he ate 2/6 more
4/6 -2/6 = 2/6
He has 2/6 left
Simplifying
2/6 =1/3
HELP!!! PLEASE!!!
The U.S. Federal Income Tax is a progressive tax, which means that higher incomes are taxed at higher percent rates.
The table shows the 2018 Federal Income Tax rates that are applied to the incomes of unmarried individuals.
Tuan is an unmarried man who earned a taxable income of $48$48,000000 during 2018.
Use the table to complete the statements below.
Answer:
10%$29,175$2,046$6,499.50Step-by-step explanation:
a) The %tax comes from the "Rate" column on the line "up to $9525". It is 10%.
__
b) Simply compute the difference shown:
$38,700 -$9,525 = $29,175
__
c) 22% of $9,300 is ...
0.22 × $9,300 = $2,046
__
d) The total from the three previous calculations is ...
$952.50 +3,501.00 +2,046.00 = $6,499.50
Answer:
10%
$29,175
$2,046
$6,499.50
got it right on ttm.
Step-by-step explanation:
just believe me it works
The lifespan of a car battery averages six years. Suppose the batterylifespan follows an exponential distribution.(a) Find the probability that a randomly selected car battery will lastmore than four years.(b) Find the variance and the 95th percentile of the battery lifespan.(c) Suppose a three-year-old battery is still going strong. (i) Find theprobability the battery will last an additional five years. (ii) Howmuch longer is this battery expected to last
Answer:
Step-by-step explanation:
Let X denote the life span of a car battery and it follows and exponential distribution with average of 6 years.
Thus , the parameter of the exponential distribution is calculated as,
μ = 6
[tex]\frac{1}{\lambda} =6[/tex]
[tex]\lambda = \frac{1}{6}[/tex]
a) The required probability is
[tex]P(X>4)=1-P(X\leq 4)\\\\=1-F(4)\\\\1-(1-e^{- \lambda x})\\\\=e^{-\frac{4}{6}[/tex]
= 0.513
Hence, the probability that a randomly selected car battery will last more than four years is 0.513
b) The variance of the battery span is calculated as
[tex]\sigma ^2=\frac{1}{(\frac{1}{\lambda})^2 }\\\\\sigma ^2=\frac{1}{(\frac{1}{6})^2 } \\\\=6^2=36[/tex]
The 95% percentile [tex]x_{a=0.05}[/tex] (α = 5%) of the battery span is calculated
[tex]x_{0.05}=-\frac{log(\alpha) }{\lambda} \\\\=-\frac{log(0.05)}{1/6} \\\\=-6log(0.05)\\\\=17.97 \ years[/tex]
c)
Let [tex]X_r[/tex] denote the remaining life time of a car battery
i)the probability the battery will last an additional five years is calculated below
[tex]P(X_r>5)=e^{-5\lambda}\\\\=e^{-\frac{5}{6} }\\\\=0.4346[/tex]
ii) The average time that the battery is expected to last is calculated
[tex]E(X_r)=\frac{1}{\lambda} \\\\=6[/tex]
What’s the Midpoint of (2,-1) and (1,-2)
Answer:
(3/2,-3/2)
Step-by-step explanation:
The midpoint of (2,-1)(1,-2) is (3/2,-3/2)
Answer:
(1.5,-1.5)
You have to remember the formula to find mid-point and that is:
[tex]midpoint = ( \frac{x1 + x2}{2} ,\frac{y1 + y2}{2} )[/tex]
please see the attached picture for full solution
Hope it helps
Good luck on your assignment
simplify (6^7)^3
will give brainlist
Answer:
The answer is D.
Step-by-step explanation:
You have to apply Indices Law,
[tex] { ({a}^{m}) }^{n} \: ⇒ \: {a}^{mn} [/tex]
So for this question :
[tex] { ({6}^{7}) }^{3} [/tex]
[tex] = {6}^{7 \times 3} [/tex]
[tex] = {6}^{21} [/tex]
Question 1 of 20 :
Select the best answer for the question.
1. Divide7/15 by 3/5
OA%
O B./25
O c. 75/21
O D.21/75
Answer:
7/9
Step-by-step explanation:
7/15 ÷ 3/5
Copy dot flip
7/15 * 5/3
7/3 * 5/15
7/3 * 1/3
7/9
Please help. I’ll mark you as brainliest if correct!
Answer:
a = 13
b = 0
Step-by-step explanation:
Conjugate of -3 + 2i is -3 - 2i
(-3 + 2i) (-3 - 2i)
We need to expand:
9 + 6i + -6i + -4i^2
-4i^2 =(-4)(-1) = 4
9 + 4 = 13
a = 13
b = 0
Which of the following is most likely the next step in the series?
Answer:
B
Step-by-step explanation:
They are increasing by 1 vertically. Hope this helps!! :)
An extremely simple (and surely unreliable) weather prediction model would be one where days are of two types: sunny or rainy. A sunny day is 90% likely to be followed by another sunny day, and a rainy day is 50% likely to be followed by another rainy day. Model this as a Markov chain. If Sunday is sunny, what is the probability that Tuesday (two days later) is also sunny
Answer:
The probability that if Sunday is sunny, then Tuesday is also sunny is 0.86.
Step-by-step explanation:
Let us denote the events as follows:
Event 1: a sunny day
Event 2: a rainy day
From the provided data we know that the transition probability matrix is:
[tex]\left\begin{array}{ccc}1&\ \ \ \ 2\end{array}\right[/tex]
[tex]\text{P}=\left\begin{array}{c}1&2\end{array}\right[/tex] [tex]\left[\begin{array}{cc}0.90&0.10\\0.50&0.50\end{array}\right][/tex]
In this case we need to compute that if Sunday is sunny, what is the probability that Tuesday is also sunny.
This implies that we need to compute the value of P₁₁².
Compute the value of P² as follows:
[tex]P^{2}=P\cdot P[/tex]
[tex]=\left[\begin{array}{cc}0.90&0.10\\0.50&0.50\end{array}\right]\cdot \left[\begin{array}{cc}0.90&0.10\\0.50&0.50\end{array}\right]\\\\=\left[\begin{array}{cc}0.86&0.14\\0.70&0.30\end{array}\right][/tex]
The value of P₁₁² is 0.86.
Thus, the probability that if Sunday is sunny, then Tuesday is also sunny is 0.86.
Devon wants to build a ramp with the dimensions shown. How much wood does he need?
The image of the ramp with dimensions is missing, so i have attached it.
Answer:
680 in² of wood is needed.
Step-by-step explanation:
The way to find how much wood would be needed by devon would be to find the total surface area of the ramp.
From the attached image,
Let's find the area of the 2 triangles first;
A1 = 2(½bh) = bh = 15 x 8 = 120 in²
Area of the slant rectangular portion;
A2 = 17 x 14 = 238 in²
Area of the base;
A3 = 15 × 14 = 210 in²
Area of vertical rectangle;
A4 = 8 × 14 = 112 in²
Total Surface Area = A1 + A2 + A3 + A4 = 120 + 238 + 210 + 112 = 680 in²
Amit found and labeled the areas of each of the faces of the triangle prism as shown which area calculation did Amit calculate incorrectly
Complete Question:
Amit found and labeled the areas of each of the faces of the triangular prism as shown.
Which area calculation did Amit calculate incorrectly?
Rectangular face with area 30 cm2
Rectangular face with area 40 cm2
Rectangular face with area 50 cm2
Triangular faces with areas 48 cm2
Answer:
Triangular faces with areas 48 cm2
Step-by-step Explanation:
To find out which area calculation Amit got wrong, let's calculate each faces of the given triangular prism attached below:
There area of theb5 faces should be as follows:
Area of rectangular face with L = 10 and B = 5 would be ==> 10*5= 50cm²
Area of rectangular face with L = 8 and B = 5 would be 8*5 = 40cm²
Area of rectangular face with L = 6 and B = 5 would 6*5 = 30cm²
Area of each of the triangular faces will be ½*8*6 = 48/2 = 24cm²
From our calculations, we'd observe that Amit didn't calculate the area of the triangular faces correctly. Amit got 48cm² instead of 24cm²
Answer:
Triangular faces with areas 48 cm2
Step-by-step explanation:
find x.
8
2radius3
8
8radius3
(hurry plz, will give brainliest) -15pts-
Answer:
Answere is X= 8
Step-by-step explanation:
Use sine law
Sin(angle) = Opposite/ Hypotenuse
Sin (30) = 4 /X
X = 4 / sin (30)
X = 8
The city manager of Shinbone has received a complaint from the local union of firefighters to the effect that they are underpaid. Not having much time, the city manager gathers the records of a random sample of 27 firefighters and finds that their average salary is $38,073 with a standard deviation of $575. If she knows that the average salary nationally is $38,202, how can she respond to the complaint
Answer:
She can answer, after performing the hypothesis test, that there is not enough evidence to support the claim that the city firefighters salary is significantly lower than the national average.
Step-by-step explanation:
She can statistically test the claim of the firefighters to see if it has statistical evidence.
This is a hypothesis test for the population mean.
The claim is that the city firefighters salary is significantly lower than the national average.
Then, the null and alternative hypothesis are:
[tex]H_0: \mu=38202\\\\H_a:\mu< 38202[/tex]
The significance level is 0.1. Is less conservative than 0.05, for example, so if there is little evidence, the null hypothesis with be rejected.
The sample has a size n=27.
The sample mean is M=38073.
As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=575.
The estimated standard error of the mean is computed using the formula:
[tex]s_M=\dfrac{s}{\sqrt{n}}=\dfrac{575}{\sqrt{27}}=110.659[/tex]
Then, we can calculate the t-statistic as:
[tex]t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{38073-38202}{110.659}=\dfrac{-129}{110.659}=-1.17[/tex]
The degrees of freedom for this sample size are:
df=n-1=27-1=26
This test is a left-tailed test, with 26 degrees of freedom and t=-1.17, so the P-value for this test is calculated as (using a t-table):
[tex]\text{P-value}=P(t<-1.17)=0.127[/tex]
As the P-value (0.127) is bigger than the significance level (0.1), the effect is not significant.
The null hypothesis failed to be rejected.
There is not enough evidence to support the claim that the city firefighters salary is significantly lower than the national average.
It appears that people who are mildly obese are less active than leaner people. One study looked at the average number of minutes per day that people spend standing or walking. Among mildly obese people, minutes of activity varied according to the N(373, 61) distribution. Minutes of activity for lean people had the N(525, 104) distribution. Within what limits do the active minutes for 95% of the people in each group fall
Answer:
Among mildly obese people, 95% of the people have between 251 and 495 minutes of activity per day.
Among lean people, 95% of the people have between 317 and 733 minutes of activity per day.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
Within what limits do the active minutes for 95% of the people in each group fall
By the Empirical Rule, within 2 standard deviations of the mean.
Mildly obese:
Mean = 373, standard deviation = 61.
373 - 2*61 = 251 minutes
373 + 2*61 = 495 minutes
Among mildly obese people, 95% of the people have between 251 and 495 minutes of activity per day.
Lean people:
Mean = 525, standard deviation = 104
525 - 2*104 = 317 minutes
525 + 2*104 = 733 minutes
Among lean people, 95% of the people have between 317 and 733 minutes of activity per day.
Question: A box contains 160 Iphone XR's.
60% of the IPhones are Forest Green.
How many IPhones are Forest Green?
Answer:
96
Step-by-step explanation:
60% * 160 = 0.6 * 160 = 96.
Answer:
None
Step-by-step explanation:
There is no Forest Green iPhone XR's only the 11 Pros have that color.
The sum of two numbers is odd. Can the quotient of the two numbers be an odd number?
Answer: No.
Step-by-step explanation:
I guess that here we have the statement:
If the sum of two numbers is odd----> can their quotient be an odd number?
first, for n an integer number, we have that:
an odd number can be written as 2n + 1
an even number can be written as 2n.
The sum of two numbers is only odd if one of them is odd and the other even.
Then we have a number that is 2n and other that is 2k + 1, for n and k integer numbers.
Now, let's see if the quotient can also be an odd number.
One way to think this is:
There is an odd number such that when we multiply it by another odd number, the result is an even number?
no, and i can prove it as:
let 2k + 1 be an odd number, and 2j + 1 other.
the product is:
(2k + 1)*(2j + 1) = 2*(2*k*j + k + j) + 1
and as k and j are integers, also does 2*k*j + k + j, so:
2*(2*k*j + k + j) + 1 is an odd number.
This says that the product of two odd numbers is always odd, then we never can have that the quotient between an even number and an odd number is odd.
please very soon I offer the crown !!! + 10 points urgently !!!
Answer:
d. 10th e. 26th
Step-by-step explanation:
22-12=10
12+14=26
average of a data set was 40, and that standard deviation was 10, what else could you derive from that information.
Answer:
[tex] \bar x = 40, s =10[/tex]
And from these values we can estimate the sample variance like this:
[tex] s^2 = 10^2 =100[/tex]
And we can also estimate the coeffcient of variation given by:
[tex] \hat{CV} =\frac{s}{\bar x}[/tex]
And replacing we got:
[tex] \hat{CV} = \frac{10}{40}= 0.25[/tex]
And this coefficient is useful in order to see the variability in terms of the mean for this case since is lower than 1 we can conclude that this variation around the mean is low.
Step-by-step explanation:
For this case we have the following info given:
[tex] \bar x = 40, s =10[/tex]
And from these values we can estimate the sample variance like this:
[tex] s^2 = 10^2 =100[/tex]
And we can also estimate the coeffcient of variation given by:
[tex] \hat{CV} =\frac{s}{\bar x}[/tex]
And replacing we got:
[tex] \hat{CV} = \frac{10}{40}= 0.25[/tex]
And this coefficient is useful in order to see the variability in terms of the mean for this case since is lower than 1 we can conclude that this variation around the mean is low.