Answer:
The maximum life expectancy for humans is approximately 87 years.
Step-by-step explanation:
We have to calculate the point in which both linear functions (Life expectancy from birth and Life expectancy from age 65) intersect, as this is the point in which is estimated to be the maximum life expectancy for humans.
NOTE: to simplify we will consider t=0 to the year 1900, so year 2010 becames t=(2010-1900)=110.
The linear function for Life expectancy from birth can be calculated as:
[tex]t=0\rightarrow y=45\\\\t=110\rightarrow y=78.7\\\\\\m=\dfrac{\Delta y}{\Delta t}=\dfrac{78.7-45}{110-0}=\dfrac{33.7}{110}=0.3064\\\\\\y=0.3064t+45[/tex]
The linear function for Life expectancy from age 65 can be calculated as:
[tex]t=0\rightarrow y=75\\\\t=110\rightarrow y=84.5\\\\\\m=\dfrac{\Delta y}{\Delta t}=\dfrac{84.5-75}{110-0}=\dfrac{9.5}{110}=0.0864\\\\\\y=0.0864t+75[/tex]
Then, the time t where both functions intersect is:
[tex]0.3064t+45=0.0864t+75\\\\(0.3064-0.0864)t=75-45\\\\0.22t=30\\\\t=30/0.22\\\\t=136.36[/tex]
The time t=136.36 corresponds to the year 1900+136.36=2036.36.
Now, we can calculate with any of both functions the maximum life expectancy:
[tex]y=0.0864(136.36)+75\\\\y=11.78+75\\\\y=86.78\approx87[/tex]
The maximum life expectancy for humans is approximately 87 years.
Please help. I’ll mark you as brainliest if correct!!!!
Answer:
a= 0
b= [tex]-\frac{\sqrt{42} }{12}[/tex]
Step-by-step explanation:
We can rewrite the expression to be:
[tex]\frac{i\sqrt{7} }{i^{2}\sqrt{24} }[/tex]
We then can cancel out the i and we get
[tex]\frac{\sqrt{7} }{\sqrt{24} i}[/tex]
Can be rewritten as
[tex]\frac{\sqrt{7} }{2\sqrt{6} i}[/tex]
We then rationalize and get
[tex]-\frac{\sqrt{42} }{12} i[/tex]
The model represents x? - 9x + 14
Which is a factor of x2 - 9x + 14?
OX-9
OX-2
O x + 5
+
+
+
+
+
+
O x +7
+
+
+
+
+
+
+
Answer:
work is shown and pictured
The factor of the equation x² - 9x + 14 is,
⇒ (x - 2)
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Given that;
The equation is,
⇒ x² - 9x + 14
Now, We can find the factor of the expression as;
⇒ x² - 9x + 14
⇒ x² - 7x - 2x + 14
⇒ x (x - 7) - 2 (x - 7)
⇒ (x - 7) (x - 2)
Thus, The factor of the equation x² - 9x + 14 is,
⇒ (x - 2)
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ7
Use the mathematical induction to prove that 7^n -1 is divisible by 6 whenever n is a positive integer
Answer:
Step-by-step explanation:
1) first of all, let s check for n = 1
[tex]7^1 -1=7-1=6[/tex]
that s true
2) We assume that this is true for n
[tex]7^n-1[/tex] is divisible by 6
what about [tex]7^{n+1}-1[/tex] ?
we know that there is a k natural so that [tex]7^n-1=6k[/tex]
so [tex]7^n = 1+6k[/tex]
then [tex]7^{n+1} = 7*7^n = 7(1+6k)\\[/tex]
so [tex]7^{n+1}-1 = 7(1+6k)-1 = 6+7*6k = 6(1+7k)[/tex]
so it means that [tex]7^{n+1}-1[/tex] is divisible by 6
3) finally as this is true for n=1 and if this is true for n then it is true for n+1 we can conclude that [tex]7^n-1[/tex] is divisible by 6 for n positive integer
Para cubrir un tejado rectangular de 29,7 m de largo ,se gastaron 24 552 locetas de 25cm x19 cm las cuales pierden al colocarse la 1/5 parte de su extensión eficaz . ¿ Qué ancho tenía el tejado ?
Answer:
El tejado tenía un ancho de 31.4 m.
Step-by-step explanation:
Tenemos un techo rectangular, con un largo de 29.7 m y un ancho x, que debemos calcular.
Entonces, la superficie del tejado es:
[tex]S=29.7x\;\,\text{[m}^2\text{]}[/tex]
Las locetas tienen una superficie de 25x19 cm, de las cuales 1/5 se pierde en la colocación. La superficie eficaz que ocupa cada loceta una vez colocada es:
[tex]S_L=(25\cdot19)\cdot(1-1/5)=475\cdot(0.8)=380\;\text{cm}^2[/tex]
Entonces, si se utilizaron 24552 locetas para cubrir todo el techo, podemos expresar la superfice del techo como:
[tex]S=24552\;\text{locetas}\;\cdot380\dfrac{\text{cm2}}{\text{loceta}}\cdot \left(\dfrac{1\text{m}}{100\text{cm}}\right)^2=\dfrac{24552\cdot380}{10000}\;\text{m2}=932.976\;\text{m2}[/tex]
Podemos calcular x igualando este último resultado con la primer ecuación:
[tex]S=29.7x=932.976\\\\x=932.976/29.7=31.413\approx31.4[/tex]
Classify the triangle by its sides, and then by its angles.
7 m
7 m
9.9 m
Classified by its sides, the triangle is a(n)
▼
isosceles
scalene
equilateral
triangle.
Classified by its angles, the triangle is a(n)
▼
acute
right
obtuse
triangle.
Answer:
isosceles
Step-by-step explanation:
Does a point have a one dimension length
Answer:
No.
Step-by-step explanation:
A point has no length, height or depth. It only has position.
A line has one dimensional length.
Graph g(x)=f(x+1) when f(x) =4x-2
[tex]g(x)=4(x+1)-2[/tex]
[tex]g(x)=4x+4-2[/tex]
[tex]g(x)=4x+2[/tex]
Image attached below for graph.
Please answer this correctly
Answer:
# of broken crayons # of boces
1-5 1
6-10 4
11-15 5
16-20 3
21-25 1
Step-by-step explanation:
1-5: 4 (1 number)
6-10: 6, 6, 8, 9 (4 numbers)
11-15: 12, 13, 14, 14, 15 (5 numbers)
16-20: 17, 17, 19 (3 numbers)
21-25: 24 (1 number)
Answer:
Number of broken crayons Number of boxes
1-5 = 4
6-10 = 9
11-15 = 14
16-20 =19
21-25 =24
Step-by-step explanation:
To find the number of boxes compared to the number of broken crayons you have to find 5 consecutive (hence there being five boxes to fill in) numbers with a constant rate of change. Start with the largest number possible that you can pick and then find the second largest so 24 and 19 the rate of change is 5. Compared to 17 and 19 the rate of change is 2 so it doesn’t have the same rate of change but if you try 19-5 you get 14 which is an option if you subtract 14-5 you get 9 which is another option 9-5 is 4 the lowest number you could possibly pick and they all have a constant rate of change of 5 so the answer is correct.
Matt brought $40.50 to the art supply store. He bought a brush, a sketchbook, and a paint set. The brush was 1 6 as much as the sketchbook, and the sketchbook cost 3 4 the cost of the paint set. Matt had $3.00 left over after buying these items.
Answer:
idk what you mean
Step-by-step explanation:
idk
Mary wants to fill in a cylinder vase. At the flower store they told her that the vase should be filled for the flowers to last the longest. Her cylinder vase has a radius of 2 in and a height of 9 in. How much water should Mary pour into the vase?
please help
Answer:
113.09 hope this helps
Step-by-step explanation:
You have budgeted 2/5 of your monthly income for rent and utilities. Your monthly income is $2100.
a) What amount have you budgeted for rent and utilities?
b) What amount is left over for expenditures during the month?
Answer:
a. $840
b. $1,260
Step-by-step explanation:
a. 2/5 x 2100 = 840
b. 2100 - 840 = 1,260
What’s the correct answer for this question?
Answer:
A
Step-by-step explanation:
Volume of cone = (1/3) πr²h
Please answer this correctly
Answer:
d = 2
Step-by-step explanation:
Using the formula
A=pq/2
Dont forget to click THANKS
Dan was thinking of a number. Dan adds 10 to it, then doubles it and gets an answer of 56.6. What was the original numbe
Answer:
[tex]\fbox{\begin{minipage}{5em}A = 18.3\end{minipage}}[/tex]
Step-by-step explanation:
Given:
Dan was thinking of a number.
Dan adds 10 to it, then doubles it and gets an answer of 56.6.
Solve for:
Dan's original number
Step 1: Clarify the problem:
Denote Dan's original number as A
Dan adds 10 to A => 10 + A, then
Dan doubles this sum => 2 x (10 + A), then
Dan gets an answer of 56.6 => 2 x (10 + A) = 56.6
Step 2: Solve for the defined equation:
2 x (10 + A) = 56.6
Let's divide both sides of equation by 2:
2 x (10 + A)/2 = 56.6/2
We simplify both sides after division:
10 + A = 28.3
Let's transfer all numbers to the right side, except A (the sign of 10 is changed from + to -)
A = 28.3 - 10
Let's perform the subtraction to get A:
A = 18.3
Hope this helps!
:)
3y-y please can you work it out
3. Bob the Builder wants to earn an annual rate of 10% on his investments,
how much (to the
nearest cent) should he pay for a note that will be worth $3,000 in 9 months?
Answer:
He should pay $2,790.7.
Step-by-step explanation:
This is a simple interest problem.
The simple interest formula is given by:
[tex]E = P*I*t[/tex]
In which E is the amount of interest earned, P is the principal(the initial amount of money), I is the interest rate(yearly, as a decimal) and t is the time, in years.
After t years, the total amount of money is:
[tex]T = E + P[/tex]
In this question:
Rate of 10%, so I = 0.1.
9 months, so [tex]t = \frac{9}{12} = 0.75[/tex]
How much should he pay for a note that will be worth $3,000 in 9 months?
We have to find P for which T = 3000. So
[tex]T = E + P[/tex]
[tex]3000 = E + P[/tex]
[tex]E = 3000 - P[/tex]
Then
[tex]E = P*I*t[/tex]
[tex]3000 - P = P*0.1*0.75[/tex]
[tex]1.075P = 3000[/tex]
[tex]P = \frac{3000}{1.075}[/tex]
[tex]P = 2790.7[/tex]
He should pay $2,790.7.
A bag contains red and blue marbles, such that the probability of drawing a blue marble is an experiment consists of drawing a
marble, replacing it, and drawing another marble. The two draws are independent. A random variable assigns the number of blue
marbles to each outcome
What is the range of the random variable?
{1,2,3}
{6,7,8)
b. {0,1,2)
d {8, 9, 10
a
С.
Please select the best answer from the choices provided
OOOO
C
Mark this and return
Save and Exit
Next
Submit
Answer:
The range of the random variable is {0, 1, 2}.
Step-by-step explanation:
The bag contains red and blue marbles.
The experiments consists of two draws, with reposition.
The random variable assigns the number of blue marbles to each outcome.
If we have only two draws, we can only get 0, 1 or 2 blue marbles.
The range of the random variable is {0, 1, 2}.
Kristen wants to buy a Persian cat. She takes out a loan for $500 for one year. The bank charges
her an annual simple interest rate of 8%.
a. How much will she have to pay back at the end of the 1 year?
b. How much interest does she have to pay?
Answer:
a. How much will she have to pay back at the end of the 1 year?
Answer: $540
b. How much interest does she have to pay?
Answer: $40
Step-by-step explanation:
Simple interest for any amount p is given by
SI = p*r*t/100
where r is the annual rate rate of interest
t is the time
____________________________________________
Given
p= $500 (loan taken)
r = 8%
t = 1 year
SI = 500*8*1/100 = 40
Thus, $40 is the interest charged in a year.
Total money paid at the end of one year = loan taken + interest charged
= $500 + $40
= $540
a. How much will she have to pay back at the end of the 1 year?
Answer: $540
b. How much interest does she have to pay?
Answer: $40
Write the equation of the line parallel to y+4= 1/4(x+5) and passing through the point (8, 20). Write in the format y = mx + b
Answer:
[tex]y=0.25x+18[/tex]
Step-by-step explanation:
So first we take the equation we are given and write it in slope-intercept form (y = mx + b):
[tex]y+4= \frac{1}{4} (x+5)\\\\y+4=0.25x +1.25\\\\y=0.25x-2.75[/tex]
Now we know parallel lines have the same slope, so the line we are looking for has a slope of 0.25.
so we can start to set up our equation:
[tex]y=0.25x+b[/tex]
and then substitue in the point (8,20) to find the y-intercept.
[tex]20=0.25(8)+b\\20=2+b\\b=18[/tex]
So now we have our equation:
[tex]y=0.25x+18[/tex]
Hope this helps!
Hypothetical Situation: A scientist notices that her bees may be avoiding a specific pollen from flower "X" despite its abundance in the area. To test to see if this behavior is reproducible and not anecdotal, she decides to provide a choice test to her bees. She does this by putting the bees in a small cage with two dishes. One with pollen from flower "X" the other is pollen from a flower that she knows her bees collect, flower "Y." She counts how many times the bees chooses Flower "X" vs Flower "Y" and collects this data.
What is experimental group?
Answer:
The experimental group in this case are the group of bees that are put in the small cage.
Step-by-step explanation:
The experimental group is the group of subjects that participate in the test. They are usually assigned to the treatments in study. In some cases there is a control group, with no assigned treatment.
In this case, the bees that she put in the cage, and they are not assigned to a particular treatment. It can be considered a control group.
A copy machine makes 147 copies in 5 minutes an 15 seconds how many copies does it make per minute
Answer:
28
Step-by-step explanation:
number of copies done in 5 minute 15 seconds = 147
60 seconds is equal to 1 minute
1 second is equal to 1/60 minutes
therefore 15 seconds is equal to 1/60 * 15 minutes = 1/4 minutes
thus,
number of copies done in 5 1/4 minute = 147
number of copies done in 1 minute = 147/ 5 1/4 (as 147/21 = 7)
= 147/ (21/4) = 7*4 = 28
Thus, A copy machine makes 28 copies in 1 minute.
Select all of the following statements that are true:
A. Random samples only generate unbiased estimates of long-run proportions, not long-run means.
B. You shouldnt take a random sample of more than 5% of the population size.
C. There is no way that a random sample of 100 people can be representative of all adults living in the United States.
D. If this question is voted out, the alternate option is "larger samples are always better than smaller samples, regardless of how the sample was collected."
E. Nonrandom samples are always poor representations of the population
Answer:
B. You shouldnt take a random sample of more than 5% of the population size.
Step-by-step explanation:
B. You shouldnt take a random sample of more than 5% of the population size. This is True, so as to avoid the research analysis to be more complex to interpret and analyzed
However, the following are not true statements:
A. Random samples only generate unbiased estimates of long-run proportions, not long-run means. This is False, as there may be sampling error, when picking the sample, which will lead to bias estimates in the long run proportions
C. There is no way that a random sample of 100 people can be representative of all adults living in the United States. This is False, as using the right factors such as gender, age, income, etc, in selecting the sample, 100 people is enough to use as sample of adults living in the United States
D. If this question is voted out, the alternate option is "larger samples are always better than smaller samples, regardless of how the sample was collected." This is False, larger samples are not always better than smaller samples. In fact, they are often difficult to analyze and interpret.
E. Nonrandom samples are always poor representations of the population: This is False, depending on the expected outcome of the research study. Some research studies required the research to use Nonrandom samples to reach verifiable conclusion.
Two people took turns tossing a fair die until one of them tossed a 6. PersonA tossed first, B second, A third, and so on. Given that person B threw the first 6, whatis the probability that B obtained the first 6 on her second toss (that is, on the fourth tossoverall)?
Answer: 0.0965
Step-by-step explanation:
This would happen if:
First toss: Here we must have any number that is not 6.
the options are 1, 2, 3, 4, 5 so the probablity is p1 = 5/6
The same happens for the second toss, p2 = 5/6
and for the third one: p3 = 5/6
for the fourth toss, person B must roll a 6, so the probability here is p4 = 1/6
Now, the joint probability is equal to the product of the probabilities for each toss, this is:
P = p1*p2*p3*p4 = (5/6)^3*(1/6) = 0.0965
The total claim amount for a health insurance policy follows a distribution with density function 1 ( /1000) ( ) 1000 x fx e− = , x > 0. The premium for the policy is set at the expected total claim amount plus 100. If 100 policies are sold, calculate the approximate probability that the insurance company will have claims exceeding the premiums collected.
Answer:
the approximate probability that the insurance company will have claims exceeding the premiums collected is [tex]\mathbf{P(X>1100n) = 0.158655}[/tex]
Step-by-step explanation:
The probability of the density function of the total claim amount for the health insurance policy is given as :
[tex]f_x(x) = \dfrac{1}{1000}e^{\frac{-x}{1000}}, \ x> 0[/tex]
Thus, the expected total claim amount [tex]\mu[/tex] = 1000
The variance of the total claim amount [tex]\sigma ^2 = 1000^2[/tex]
However; the premium for the policy is set at the expected total claim amount plus 100. i.e (1000+100) = 1100
To determine the approximate probability that the insurance company will have claims exceeding the premiums collected if 100 policies are sold; we have :
P(X > 1100 n )
where n = numbers of premium sold
[tex]P (X> 1100n) = P (\dfrac{X - n \mu}{\sqrt{n \sigma ^2 }}> \dfrac{1100n - n \mu }{\sqrt{n \sigma^2}})[/tex]
[tex]P(X>1100n) = P(Z> \dfrac{\sqrt{n}(1100-1000}{1000})[/tex]
[tex]P(X>1100n) = P(Z> \dfrac{10*100}{1000})[/tex]
[tex]P(X>1100n) = P(Z> 1) \\ \\ P(X>1100n) = 1-P ( Z \leq 1) \\ \\ P(X>1100n) =1- 0.841345[/tex]
[tex]\mathbf{P(X>1100n) = 0.158655}[/tex]
Therefore: the approximate probability that the insurance company will have claims exceeding the premiums collected is [tex]\mathbf{P(X>1100n) = 0.158655}[/tex]
Find the value of y. -6y+14+4y=32
Answer:
So first subtract 14 from 32
That means that -6y+4y = 18
Simplify the left side 4-6=-2
-2y = 18
Divide by -2
-9 = y
Step-by-step explanation:
Answer:
-9
Step-by-step explanation:
-6y+14+4y=32
Combine like terms
-2y +14 = 32
Subtract 14 from each side
-2y +14-14 = 32-14
-2y =18
Divide each side by -2
-2y/-2 = 18/-2
y = -9
An individual closes out help desk tickets at a rate of 4 tickets per hour for h hours. Write an equation that expresses the situation, let x be the independent variable and y be the dependent variable
Answer:
y=4x
Step-by-step explanation:
an independent variable is the variable that is changed or controlled in an experiment or observation to test the effects on the dependent variable
a dependent variable is variable being tested and measured in a scientific experiment
in this case, the number of help desk tickets closed out is dependent on the number of hours the individual works so y is the number of tickets closed (dependent variable). The number of tickets closed of will be 4 multiplied by the number of hours worked i.e. y=4x
The data from the data sample o 10 paired observations are shown:
Pair Population 1 Population 2
1 19 24
2 25 27
3 31 36
4 52 53
5 49 55
6 34 34
7 59 66
8 47 51
9 17 20
10 51 55
1. If you wish to test whether these data are sufficient to indicate that the mean for population 2 is larger than that for population 1, what are the appropriate null and alternative hypotheses?
2. Assuming that the within-pair differences are approximately normally distributed, conduct
the test using α = 0.1. What is your decision.
3. Find a 90% confidence interval for µd.
Answer:
Step-by-step explanation:
Corresponding means for population 1 and population 2 form matched pairs.
The data for the test are the differences between the mean for population 1 and mean for population 2.
μd = the mean for population 1 minus the mean for population 2.
Population 1 population 2 diff
19 24 - 5
25 27 - 2
31 36 - 5
52 53 - 1
49 55 - 6
34 34 0
59 66 - 7
47 51 - 4
17 20 - 3
51 55 - 4
Sample mean, xd
= (- 5 - 2 - 5 - 1 - 6 + 0 - 7 - 4 - 3 - 4)/10 = - 3.7
xd = - 3.7
Standard deviation = √(summation(x - mean)²/n
n = 10
Summation(x - mean)² = (- 5 + 3.7)^2 + (- - 2 + 3.7)^2 + (- 5 + 3.7)^2+ (- 1 + 3.7)^2 + (- 6 + 3.7)^2 + (0 + 3.7)^2 + (- 7 + 3.7)^2 + (- 4 + 3.7)^2 + (- 3 + 3.7)^2 + (- 4 + 3.7)^2 = 73.7
Standard - eviation = √(73.7/10
sd = 2.71
For the null hypothesis
H0: μd ≥ 0
For the alternative hypothesis
H1: μd < 0
The distribution is a students t. Therefore, degree of freedom, df = n - 1 = 10 - 1 = 9
The formula for determining the test statistic is
t = (xd - μd)/(sd/√n)
t = (- 3.7 - 0)/(2.71/√10)
t = - 4.32
We would determine the probability value by using the t test calculator.
p = 0.00097
Since alpha, 0.1 > than the p value, 0.00097, then we would reject the null hypothesis. Therefore, at 0.1 level of significance, we can conclude that these data are sufficient to indicate that the mean for population 2 is larger than that for population 1.
3) for population 1,
Mean = (19 + 25 + 31 + 52 + 55 + 34 + 59 + 47 + 17 + 51)/10 = 38.4
Summation(x - mean)² = (19 - 38.4)^2 + (25 - 38.4)^2 + (31 - 38.4)^2+ (52 - 38.4)^2 + (49 - 38.4)^2 + (34 - 38.4)^2 + (59 - 38.4)^2 + (47 - 38.4)^2 + (17 - 38.4)^2 + (51 - 38.4)^2 = 2042.4
Standard deviation, s1 = √2042.4/10 = 14.3
for population 2,
Mean = (24 + 27 + 36 + 53 + 55 + 34 + 66 + 51 + 20 + 55)/10 = 42.1
Summation(x - mean)² = (24 - 42.1)^2 + (27 - 42.1)^2 + (36 - 42.1)^2 + (53 - 42.1)^2 + (55 - 42.1)^2 + (34 - 42.1)^2 + (66 - 42.1)^2 + (51 - 42.1)^2 + (20 - 42.1)^2 + (55 - 42.1)^2 = 2248.9
Standard deviation, s2 = √2248.9/10 = 15
The formula for determining the confidence interval for the difference of two population means is expressed as
Confidence interval = (x1 - x2) ± z√(s²/n1 + s2²/n2)
For a 90% confidence interval, we would determine the z score from the t distribution table because the number of samples are small
Degree of freedom =
(n1 - 1) + (n2 - 1) = (10 - 1) + (10 - 1) = 18
z = 1.734
x1 - x2 = 38.4 - 42.1 = - 3.7
√(s1²/n1 + s2²/n2) = √(14.3²/10 + 15²/10)
= 6.55
Margin of error = 1.734 × 6.55 = 11.4
The 90% confidence interval is
- 3.7 ± 11.4
* If you are given the measurements of two sides of a triangle,
what will be true about the triangles you make?
Answer:both sides will be equal
Step-by-step explanation:
Which is enough information to prove that line s is parallel to line t
Answer:
line s and t would not meet even if you extend them and also they have the same slope and gradient
5/2 = 11/x
What is x
Answer:
X=22/5
Step-by-step explanation:
By cross multiplication
5/2 =11/x
5x = 2(11)
5x =22
X=22/5
Hope this helps..