Answer:
The solution is [tex]\:\left(-\frac{17}{10},\:-\frac{1}{10}\right)[/tex].
Step-by-step explanation:
An inequality is a mathematical relationship between two expressions and is represented using one of the following:
≤, "less than or equal to"<, "less than">, "greater than" ≥, "greater than or equal to"To find the solution of the inequality [tex]0>\:20x+2>\:-32[/tex] you must:
[tex]\mathrm{If}\:a>u>b\:\mathrm{then}\:a>u\quad \mathrm{and}\quad \:u>b\\\\0>20x+2\quad \mathrm{and}\quad \:20x+2>-32[/tex]
First, solve [tex]0>20x+2[/tex]
[tex]\mathrm{Switch\:sides}\\\\20x+2<0\\\\\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}\\\\20x+2-2<0-2\\\\\mathrm{Simplify}\\\\20x<-2\\\\\mathrm{Divide\:both\:sides\:by\:}20\\\\\frac{20x}{20}<\frac{-2}{20}\\\\\mathrm{Simplify}\\\\x<-\frac{1}{10}[/tex]
Next, solve [tex]20x+2>-32[/tex]
[tex]20x+2-2>-32-2\\\\20x>-34\\\\\frac{20x}{20}>\frac{-34}{20}\\\\x>-\frac{17}{10}[/tex]
Finally, combine the intervals
[tex]x<-\frac{1}{10}\quad \mathrm{and}\quad \:x>-\frac{17}{10}\\\\-\frac{17}{10}<x<-\frac{1}{10}[/tex]
The interval notation is [tex]\:\left(-\frac{17}{10},\:-\frac{1}{10}\right)[/tex] and the graph is:
The U.S. Department of Housing and Urban Development publishes data on the fair market monthly rent for existing one-bedroom housing by metropolitan area (The Federal Register, April 30 1997). The standard deviation for the monthly rent is about $80. Assume that a sample of metropolitan areas will be selected in order to estimate the population mean of the monthly rent for existing one-bedroom housing. Use 95% confidence. a. How large should the sample be if the desired margin of error is $25?
Answer:
[tex]n=(\frac{1.960(80)}{25})^2 =246.73 \approx 247[/tex]
So the answer for this case would be n=247 rounded up to the nearest integer
Step-by-step explanation:
We know that the standard deviation is :
[tex]\sigma = 80[/tex] represent the deviation
The margin of error is given by this formula:
[tex] ME=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex] (a)
And on this case we have that ME =25 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
[tex]n=(\frac{z_{\alpha/2} \sigma}{ME})^2[/tex] (b)
The critical value for 95% of confidence interval now can be founded using the normal distribution and the critical value would be [tex]z_{\alpha/2}=1.960[/tex], replacing into formula (b) we got:
[tex]n=(\frac{1.960(80)}{25})^2 =246.73 \approx 247[/tex]
So the answer for this case would be n=247 rounded up to the nearest integer
Assignment
Use the function f(x) = 2x3 - 3x2 + 7 to complete the exercises.
f(-1) =
f(1) =
f(2)=
>
Answer:
The value of the function f(x) at x=a can be determined by substituting a instead of x into the function expression.
1. When x=-1, then
f(-1) = 2 * (-1)^3 - 3 * (-1)^2 + 7 = -2 - 3 + 7 = 2.
2. When x=1, then
f(1) = 2 * 1^3 - 3 * 1^2 + 7 = 2 - 3 + 7 = 6.
3. When x=2, then
f(-1) = 2 * 2^3 - 3 * 2^2 + 7 = 16 - 12 + 7 = 11.
Step-by-step explanation:
Answer:
f(−1) =✔ 2
f(1) = ✔ 6
f(2) =✔ 11
Step-by-step explanation:
Arun’s restaurant bill is $58, and he wants to leave the waiter an 18 percent tip. What will Arun’s total bill be? $10.44 $47.56 $68.44 $76.00
Answer:
The Answer is 68.44. I wish it helpsAnswer:
68.44$
Step-by-step explanation:
x=18*58/100=10.44 $(the tip)
58+10.44=68.44 ( the bill )
The results of a common standardized test used in psychology research is designed so that the population mean is 155 and the standard deviation is 50. A subject earns a score of 155. How many standard deviations from the mean is the value 155
Answer:
The value 155 is zero standard deviations from the [population] mean, because [tex] \\ x = \mu[/tex], and therefore [tex] \\ z = 0[/tex].
Step-by-step explanation:
The key concept we need to manage here is the z-scores (or standardized values), and we can obtain a z-score using the next formula:
[tex] \\ z = \frac{x - \mu}{\sigma}[/tex] [1]
Where
z is the z-score.x is the raw score: an observation from the normally distributed data that we want standardize using [1].[tex] \\ \mu[/tex] is the population mean.[tex] \\ \sigma[/tex] is the population standard deviation.Carefully looking at [1], we can interpret it as the distance from the mean of a raw value in standard deviations units. When the z-score is negative indicates that the raw score, x, is below the population mean, [tex] \\ \mu[/tex]. Conversely, a positive z-score is telling us that x is above the population mean. A z-score is also fundamental when determining probabilities using the standard normal distribution.
For example, think about a z-score = 1. In this case, the raw score is, after being standardized using [1], one standard deviation above from the population mean. A z-score = -1 is also one standard deviation from the mean but below it.
These standardized values have always the same probability in the standard normal distribution, and this is the advantage of using it for calculating probabilities for normally distributed data.
A subject earns a score of 155. How many standard deviations from the mean is the value 155?
From the question, we know that:
x = 155.[tex] \\ \mu = 155[/tex].[tex] \\ \sigma = 50[/tex].Having into account all the previous information, we can say that the raw score, x = 155, is zero standard deviations units from the mean. The subject earned a score that equals the population mean. Then, using [1]:
[tex] \\ z = \frac{x - \mu}{\sigma}[/tex]
[tex] \\ z = \frac{155 - 155}{50}[/tex]
[tex] \\ z = \frac{0}{50}[/tex]
[tex] \\ z = 0[/tex]
As we say before, the z-score "tells us" the distance from the population mean, and in this case this value equals zero:
[tex] \\ x = \mu[/tex]
Therefore
[tex] \\ z = 0[/tex]
So, the value 155 is zero standard deviations from the [population] mean.
Suppose the labor force is 189 million of a possible 244 million working-age adults. The total number of unemployed is 15 million. What
is the standard unemployment rate?
Answer:
The standard unemployment rate is of 0.0794 = 7.94%.
Step-by-step explanation:
The standard unemployment rate, as a proportion, is the number of unemployed people divided by the size of the labor force.
In this question:
Labor force: 189 million
Number of unemployed people: 15 million
What is the standard unemployment rate?
15/189 = 0.0794
The standard unemployment rate is of 0.0794 = 7.94%.
Factories fully 4ab + 8ac
Answer:
Hello!
I believe your answer is:
4a(b+2c)
Step-by-step explanation:
I hope this worked for you! Good luck!
Which of the following is true regarding the solution to the logarithmic equation below? log Subscript 2 Baseline (x + 11) = 4. x + 11 = 2 Superscript 4. x + 11 = 16. x = 5. x = 5 is not a true solution because log Subscript 5 Baseline (16) not-equals 2 x = 5 is not a true solution because log Subscript 5 Baseline (16) not-equals 4 x = 5 is a true solution because log Subscript 2 Baseline (16) = 4 x = 5 is a true solution because log Subscript 4 Baseline (16) = 2
Answer:
Option C.
Step-by-step explanation:
The given logarithmic equation is
[tex]\log_2(x+11)=4[/tex]
It can be written as
[tex](x+11)=2^4[/tex] [tex][\because log_ax=y\Leftrightarrow x=a^y][/tex]
[tex]x+11=16[/tex]
[tex]x=5[/tex]
Now, to check whether [tex]x=5[/tex] is a true solution or not. Substitute [tex]x=5[/tex] in the LHS of given equation.
[tex]LHS=\log_2(5+11)[/tex]
[tex]LHS=\log_2(16)[/tex]
[tex]LHS=\log_22^4[/tex]
[tex]LHS=4[/tex] [tex][\because log_aa^x=x][/tex]
[tex]LHS=RHS[/tex]
Hence, [tex]x=5[/tex] is a true solution because [tex]\log_2(16)=4[/tex].
Therefore, the correct option is C.
Answer:
C on edge2021
Step-by-step explanation:
Look at the Picture. Look at the Picture.
Answer:
325 square inches
Step-by-step explanation:
Consider the attachment below for further reference. Ideally we would split this figure into parts, and solve as demonstrated by the attachment. I have labeled each rectangle as rectangle 1, rectangle 2, rectangle 3 etc. ;
[tex]Rectangle 1 Area = 17 in * 5 in = 85 square in\\Rectangle 2 Area = ( 17 in - 5 in ) * 14 in = 168 square in,\\Rectangle 3 Area = ( 12 in - 3 in ) * 8 in = 72 square in\\\\Total Area = 85 + 168 + 72 = 325 square inches[/tex]
Hope that helps!
Answer: The answer is 325 inches.
Step-by-step explanation: You can divide the rectangle into multiple parts and find the areas of those parts and add all the areas together at the end
Pls help me with this
Answer:
x = 1.5
Step-by-step explanation:
Given
[tex]\frac{x}{2} \geq 0.75[/tex]
[tex]\frac{x}{2} < 2.5[/tex]
Required
Find the value of x.
First, the inequalities need to be rewritten and merged;
if [tex]\frac{x}{2} \geq 0.75[/tex], then
[tex]0.75 \leq \frac{x}{2}[/tex]
Multiply both sides by 2
[tex]2 * 0.75 \leq \frac{x}{2} * 2[/tex]
[tex]1.5 \leq x[/tex]
Similarly;
[tex]\frac{x}{2} < 2.5[/tex]
Multiply both sides by 2
[tex]2 * \frac{x}{2} < 2.5 * 2[/tex]
[tex]x < 5[/tex]
Merging these results together; to give
[tex]1.5 \leq x < 5[/tex]
This means that the range of values of x is from 1.5 to 4.9999....
From the question, x is the smallest rational number; from the range above ([tex]1.5 \leq x < 5[/tex]), the minimum value of x is 1.5 and 1.5 is a rational number;
Hence, x = 1.5
Determine the next term in the sequence.
14,33,55,83,114....
Answer:
You can't find the next solution without more information.
Step-by-step explanation:
The blood platelet counts of a group of women have a bell-shaped distribution with a mean of 258.7 and a standard deviation of 63.5. (All units are 1000 cells/muL.) Using the empirical rule, find each approximate percentage below. a. What is the approximate percentage of women with platelet counts within 3 standard deviations of the mean, or between 68.2 and 449.2? b. What is the approximate percentage of women with platelet counts between 195.2 and 322.2?
Answer:
a) [tex]P( \mu -3\sigma <X< \mu +3\sigma)[/tex]
And from the empirical rule we know that this probability is 0.997 or 99.7%
b)[tex] P(195.2 <X<322.2)[/tex]
Using the z score we have:
[tex] z = \frac{322.2 -258.7}{63.5}= 1[/tex]
[tex] z = \frac{195.2 -258.7}{63.5}= -1[/tex]
And within one deviation from the mean we have 68% of the values
Step-by-step explanation:
For this case we defien the random variable of interest X as "blood platelet counts" and we know the following parameters:
[tex] \mu = 258.7, \sigma =63.5[/tex]
Part a
We can use the z score formula given by:
[tex] z =\frac{\bar X -\mu}{\sigma}[/tex]
And we want this probability:
[tex]P( \mu -3\sigma <X< \mu +3\sigma)[/tex]
And from the empirical rule we know that this probability is 0.997 or 99.7%
Part b
For this case we want this probability:
[tex] P(195.2 <X<322.2)[/tex]
Using the z score we have:
[tex] z = \frac{322.2 -258.7}{63.5}= 1[/tex]
[tex] z = \frac{195.2 -258.7}{63.5}= -1[/tex]
And within one deviation from the mean we have 68% of the values
Can someone help me please
Answer:
the triangles are not similar.
Round 8326 to the nearest hundred
Answer:
The answer is 8300.
Step-by-step explanation:
1) We round the number up to the nearest hundred, if the last two digits in the number are 50 or above.
2) We round the number down to the nearest 100 if the last two digits in the number are 49 or below.
3) If the last two digits are 00, then we do not have to do any rounding because it is already to the hundred.
What value of c makes x2 + 6x + c a perfect square trinomial?
Answer:
9
Step-by-step explanation:
x^2 + 6x + c
Take the coefficient of x
6
Divide by 2
6/2 = 3
Square it
3^2 = 9
That is the value of c required
Answer:
C. 9
Step-by-step explanation:
c = 9
x² + 6x + 9
= (x+3)(x+3)
= (x + 3)²
it is a perfect square trinomial when c is equal to 9
Which pairs of non-overlapping angles share a ray to make a right angle?
Please Select all that Apply. There are multiple answers. 50 POINTS
∠FGK and ∠FGH Im pretty sure its right
A ray is a half-infinite line. The pairs of non-overlapping angles that share a ray to make a right angle are ∠FGE and ∠FGH.
What is a ray?A half-infinite line (also known as a half-line) with one of the two points and is commonly used to represent a ray. It is assumed to be infinite.
A straight line has an angle of measurement of 180°. And a 90° angle is made when two lines are perpendicular to each other.
As we can see the line EGH is a straight line, and FG is another line that is perpendicular to line EH, therefore, it will form two angles measuring 90°. These angles will be ∠FGE and ∠FGH.
Hence, the pairs of non-overlapping angles that share a ray to make a right angle are ∠FGE and ∠FGH.
Learn more about Ray:
https://brainly.com/question/17491571
Isaac is a professional swimmer who trains, in part, by running. She would like to
estimate the average number of miles she runs in each week. For a random sample
of 20 weeks, the mean is
x
= 17.5 miles with standard deviation s = 3.8 miles. Find
a 99% confidence interval for the population mean number of weekly miles Isaac runs.
(a) 15.01 to 19.99 miles (b) 15.07 to 19.93 miles
(c) 15.34 to 19.66 miles (d) 15.31 to 19.69 miles
(e) 15.08 to 19.92 miles
Answer: (b) 15.07 to 19.93 miles
Step-by-step explanation:
Confidence interval is written in the form,
(Sample mean - margin of error, sample mean + margin of error)
The sample mean, x is the point estimate for the population mean.
Margin of error = z × s/√n
Where
s = sample standard deviation = 3.8
n = number of samples = 20
From the information given, the population standard deviation is unknown and the sample size is small, hence, we would use the t distribution to find the z score
In order to use the t distribution, we would determine the degree of freedom, df for the sample.
df = n - 1 = 20 - 1 = 19
Since confidence level = 99% = 0.99, α = 1 - CL = 1 – 0.99 = 0.01
α/2 = 0.02/2 = 0.005
the area to the right of z0.005 is 0.025 and the area to the left of z0.025 is 1 - 0.005 = 0.995
Looking at the t distribution table,
z = 2.861
Margin of error = 2.861 × 3.8/√20
= 2.43
the lower limit of this confidence interval is
17.5 - 2.43 = 15.07 miles
the upper limit of this confidence interval is
17.5 + 2.43 = 19.93 miles
ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.
Answer:
c
Step-by-step explanation:
when the absolute value of slope gets smaller, the graph of line gets less steeper.
An intravenous fluid is infused at the rate shown in the table. What is the missing value?
Minutes
Milliliters
3
ܢܚܪ
2.
?
3
9
4
12
3
6
9
24
Answer:
the answer is 6!!!!!!
Step-by-step explanation:
The missing value in the table is 5
What is Slope of Line?The slope of the line is the ratio of the rise to the run, or rise divided by the run. It describes the steepness of line in the coordinate plane.
The slope intercept form of a line is y=mx+b, where m is slope and b is the y intercept.
The slope of line passing through two points (x₁, y₁) and (x₂, y₂) is
m=y₂-y₁/x₂-x₁
An intravenous fluid is infused at the rate shown in the table
Minutes Milliliters
3 4
? 12
2. 3
? 6
3 9
9 24
Slope=24-9/9-3
=15/3
=5
Now 5=12-4/x-3
5=8/x-3
5x-15=8
5x=23
x=23/5
x=4.6
x=5
The missing number is 5.
Hence, the missing value in the table is 5
To learn more on slope of line click:
https://brainly.com/question/14511992
#SPJ6
if you start with (2,6) and move 2 units right and 3 units down what will you end up with?
For (2,6) the 2 is the x value which is the left/right position and 6 is the y value which is the up/down position.
Moving 2 units to the right, you would add 2 to the x value. Moving 3 units down you would subtract 3 from the y value.
The answer would be (4,3)
You are given the following data, where X1 (final percentage in history class) and X2 (number of absences) are used to predict Y (standardized history test score in third grade):
Y X1 X2
465 92 2
415 95 2
345 70 3
410 72 3
370 75 4
400 82 0
390 80 1
480 98 0
420 80 2
485 99 0
485 92 6
375 92 6
310 61 5
Determine the following multiple regression values.
Report intercept and slopes for regression equation accurate to 3 decimal places
Intercept: a =
Partial slope X1: b1 =
Partial slope X2: b2 =
Report sum of squares accurate to 3 decimal places:
SSreg = SS
Total =
Test the significance of the overall regression model (report F-ratio accurate to 3 decimal places and P-value accurate to 4 decimal places):
F-ratio =
P-value =
Report the variance of the residuals accurate to 3 decimal places.
Report the results for the hypothesis test for the significance of the partial slope for number of absences
Answer:
Step-by-step explanation:
Hello!
Given the variables
Y: standardized history test score in third grade.
X₁: final percentage in history class.
X₂: number of absences per student.
Determine the following multiple regression values.
I've estimated the multiple regression equation using statistics software:
^Y= a + b₁X₁ + b₂X₂
a= 118.68
b₁= 3.61
b₂= -3.61
^Y= 118.68 + 3.61X₁ - 3.61X₂
ANOVA Regression model:
Sum of Square:
SS regression: 25653.86
SS Total: 36819.23
F-ratio: 11.49
p-value: 0.0026
Se²= MMError= 1116.54
Hypothesis for the number of absences:
H₀: β₂=0
H₁: β₂≠0
Assuming α:0.05
p-value: 0.4645
The p-value is greater than the significance level, the decision is to not reject the null hypothesis. Then at 5% significance level, there is no evidence to reject the null hypothesis. You can conclude that there is no modification of the test score every time the number of absences increases one unit.
I hope this helps!
a)i.Write the the absolute value function y=|2x+5|+3|x-1| as a piece-wise function.
ii)What is the range?
Answer:
Step-by-step explanation:
for |2x+5|=
[tex]\left \{ {{2x+5}~~~~if~~~~2x+5 > 0 ~~or ~~~~x>\frac{-5}{2}~~(case 1) \\ \atop {-2x-5}} ~~~~~if~~~2x+5 <0 ~~~~or~~~x<\frac{-5}{2}~~(case 2)[/tex]
for |x-1| = [tex]\left \{ {{x-1 } ~~~~if~~~x-1>0 ~~~or~~~x>1 ~~(case 3)\atop {1-x}} ~~~~if ~~~~x-1<0 ~~~~or~~~x<1 \right. (case 4)[/tex]
Find values of a. b. and c (if possible) such that the system of linear equations has a unique solution, no solution, and infinitely many solutions. (If not possible, enter IMPOSSIBLE.)
X + y = 6
y + z = 6
x + z = 6
ax + by + cz = 0
a) a unique solution (a. b .c)=([])
b) no solution (a. b .c)=([])
c) infinitely many solutions (a. b, c) = ([])
Answer:
Step-by-step explanation:
The given equations are
x + y = 6- - - - - - - - -1
y + z = 6- - - - - - - -2
x + z = 6- - - - - - - - - 3
From equation 2, y = 6 - z
Substituting y = 6 - z into equation 1, it becomes
x + 6 - z = 6
x - z = 6 - 6
x - z = 0
x = z
Substituting x = z into equation 3, it becomes
z + z = 6
2z = 6
z = 6/2
z = 3
x = 3
Substituting x = 3 into equation 1, it becomes
3 + y = 6
y = 6 - 3
y = 3
ax + by + cz = 0
3a + 3b + 3c = 0
3(a + b + c) = 0
Therefore, it is impossible
A study seeks to answer the question, "Does Vitamin C level in the breast milk of new mothers reduce the risk of allergies in their breastfed infants?" The study concluded that high levels of vitamin C (measured in mg) were associated with a 30 percent lower risk of allergies in the infants. In this scenario, "levels of vitamin C (measured in milligrams)" is what type of variable?
Answer:
Quantitative variable
Step-by-step explanation:
The objective in this study is to find the of variable used to conduct the study. The type of variable used to conduct this study is Qualitative variable.
There are majorly two types of variable. These are:
Categorical VariableQuantitative variableCategorical variables are types of variables that are grouped based on some similar characteristics. The nominal scale and the ordinal scale falls under this group of variable.
The nominal scale is an act of giving name to a particular object or concept in order to identify or classify that particular thing.
On the other hand, The ordinal scale possess all the characteristics of nominal scale but here the variables can be ordered. It can be used to determine whether the item is greater or less. It express the indication of order and magnitude.
In Qualitative variables; variables are measured on a numeric scale. From the given question , This type of variable is used to measure the high levels of vitamin C (measured in mg) which were associated with a 30 percent lower risk of allergies in the infants.
The levels of vitamin C could range from 0 mg to certain mg therefore we can measure vitamin C in numerical values of measurement (Quantitative variable).
A multiple-choice standard test contains total of 25 questions, each with four answers. Assume that a student just guesses on each question and all questions are answered independently. (a) What is the probability that the student answers more than 20 questions correctly
Answer:
[tex]P(x>20)=9.67*10^{-10}[/tex]
Step-by-step explanation:
If we call x the number of correct answers, we can said that P(x) follows a Binomial distribution, because we have 25 questions that are identical and independent events with a probability of 1/4 to success and a probability of 3/4 to fail.
So, the probability can be calculated as:
[tex]P(x)=nCx*p^{x}*q^{n-x}=25Cx*0.25^{x}*0.75^{25-x}[/tex]
Where n is 25 questions, p is the probability to success or 0.25 and q is the probability to fail or 0.75.
Additionally, [tex]25Cx=\frac{25!}{x!(25-x)!}[/tex]
So, the probability that the student answers more than 20 questions correctly is equal to:
[tex]P(x>20)=P(21)+P(22)+P(23)+P(24)+P(25)[/tex]
Where, for example, P(21) is equal to:
[tex]P(21)=25C21*0.25^{21}*0.75^{25-21}=9.1*10^{-10}[/tex]
Finally, P(x>20) is equal to:
[tex]P(x>20)=9.67*10^{-10}[/tex]
An item is regularly priced at 40$. It is. On sale for 30% off the regular price. How much (in dollars) is discounted from the regular price?
Answer:
Step-by-step explanation:
12$
Distance between (-6,8) and (-3,9)
Answer:
[tex]\sqrt{10}[/tex]
Step-by-step explanation:
Using the distance formula: [tex]d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}[/tex]
substitute
[tex]d = \sqrt{((-3) - (-6))^2 + ((9)-(8))^2}[/tex]
[tex]\sqrt{10}[/tex]
Which graph represents the solution set for
-X2 + 8x - 12 > 0?
Answer:
B
Step-by-step explanation:
From the mid-1960s to the early 1990s, there was a slow but steady decline in SAT scores. For example, take the Verbal SAT. The average in 1967 was about 543; by 1994, the average was down to about 499. However, the SD stayed close to 110. The drop in average has a large effect on the tails of the distribution. 0.7% 7% 7.67% 7.6%
Complete Question
From the mid-1960's to the early 1990's, there was a slow but steady decline in SAT scores. For example, take the Verbal SAT. The average in 1967 was about 543; by 1994, the average was down to about 499. However, the SD stayed close to 110. The drop in average has a large effect on the tails of the distribution.
Estimate the percentage of students scoring over 700 on 1967.
A 0.7%
B 7%
C 7.67%
D 7.6%
Answer:
The correct option is D
Step-by-step explanation:
From the question we are told that
The average SAT score in 1967 is [tex]\= x_1 =543[/tex]
The standard deviation of score in 1967 is [tex]\sigma_ 1= 110[/tex]
The average SAT score in 1994 is [tex]\= x_2 = 499[/tex]
The standard deviation of score in 1967 is [tex]\sigma_ 2 = 110[/tex]
The percentage of students scoring over 700 on 1967 is mathematically represented as
[tex]P(X > 700)[/tex]
Where X is the random variable representing score of student above 700
Now normalizing the above probability we have
[tex]P(X > 700) = P(Z > \frac{700 - \= x_1 }{\sigma } )[/tex]
substituting values
[tex]= P(Z > \frac{700 - \= 543}{110 } )[/tex]
[tex]= P(Z > 1.83 )[/tex]
Form the normalized z table
= 0.076
= 7.6 %
luvenia can row 4mph in still water. She takes as long to row 7 mi upstream as 21 mi downstream. how
Answer:
The speed of the river is 2mph.
Step-by-step explanation:
I guess that we want to find the speed of the river.
First, remember the relation: speed*time = distance
If the speed of the river is Sr, when Luvenia moves downstream (in the same direction that the flow of the water) the total speed will be equal to the speed of Luvenia in still water plus the speed of the water:
Sd = 4mph + Sr
and at this speed, in a time T, she can move 21 miles, so we have:
Sd*T = (4mph + Sr)*T = 21 mi
When moving upstream, the speed will be:
Su = (4mph - Sr)
and in the same time T as before, she moves 7 miles, so we have the equation:
Su*T = (4mph - Sr)*T = 7 mi
Then we have two equations:
(4mph + Sr)*T = 21 mi
(4mph - Sr)*T = 7 mi
Now we can take the quotient of those two equations and get:
((4mph + Sr)*T)/((4mph - Sr)*T) = 21/7
The time T vanishes, and we can solve it for Sr.
(4mph + Sr)/(4mph - Sr) = 3
4mph + Sr = 3*(4mph - Sr) = 12mph - 3*Sr
4*Sr = 12mph - 4mph = 8mph
Sr = 8mph/4 = 2mph.
Find the mode for the following distribution.
Number Frequency
16
3
20
5
24
9
28
7
32
7
36
5
40
3
24
28
32
28 and 32
Answer:
28 and 32
Step-by-step explanation:
they have the most