The use of the wheel barrow in this case makes it a simple machine
What is the simple machine?A wheelbarrow is an illustration of a straightforward device that can simplify labour by lowering the force needed to move a large load. The wheel and axle and the lever are two basic machines that are used.
The wheelbarrow's wheel is made of an axle and wheel. The friction between the wheel and the ground is decreased by the wheel's rotation around the axle. It can also be seen as one of the classes of the lever.
Learn more about simple machine:https://brainly.com/question/10075890
#SPJ1
This graph is a combination of atmospheric carbon dioxide measurements taken from ice cores in Antarctica and air samples atop Mauna Loa. The graph BEST shows how the atmosphere has been affected by an increase in
Responses
Industrial activity
Industrial activity
Photosynthesis
Photosynthesis
Sea Levels
Sea Levels
Ozone Layer
a student is swinging a ball attatched to a string in a vertical circle
The magnitude of the acceleration of the ball applied at the bottom of the circle can be expressed in the form of FTension-FGravity/M.
Option D is correct.
When making a vertical circle with a ball on a string?Along the string's circular and vertical paths, the tension changes. As long as the total quantity of kinetic and potential energy is constant throughout, the ball's speed can change.
Centripetal force varies as a result of motion variations.
We can determine how tight a string that is traveling in a vertical circle is using the expression below:
FC = mv2 /r.
A moving item attached to a string experiences centripetal force, which is determined by the product of the object's mass (mg) and the string tension. (T).
Learn more about string tension at:
https://brainly.com/question/24994188
#SPJ1
Complete question:
A student swings ball of mass M on the end of a string in vertical circle of radius R,as shown in the figure below. Also shown is diagram representing all the forces exerted on the ball at the bottom of the circle where its speed is What is the magnitude of the acceleration of the ball at the bottom of the circle? FTension FGravity
A)Fi /M
B)Fc /M
C)Fr+Fg/M
D) Ft- Fg/M
what is the unit of time not based on a heavenly body
A ball is initially at rest and travels 7.8 m. The ball travels at an acceleration of 6.4 m/s². What is the final velocity of the ball? Give your answer to 1 decimal place.
The final velocity of the ball to one decimal place is approximately 10.0 m/s.
What is the final velocity of the ball?From the third equation of motion:
v² = u² + 2as
Where v is final velocity, u is initial velocity, a is acceleration and s is the distance covered.
Given that:
Ball was initially at rest, initial velocity u = 0acceleretaion a = 6.4 m/s²distance traveled s = 7.8 mFinal velocity v = ?Plug the given values into the abovr formula and solve for the final velocity v.
v² = u² + 2as
v² = 0² + ( 2 × 6.4 m/s² × 7.8 m )
v² = 2 × 6.4 m/s² × 7.8 m
v² = 99.84 m²/s²
v = √( 99.84 m²/s² )
v = 10.0 m/s
Therefore, the final velocity is 10.0 m/s.
Learn more about Equations of Motion: brainly.com/question/18486505
#SPJ1