[Show student response to predict question] Does the duration of the latent period change with different stimulus voltages? How well did the results compare with your prediction?

Answers

Answer 1

No, the duration of the latent period does not change with different stimulus voltages as it is independent of the stimulus voltages.

The time elapsed between the delivery of a stimulus and the beginning of the muscle reaction is referred to as the latent period. The strength of the stimulus is one of many variables that might impact how long the latent period lasts.

Since a stronger stimulus might elicit a larger depolarization of the muscle fibre and so approach the threshold for muscular contraction more quickly, it will often result in a shorter latent period. On the other hand, a weaker stimulus can need a longer latent period to produce enough depolarization to meet the muscle contraction threshold.

To know more about the latent period, refer:

https://brainly.com/question/31414787

#SPJ4


Related Questions

The length of a simple pendulum with a period on Earth of 6.0 seconds is most nearly:

Answers

The length of a simple pendulum with a period on Earth of 6.0 seconds is nearly 8.95 meters.



A simple pendulum can be described as a device where its point mass is attached to a light inextensible string and suspended from a fixed support. The vertical line passing through the fixed support is the mean position of a simple pendulum.

To calculate the length, we can use the formula for the period of a simple pendulum:

T = 2π√(L/g), where T is the period, L is the length, and g is the acceleration due to gravity (approximately 9.81 m/s² on Earth).

First, we'll rearrange the formula to solve for L:
L = (T² * g) / (4π²)

Now, plug in the given period (T = 6.0 seconds) and the value of g (9.81 m/s²):
L = (6.0² * 9.81) / (4 * π²)

Calculate the result:
L ≈ 8.95 meters

Learn more about simple pendulum:

https://brainly.com/question/26449711

#SPJ11

Calculate the % N in these common fertilizers:A. NH3B. NH4NO3

Answers

To calculate the % N in common fertilizers, we need to consider the percentage of nitrogen in each of the compounds.

A. NH3: NH3 contains one nitrogen atom and three hydrogen atoms. The atomic mass of nitrogen is 14.01 g/mol, while the molecular mass of NH3 is 17.03 g/mol. Therefore, the percentage of nitrogen in NH3 is:

(14.01 g/mol / 17.03 g/mol) x 100% = 82.1% N

B. NH4NO3: NH4NO3 contains two nitrogen atoms, four hydrogen atoms, and three oxygen atoms. The atomic mass of nitrogen is 14.01 g/mol, while the molecular mass of NH4NO3 is 80.04 g/mol. Therefore, the percentage of nitrogen in NH4NO3 is:

[(2 x 14.01 g/mol) / 80.04 g/mol] x 100% = 35.0% N

So, the % N in NH3 is 82.1%, and the % N in NH4NO3 is 35.0%.

To know more about fertilizer nitrogen % click this link-

brainly.com/question/13121539

#SPJ11

When a temporary threshold shift becomes a permanent threshold shift.

Answers

A temporary threshold shift (TTS) is a hearing loss that occurs after exposure to loud sounds or noise. This hearing loss is usually temporary and typically resolves within a few hours to a few days.

However, if the noise exposure is prolonged or the sound level is extremely high, a temporary threshold shift can become permanent.

Exposure to loud noise: When a person is exposed to loud noise or sounds, the hair cells in the inner ear can become damaged. This damage can cause a temporary reduction in hearing sensitivity, known as a temporary threshold shift.Recovery period: After the noise exposure ends, the hair cells can begin to recover and the hearing loss can gradually improve. If the noise exposure was not too severe, the hearing should return to normal within a few hours to a few days.Continued exposure: If the person continues to be exposed to loud noise or sounds before the hair cells have fully recovered, the temporary the should shift can become more severe and longer-lasting.Damage to hair cells: Prolonged or repeated exposure to loud noise can cause permanent damage to the hair cells in the inner ear. Over time, this damage can accumulate, leading to a permanent reduction in hearing sensitivity, known as a permanent threshold shift.Diagnosis: A permanent threshold shift is typically diagnosed through a hearing test, which measures the person's ability to hear sounds of different frequencies and volumes.Treatment: There is no cure for a permanent threshold shift, but hearing aids or cochlear implants may be recommended to improve communication and quality of life.

In summary, a temporary threshold shift can become a permanent threshold shift if the noise exposure is prolonged or the sound level is extremely high.

for such more questions on  permanent threshold shift.

https://brainly.com/question/11831553

#SPJ11

STT 10.6 A block with an initial kinetic energy of 4.0 J comes to rest after sliding 1.0 m. How far would the block slide if it had 8.0 J of initial kinetic energy?A 1.4 M B 2.0 MC 3.0 MD 4.0 M

Answers

Initially, the block has kinetic energy, which is converted into work done against friction to bring the block to rest. We can use equation for work done, W = Fd, where F is force of friction and d is distance traveled by the block. Therefore, answer is option B.

Since the force of friction is constant, we can use the equation W = Fd = -ΔK, where ΔK is the change in kinetic energy.

ΔK = -4.0 J, and d = 1.0 m.

Using this equation, we get Fd = 4.0 J, value of the force of friction.

For the second scenario, ΔK = -8.0 J.

Solving for d, we get d = 2.0 m.

Hence correct option is: B.

To know more about kinetic energy, here

brainly.com/question/26472013

#SPJ4

a heavy block is suspended from a vertical spring. the elastic potential energy is stored in the spring is 0.8 j. what is the elongation of the spring if the spring constant is 100 n/m?

Answers

The elongation of the spring is approximately 0.126 meters.

To find the elongation of the spring when the elastic potential energy stored in the spring is 0.8 J and the spring constant is 100 N/m, we will use the formula for elastic potential energy:
E = (1/2) * k * x^2
where E is the elastic potential energy, k is the spring constant, and x is the elongation of the spring.

E = 0.8 J
k = 100 N/m

Rearrange the formula to solve for x:
x^2 = (2 * E) / k

Plug in the values:
x^2 = (2 * 0.8 J) / 100 N/m

Calculate the elongation (x):
x = √(1.6 / 100) = √0.016

x ≈ 0.126 meters

So, the elongation of the spring is approximately 0.126 meters.

Learn more about "spring": https://brainly.com/question/14670501

#SPJ11

If F = 40 N and M = 2.0 kg, what is the magnitude of the acceleration of the suspended object? All surfaces are frictionless.
1) 1.2 m/s2
2) 2.0 m/s2
3) 1.5 m/s2
4) 2.5 m/s2
5) 5.6 m/s2

Answers

The magnitude of the acceleration of the suspended object is:

a = 20 m/s²

To find the magnitude of the acceleration of the suspended object, you can use Newton's second law of motion, which states that force (F) is equal to mass (M) times acceleration (a):

In this case, we are given that the force acting on the suspended object is 40 N, and the mass of the object is 2.0 kg. To find the acceleration, we can use the formula F = M * a, where F is the force, M is the mass, and a is the acceleration.

F = M * a

Given F = 40 N and M = 2.0 kg, you can solve for a:

40 N = 2.0 kg * a

Now, divide both sides by the mass (2.0 kg):

a = 40 N / 2.0 kg

a = 20 m/s²

However, none of the provided options match the calculated acceleration.

The question states that none of the provided options match the calculated acceleration. This means that there may be an error in the calculations or that the options given are incorrect.

To learn more about magnitude, refer below:

https://brainly.com/question/14452091

#SPJ11

how to caluclate the minium angle a pendulum can be dropped from to just make it around the peg without the string going slack?

Answers

The minimum angle from which a pendulum can be dropped so that it just makes it around the peg without the string going slack can be calculated using the conservation of energy principle.

Let's assume that the length of the pendulum is L and the radius of the peg is r.

The potential energy of the pendulum at its maximum height (when it is just about to be released) is equal to its kinetic energy at its lowest point (when it just makes it around the peg without the string going slack).

Therefore, we can equate these two energies as follows:

mgh = (1/2)mv²

where m is the mass of the pendulum, g is the acceleration due to gravity, h is the height from which the pendulum is dropped, and v is the velocity of the pendulum at its lowest point.

Since the velocity of the pendulum at its lowest point is zero, we can simplify the above equation to:

h = (1/2)(v²/g)

Now, we can use the conservation of energy principle to determine the velocity of the pendulum at its lowest point. The total energy of the pendulum is constant and is equal to the sum of its potential energy (mgh) and its kinetic energy

(1/2)mv².

Therefore, we can write:

mgh = (1/2)mv²

Simplifying this equation, we get:

v² = 2gh

Substituting this value of v² into the equation for h, we get:

h = (1/2)(2gh/g)

h = h

This means that the height from which the pendulum is dropped does not depend on its mass. Therefore, the minimum angle from which the pendulum can be dropped so that it just makes it around the peg without the string going slack is given by:

θ = sin⁻¹(r/L)

where θ is the minimum angle in radians, r is the radius of the peg, and L is the length of the pendulum. To convert the angle from radians to degrees, we can use the formula:

θ(degrees) = (θ(radians) / 180)/π

where π is the mathematical constant pi.

For more such answers on the pendulum

https://brainly.com/question/26524032

#SPJ11


Does anyone know how to do it

Answers

Only the resistor connected in series which is resistor A will have the least current passing through it.

Which resistor is the current the smallest?

In this problem, we have some resistors that are connected in series and some in parallel.

The formula of resistors connected in series is given as;

R(series = R1 + R2 + R3 + ....+ Rn

The formula for resistors connected in parallel are

R(parallel) = 1/ R1 + 1/R2 + 1 / R3 +...+ 1/Rn

In this case, we have to assume that the voltage passing through the circuit is uniform and let's assume is 2V

V = IR

I = currentR = resistanceV = voltage

I = V/R

From the equation above, we can see that only the series resistance will have a small current passing through it.

Learn more on resistors here;

https://brainly.com/question/469388

#SPJ1

T/F A larger wheel will be easier to rotate because it has a larger moment of inertia.

Answers

True, a larger wheel will be easier to rotate because it has a larger moment of inertia.

The moment of inertia is a property of a rotating object that describes its resistance to changes in its rotation.
A larger wheel will not necessarily be easier to rotate because it has a larger moment of inertia. In fact, a larger moment of inertia means that the wheel will require more torque (force applied at a distance from the axis of rotation) to achieve the same angular acceleration as a smaller wheel with a smaller moment of inertia. This is because the moment of inertia is directly proportional to an object's resistance to rotational motion. So, a larger wheel with a larger moment of inertia would require more force to rotate at the same rate as a smaller wheel with a smaller moment of inertia.

To know more about moment of inertia:

https://brainly.com/question/15246709

#SPJ11

A parallelâplate capacitor is charged by connection to a battery. If the battery is disconnected and the separation between the plates is increased what will happen to the charge on the capacitor and the voltage across it?
A. Both remain fixed.
B. Both increase.
C. Both decrease.
D. The charge increases and the voltage decreases.
E. The charge remain fixed and the voltage increases.

Answers

If the battery is disconnected and the separation between the plates is increased then the  charge increases and the voltage decreases. Option D

When a parallel-plate capacitor is charged by connection to a battery, it stores electrical energy in the form of separated charges on its plates. If the battery is disconnected and the separation between the plates is increased, the charge on the capacitor remains the same, but the voltage across it decreases.
This is because the capacitance of the capacitor is determined by its geometry, which includes the distance between its plates. When the distance between the plates is increased, the capacitance decreases, and as a result, the voltage across the capacitor also decreases. This is because the charge stored on the plates is spread out over a larger area, reducing the electrical potential difference between them.
It is important to note that the charge on the capacitor remains the same because charges cannot be created or destroyed. They can only be moved around or redistributed. In this case, the charges on the capacitor are simply redistributed over a larger area.
Therefore, the correct answer to the question is option D: the charge increases and the voltage decreases. It is important to understand the relationship between capacitance, charge, and voltage in order to accurately predict the behavior of capacitors in different situations.

For more such questions on voltage visit:

https://brainly.com/question/1176850

#SPJ11

An automobile of mass 1500kg moving at 25.0m/s collides with a truck of mass 4500kg at rest. The bumpers of the two vehicles lock together during the crash. Compare the force exerted by the car on the truck with that exerted by the truck on the car during the collision.

Answers

The force exerted by the car on the truck is equal to 7500 N, and the force exerted by the truck on the car is equal to -7500 N.

According to Newton's third law of motion, for every action, there is an equal and opposite reaction. Therefore, during the collision between the car and the truck, the force exerted by the car on the truck is equal in magnitude but opposite in direction to the force exerted by the truck on the car.

To determine the force exerted by the car on the truck, we can use the formula for impulse, which is the change in momentum of an object over a given period of time:

Impulse = Force x Time = Δp

where Δp is the change in momentum of the object and t is the time interval during which the force is applied.

In this case, the bumpers of the car and truck lock together, which means that they move as a single unit after the collision. Therefore, we can apply the law of conservation of momentum, which states that the total momentum of an isolated system remains constant.

Initially, the car has a momentum of:

p_car_initial = m_car * v_car_initial = 1500 kg * 25.0 m/s = 37500 kg m/s

Since the truck is at rest initially, its momentum is zero:

p_truck_initial = 0

After the collision, the two vehicles move together as a single unit with a common final velocity. Let the final velocity of the car-truck system be v_final.

Using conservation of momentum:

p_car_initial + p_truck_initial = (m_car + m_truck) * v_final

37500 kg m/s + 0 = (1500 kg + 4500 kg) * v_final

v_final = 5.0 m/s

Therefore, the momentum of the car-truck system after the collision is:

p_final = (1500 kg + 4500 kg) * 5.0 m/s = 30000 kg m/s

The change in momentum of the car-truck system during the collision is:

Δp = p_final - p_car_initial = 30000 kg m/s - 37500 kg m/s = -7500 kg m/s

Since the time interval during which the force is applied is not given in the problem, we cannot calculate the exact values of the forces exerted by the car on the truck and the truck on the car during the collision. However, we know that the forces are equal in magnitude but opposite in direction according to Newton's third law of motion.

Therefore, the force exerted by the car on the truck is equal to 7500 N, and the force exerted by the truck on the car is equal to -7500 N.

To learn more about kinetic energy click:

brainly.com/question/26472013

#SPJ4

FILL IN THE BLANK. An air bubble rises toward the surface of a tall glass of beer. as its temperature remains constant. The size of the air bubble will _____

Answers

Your Answer :- Increase

A air bubble is a globule of one substance in another, usually gas in a liquid. Due to the Marangoni effect, bubbles may remain intact when they reach the surface of the immersive substance.

An air bubble rises toward the surface of a tall glass of beer. As its temperature remains constant, the size of the air bubble will increase.

learn more about "air bubble":-https://brainly.com/question/30454041

#SPJ11

what is the electric force of the molecule on the proton? express your answer with the appropriate units.

Answers

The electric force of the molecule on the proton is  N = kg m / [tex]s^2[/tex].

To calculate the electric force of a molecule on a proton, we need to know the charge of the molecule and the distance between the molecule and the proton.

If the molecule has a net charge of q, and the distance between the molecule and the proton is r, then the electric force between them is given by Coulomb's law:

F = kqq_proton / r^2

where k is the Coulomb constant (8.9875 x 10^9 N m^2/C^2), and q_proton is the charge of the proton (which is positive and has a magnitude of 1.6022 x 10^-19 C).

The units of the electric force depend on the units used for charge (C) and distance (m). If we express q in Coulombs, r in meters, and F in Newtons, then the units of the electric force can be written as:

N = ([tex]N m^2/C^2[/tex]) * C * C / [tex]m^2[/tex]

which simplifies to:

N = kg m / [tex]s^2[/tex]

Therefore, the units of the electric force are Newtons (N).

To learn more about Newtons visit:

https://brainly.com/question/3273157

#SPJ11

for an inelastic collision, which of the following statements are true for a system that includes two colliding objects? choose all that apply. for an inelastic collision, which of the following statements are true for a system that includes two colliding objects?choose all that apply. kinetic energy is lost. momentum is constant. kinetic energy is gained. momentum is lost. kinetic energy is constant. momentum is gained. submitprevious answersrequest answer incorrect; try again your answer indicates that you need to review the concepts associated with collisions. provide feedbacknext incorrect. incorrect; try again. feedback. your answer indicates that you need to review the concepts associated with collisions. end of feedback.

Answers

1. For an inelastic collision involving two colliding objects, the following statements are true: 1. Kinetic energy is lost. 2. Momentum is constant.

2. The total momentum of the system remains constant before

and after the collision, as dictated by the conservation of momentum.

1. The following claims are true for an inelastic collision between two objects:

Kinetic energy is lost

Momentum is conserved

Kinetic energy is not gained

Momentum is not lost

Kinetic energy is not constant

Momentum is not gained

Therefore, the correct statements are:

Kinetic energy is lost.

Momentum is conserved.

2. In an inelastic collision, the objects stick together after the collision,

and some of the initial kinetic energy is converted into other forms of

energy, such as heat or deformation.

However, The conservation of momentum requires that the total

momentum of the system be unchanged before and after the collision.

for such more question on inelastic collision

https://brainly.com/question/30055517

#SPJ11

What is the change in entropy (DS) when one mole of silver (108 g) is completely melted at 961°C? (The heat of fusion of silver is 8.82 ´ 104 J/kg.)

Answers

The change in entropy (DS) of the given one mole of silver is 76.18 J/K.

Mass of the silver, m = 108 g = 108 x 10⁻³kg

Temperature of melting, T = 961°C = 1204 K

Heat of fusion of silver, Q = 8.82 x 10⁴ J/kg

Change in entropy,

ΔS = Q/T

ΔS = (8.82 x 10⁴ x 104)/1204

ΔS = 76.18 J/K

To learn more about entropy change, click:

https://brainly.com/question/1301642

#SPJ4

A 5-mol ideal gas system undergoes an adiabatic free expansion (a rapid expansion into a vacuum), going from an initial volume of 10 L to a final volume of 20 L. How much work is done on the system during this adiabatic free expansion?

Answers

The work done on the system during an adiabatic free expansion is equal to the change in internal energy of the system.

Due to the adiabatic nature of the process, the change in the system's internal energy is equal to the change in the system's total energy, which is equal to the opposite of the change in potential energy.

As a result, the work accomplished is equal to the system's potential energy at the final volume less its potential energy at the initial volume. Since the system is perfect, PV, where P is the pressure and V is the volume, gives the system's potential energy.

Since P1 and P2 are the pressures before and after the expansion, respectively, the work done on the system is equal to −(20L×P2 - 10L×P1).

To learn more about potential energy visit:

https://brainly.com/question/1455245

#SPJ4

[Show student response to predict question] Describe how increasing the stimulus frequency affected the force developed by the isolated whole skeletal muscle in this activity. How well did the results compare with your prediction?

Answers

In this activity, increasing the stimulus frequency had a direct impact on the force developed by the isolated whole skeletal muscle. As the frequency of the stimulus increased, the muscle experienced a higher rate of nerve impulses. This led to a greater number of muscle fibers being activated, resulting in an increased force of contraction.

At lower frequencies, the muscle had sufficient time to relax between stimuli, allowing for individual twitches to be distinguished. However, as the frequency increased, the time between stimuli decreased, and the muscle could not fully relax. This caused summation, where the force of the subsequent contractions added up, resulting in a stronger muscle contraction overall.

Eventually, the stimulus frequency reached a point where the muscle contractions fused together, leading to tetanus – a sustained, maximal force contraction. This is the point at which the muscle developed its greatest force in response to the increasing stimulus frequency.

The results from this activity may have aligned with your prediction if you understood the relationship between stimulus frequency and muscle force. As frequency increases, so does the force generated by the muscle, up to the point of tetanus. Overall, the experiment demonstrated the essential role of stimulus frequency in modulating the force developed by whole skeletal muscles.

For more such questions on Stimulus frequency.

https://brainly.com/question/15908931#

#SPJ11

A 5.0-kg mass is attached to the ceiling of an elevator by a rope whose mass is negligible. What force does the mass exert on the rope when the elevator has an acceleration of 4.0 m/s2 upward?
1) 69 N downward
2) 29 N downward
3) 49 N downward
4) 20 N downward
5) 19 N downward

Answers

The force exerted by the 5.0-kg mass on the rope when the elevator has an acceleration of 4.0 m/s² upward is 20 N downward. So, the correct answer is option 4.

Newton's second law of motion, which states that the force acting on an object is equal to that object's mass times its acceleration, can be used to ascertain this.

F = ma, where F is the force, m is the object's mass, and an is the lift's acceleration, can be used to determine the force in this situation.

F = (5.0 kg)(4.0 m/s²) = 20 N in this situation.

The mass pulling on the rope is exerting a downward force because the lift is speeding higher.

Therefore, when the lift accelerates at a rate of 4.0 m/s² upward, the force applied to the rope by the 5.0-kg mass is 20 N downward.

To learn more about force visit:

https://brainly.com/question/12785175

#SPJ4

a 62.0-kg woman runs up a 4.28-m high stairway in a time of 4.20 s. what average power did she supply?

Answers

The woman supplied an average power of 625 W while climbing the stairway.

How to find average power?

To find the average power the woman supplied, we need to use the formula:

average power = work done / time

The work done is equal to the change in potential energy of the woman as she climbs the stairs. The change in potential energy is given by:

ΔPE = mgh

where m is the mass of the woman, g is the acceleration due to gravity, and h is the height of the stairway.

So, ΔPE = (62.0 kg) x (9.81 m/s^2) x (4.28 m) = 2627 J

The time taken by the woman is 4.20 s.

Therefore, the average power she supplied is:

average power = work done / time = 2627 J / 4.20 s ≈ 625 W

Therefore, the woman supplied an average power of 625 W while climbing the stairway.

Learn more about average power

brainly.com/question/30888338

#SPJ11

Two pith balls are charged by touching one to a glass rod that has been rubbed with a nylon cloth and the other to the cloth itself.How will the two pith ball react with one another?

Answers

When a glass rod is rubbed with a nylon cloth and then used to charge two pith balls, the balls become positively and negatively charged, respectively, and will attract each other due to the electrostatic force.


Step 1: Understand the charging process
When the glass rod is rubbed with the nylon cloth, it gains a positive charge due to the transfer of electrons from the glass to the cloth. The nylon cloth becomes negatively charged.


Step 2: Charging the pith balls
When one pith ball touches the charged glass rod, it gains a positive charge due to the transfer of electrons from the pith ball to the glass rod.

When the other pith ball touches the charged nylon cloth, it gains a negative charge due to the transfer of electrons from the cloth to the pith ball.


Step 3: Interaction between the charged pith balls
Since one pith ball is positively charged and the other is negatively charged, they will attract each other due to the electrostatic force acting between them. This is because opposite charges attract one another.

To know more about electrostatic force click here:

https://brainly.com/question/9774180

#SPJ11

You are looking toward the north and see the Big Dipper to the right of Polaris. Fifteen minutes later, the Big Dipper will appear to have moved in roughly what direction?

Answers

The exact direction will depend on your location and the time of year, but in general, the stars appear to move approximately 15 degrees per hour

Assuming that you are in the Northern Hemisphere, Polaris (also known as the North Star) is located very close to the north celestial pole, which is the point in the sky around which the stars appear to rotate.

The Big Dipper is a well-known asterism that is part of the constellation Ursa Major, and it appears to circle around the north celestial pole over the course of the night.If you are looking toward the north and see the Big Dipper to the right of Polaris, this means that the Big Dipper is located to the east of Polaris. As the Earth rotates on its axis, the stars appear to move from east to west across the sky, with the stars located to the east of the meridian (an imaginary line running from due north to due south through the zenith) rising before the stars to the west of the meridian.

Therefore, fifteen minutes later, the Big Dipper will have moved to the west of its current position, which means that it will appear to have moved in the direction of the west.

for such more questions on Hemisphere

https://brainly.com/question/18994375

#SPJ11

A person weighing 0.70 kN rides in an elevator that has an upward acceleration of 1.5 m/s2. What is the magnitude of the force of the elevator floor on the person?
1) 0.11 kN
2) 0.81 kN
3) 0.70 kN
4) 0.59 kN
5) 0.64 kN

Answers

The correct option is (2) 0.81 kN (since 0.81 kN is the closest option to 0.35 kN).

To solve this problem, we can use Newton's second law of motion, which states that the net force acting on an object is equal to its mass times its acceleration: F_net = m*a.

In this case, the person has a weight of 0.70 kN, which means that the force of gravity acting on them is 0.70 kN. The elevator is accelerating upward with an acceleration of 1.5 m/s^2. Therefore, the net force acting on the person can be found as follows:

F_net = ma = (0.70 kN)(1.5 m/s^2) = 1.05 kN

The magnitude of the force of the elevator floor on the person is equal in magnitude but opposite in direction to the net force acting on the person, which is 1.05 kN. Therefore, the answer is:

Magnitude of force = 1.05 kN - 0.70 kN = 0.35 kN

Therefore, the correct option is (2) 0.81 kN (since 0.81 kN is the closest option to 0.35 kN).

To learn more about magnitude visit:

https://brainly.com/question/15681399

#SPJ11

A boy takes a toy top and pulls on a string to make the top spin. The top can be considered a solid disk (I=½MR^2) and has a mass of 0.100kg and a radius of 0.0200m. The top starts from rest and ends up spinning at 15.0rev/s after 0.800s. What is the angular acceleration of the top?

Answers

The angular acceleration of the top is 117.81 rad/s^2.

To find the angular acceleration of the top, we can use the formula:
angular acceleration = (final angular velocity - initial angular velocity) / time

We are given that the initial angular velocity is zero (since the top starts from rest) and the final angular velocity is 15.0 rev/s. We need to convert revolutions per second to radians per second, which can be done by multiplying by 2π. So:

final angular velocity = 15.0 rev/s * 2π rad/rev = 94.25 rad/s
The time is given as 0.800 s. Now we can plug these values into the formula:
angular acceleration = (94.25 rad/s - 0 rad/s) / 0.800 s
angular acceleration = 117.81 rad/s^2

Therefore, the angular acceleration of the top is 117.81 rad/s^2.

To know more about angular acceleration, please click on:

https://brainly.com/question/30238727

#SPJ11

Distinguish the difference between height, width and depth auxiliaries.

Answers

Height, width, and depth are three fundamental dimensions used to describe the size and shape of objects in a three-dimensional space. Each dimension serves as an auxiliary measurement to help accurately define an object's proportions.

Height refers to the vertical extent of an object, which is typically measured from its base to its highest point. This dimension helps indicate the elevation or overall "tallness" of an object in comparison to its surroundings or other objects.

Width, on the other hand, refers to the horizontal extent of an object, which is typically measured from one side to the other at the object's widest point. Width helps convey the "broadness" of an object and provides context for understanding the object's size in relation to other dimensions.

Depth, also known as the third dimension, measures the object's distance from front to back. Depth is the extent to which an object extends into the space it occupies, providing information about the object's "thickness" or "fullness."

These dimensions are crucial when working with objects in various contexts, such as design, engineering, architecture, and other fields. Height, width, and depth are used to describe the proportions and scale of objects in relation to their environment, allowing for precise measurements and accurate representations of objects in both virtual and physical spaces.

Overall, understanding and distinguishing the differences between height, width, and depth auxiliaries enables a more comprehensive and accurate interpretation of objects in three-dimensional spaces.

For more such questions on Three-dimensional space.

https://brainly.com/question/28084072#

#SPJ11

T/F A single pulley will crease a larger mechanical advantage when lifting a weight

Answers

Multiple pulleys in combination can increase the mechanical advantage of the system.

False.

A pulley is a simple machine that changes the direction of the force applied to it. A single pulley can only change the direction of the force required to lift an object, and it does not increase the mechanical advantage of the system.

Mechanical advantage refers to the ratio of the output force to the input force in a system. It is a measure of the amount by which a machine can multiply the force applied to it. In a simple pulley system, the mechanical advantage is equal to 1 because the output force is the same as the input force.

However, the mechanical advantage can be increased by using multiple pulleys in combination, such as in a block and tackle system. In a block and tackle system, several pulleys are arranged in such a way that the rope or cable passes through them multiple times. This arrangement multiplies the mechanical advantage of the system, making it easier to lift heavy objects.

So, in summary, a single pulley does not increase the mechanical advantage when lifting a weight. It only changes the direction of the force applied to the system. Multiple pulleys in combination can increase the mechanical advantage of the system.

To learn more about mechanical visit:

https://brainly.com/question/20885658

#SPJ11

Large telescopes are usually reflecting rather than refracting. List some reasons for this choice.
a) a lens must have two precision surfaces; a mirror needs only one
b) Lenses absorb light, while mirrors do not
c) Lenses are subject to chromatic aberration
d) Heavy lenses, which can only be supported at their edges, tend to deform under their own weight

Answers

Large telescopes are usually reflecting rather than refracting for several reasons.

Firstly, a lens must have two precision surfaces, while a mirror needs only one, making mirrors easier and cheaper to manufacture for larger sizes. Secondly, lenses absorb light, while mirrors do not, leading to a loss of brightness and contrast in refracting telescopes. Additionally, lenses are subject to chromatic aberration, where different colors of light are focused at slightly different points, causing blurring and distortion. Finally, heavy lenses, which can only be supported at their edges, tend to deform under their own weight, whereas mirrors can be supported from behind, allowing for larger sizes and sharper images.

To know more about Refracting telescopes, please click on:

https://brainly.com/question/556195

#SPJ11

Three boxes slide on a frictionless horizontal surface when pulled by a force of magnitude F. When we compare the tensions T1 and T2 with the force F, we find that
1) T1 = T2 = F.
2) T1 = F > T2.
3) F > T1 = T2.
4) F > T1 > T2.
5) F - T1 < T1 - T2.

Answers

When we compare the tensions T1 and T2 with the force F, we find that F > T1 > T2. The correct option is 4.

When three boxes are connected and slide on a frictionless horizontal surface, the tensions T1 and T2, as well as the external force F, play a significant role in their motion. The force F pulls the entire system, and tensions T1 and T2 are the forces transmitted through the connections between the boxes.

According to Newton's second law of motion, the acceleration of the system will be the same for all three boxes. The tensions T1 and T2 result from the force F, and their magnitudes depend on the masses and accelerations of the boxes.

Option 4, "F > T1 > T2," is the correct relationship between these forces. The force F is greater than T1 because F is responsible for moving all three boxes. T1 is greater than T2, as T1 must move two boxes, while T2 only needs to move one box. This difference in the number of boxes each tension force has to act upon results in the inequality F > T1 > T2.

In summary, when three boxes are pulled by a force of magnitude F on a frictionless horizontal surface, the relationship between tensions T1 and T2 and force F is F > T1 > T2. This is due to the different number of boxes that each force must act upon and Newton's second law of motion, which governs the behavior of forces and accelerations in the system.

For more such questions on Tension.

https://brainly.com/question/14767336#

#SPJ11

Consider three identical resistors, each of resistance R. The maximum power each can dissipate is P. Two of the resistors are connected in series, and a third is connected in parallel with these two. What is the maximum power this network can dissipate?
A. 2P/3
B. 2P
C. 3P
D. 3P/2
3P/2

Answers

The maximum power this network can dissipate will be 3P/2. The right answer is D.

When two identical resistors are connected in series, their total resistance is 2R.

When a third identical resistor is connected in parallel with these two, the total resistance of the circuit becomes R/3. Using the formula for power,

[tex]P = V^2/R[/tex],

we can calculate the maximum power that each resistor can dissipate as

[tex]P = V^2/R.[/tex]

When two resistors are connected in series, the voltage across them is divided equally.

Therefore, the voltage across each resistor in the series combination is V/2.

When a third resistor is connected in parallel with these two, the voltage across each of the series resistors remains the same (V/2), but the voltage across the parallel resistor is also V/2.

The total power dissipated in the series resistors is

[tex]P1 = (V/2)^2 \times R = V^2/4R.[/tex]

The total power dissipated in the parallel resistor is

[tex]P2 = (V/2)^2 \times (R/3) = V^2/12R.[/tex]

The total power dissipated in the network is the sum of P1 and P2, which is [tex]5V^2/12R[/tex] or 3P/2.

Therefore, the maximum power that this network can dissipate is 3P/2. The right option is D.

For more such answers on Resistance

https://brainly.com/question/17563681

#SPJ11

Assuming that the wave speed varies little when sound waves are traveling though a material that suddenly changes density by 10%, what percentage of the incident wave intensity is reflected?

Answers

The reflection coefficient is approximately 0.025, which means that 2.5% of the incident wave intensity is reflected.

The amount of energy that is reflected depends on the difference in acoustic impedance between the two materials. Acoustic impedance is the product of the density and the speed of sound in the material.

If the density of a material changes by 10%, then its acoustic impedance also changes by 10%. Assuming that the speed of sound does not change much at the boundary, the difference in acoustic impedance between the two materials is approximately 20%.The reflection coefficient is the ratio of the reflected intensity to the incident intensity of the sound wave. It depends on the difference in acoustic impedance between the two materials:

[tex]R = [(Z2 - Z1)/(Z2 + Z1)]^2[/tex]

where R is the reflection coefficient, Z1 is the acoustic impedance of the first material, and Z2 is the acoustic impedance of the second material.Since the density of the second material has changed by 10%, its acoustic impedance has changed by 10% as well. Therefore, the difference in acoustic impedance between the two materials is approximately 20%. If we assume that the speed of sound does not change much at the boundary, then the acoustic impedance of the first material remains approximately the same.

Substituting the values into the formula for the reflection coefficient, we get:

[tex]R = [(Z2 - Z1)/(Z2 + Z1)]^2[/tex]

[tex]R = [(1.1Z1 - Z1)/(1.1Z1 + Z1)]^2[/tex]

[tex]R = [(0.1Z1)/(2.1Z1)]^2[/tex]

[tex]R = 0.025[/tex]

for such more questions on reflection coefficient

https://brainly.com/question/31498600

#SPJ11

T/F If you increase the time over which a force is applied, you can decrease the magnitude of the force and get the same change in momentum

Answers

True . If you increase the time over which a force is applied, you can decrease the magnitude of the force and still achieve the same change in momentum.

This concept is related to the Impulse-Momentum Theorem, which states that the impulse (force multiplied by time) is equal to the change in momentum.

To break it down step-by-step:
1. Impulse (I) is calculated as Force (F) multiplied by Time (t): I = F * t
2. Change in momentum (Δp) is equal to the impulse: Δp = I
3. When you increase the time (t) while maintaining the same change in momentum (Δp), you can decrease the force (F) since their product remains constant.

So, by increasing the time over which a force is applied, you can decrease the magnitude of the force while still achieving the same change in momentum.

To know more about Impulse-Momentum Theorem:

https://brainly.com/question/14121529

#SPJ11

Other Questions
How to Find the Sample Size (For a given margin of error)? twelve weeks of demand data are given in the following table. calculate a 3-week wma, assuming the demand from three weeks ago is weighted as 25%, two weeks ago as 35%, and one week ago as 40%. what is the 3-week wma for week 6? To detect a significant difference between two groups when the effect size is small, what should the researcher do?a. Conduct a pilot study. b. Obtain a different sample. c. Increase the sample size. d. Perform additional analysis. What is your visual cue that notes are currently being sorted by Note Time? Calculator Bookwork code: H43 P allowed -~^^^^^/ *^* Work out how many kilometres the bus travels between these two stops. If your answer is a decimal, give it to 1 d.p. Bus stop Fison Road Ditton Walk Napier Street Emmanuel Street Railway Station Coleridge Road Time 13:03 13:12 13:17 13:25 13:34 13:40 which is a prime mover of the glenohumeral joint? multiple choice question. latissimus dorsi biceps brachii rectus abdominis Predict what would happen to the energy supply in a cell if fermentation did not happen under anaerobic conditions. order these in terms of increasing electron affinity: O2, FAD, CoQ, NAD+ We do our best work under certain conditions but not under others. Plants that grow beautifully at sea level, often perish if they're taken ten thousand feet up the mountain. What are your favorite working conditions? Under what conditions do you do your most effective work? A contractor is building the base of a circular fountain. On the blueprint, the base of the fountain has a diameter of 18 centimeters. The blueprint has a scale of three centimeters to four feet. What will be the actual ares of the base of the fountain, in square feet, after it is built? Round your answer to the nearest tenth of a square foot. what other filament does smooth muscle contain? The codons are found on the mRNA strand created during transcription. Which organelle reads the codons during translation?ribosomes What is OCB? Why does it matter to managers? Now provide an example of how OCB applies to your life in college. Will you see caruncles in the wall of the pregnant uterus? what is the function of the otoliths? select the best answer. what is the function of the otoliths?select the best answer. stimulate ampullae when the head rotates responding to changes in the pull of gravity and in acceleration when the body moves transmit vibrations from the tympanic membrane to the oval window unlike mental health professionals in the united states, the senegalese understand mental disorders as the result of Paraphrase the events in these chapters. Include who was present, the main action, and any information relevant to understanding the central idea/theme. Anne Frank's Diary Act 1 scene 3 lamey company has an unlevered cost of capital of 12.3 percent, a total tax rate of 25 percent, and expected earnings before interest and taxes of $32,840. the company has $60,000 in bonds outstanding that sell at par and have a coupon rate of 7.2 percent. what is the cost of equity? cq a) 13.78% b) 13.36% c) 13.94% d) 14.07% e) 14.29% One big obstacle for plaintiffs in winning negligent infliction of emotional distress claims against media defendants is what? how does the amplitude/voltage relate to motor unit recruitment and force of muscle contraction?