Answer:
For 10 sections you would need 60 rails
The rule for posts is to multiply the section by 3
the rule for rails is to multiply the post by 2
1.
(03. 01 MC)
Part A: Find the LCM of 8 and 9. Show your work. (3 points)
Part B: Find the GCF of 35 and 63. Show your work. (3 points)
Part C: Using the GCF you found in Part B, rewrite 35 + 63 as two factors. One factor is the GCF and the other is the sum of two numbers that do not have a common factor. Show your work. (4 points)
The LCM of 8 and 9 is 72. The GCF of 35 and 63 is 7.35 + 63 can also be written as 7 X 14.
Part A
Here we have been given 2 numbers 8 and 9. We need to find the LCM. LCM is the Lowest Common Multiple. It is the smallest number which can be divided by all the mentioned number. To take the LCM of 8 and 9 we first will factorize them
8 = 2 X 2 X 2
9 = 3 X 3
Here we see that 8 and 9 do not have any common factor. Hence we need to simply multiply them together to get
8 X 9 = 72
Part B.
We need to find GCF of 35 and 63. GCF or the Greatest common factor is the highest number that can divide all the given numbers. Here too we will first factorize 35 and 63.
35 = 5 X 7
63 = 3 X 3 X 7
Here we see that between the numbers, 7 is the only common factor
Hence, 7 is the GCF.
63 can also be written as 63 = 7 X 9
Hence we can write 35 + 3
= (7 X 5) + (7 X 9)
Taking 7 common we get
7(5 + 9)
= 7 X 14
To learn more about factors & Multiples visit
https://brainly.com/question/17240111
#SPJ4
You have a 35-mile commute into work. Since you leave very early, the trip going to work is easier than the trip home. You can travel to work in the same time that it takes for you to make it 28 miles on the trip back home. Your average speed coming home is 10 miles per hour slower than your average speed going to work. What is your average speed going to work?
Average speed going to work is 50 mph.
What is average speed to work?Let's assume that the average speed going to work is "x" miles per hour.
Since you can travel to work in the same time it takes for you to make it 28 miles on the trip back home, we can set up an equation using the formula:
time = distance / speed
The time it takes to travel 35 miles to work is:
time to work = 35 / x
The time it takes to travel 28 miles on the return trip is:
time to return = 28 / (x - 10)
We know that both times are equal, so we can set them equal to each other and solve for "x":
[tex]35 / x = 28 / (x - 10)[/tex]
Multiplying both sides by x(x - 10), we get:
[tex]35(x - 10) = 28x[/tex]
Expanding the left side and simplifying, we get:
[tex]35x - 350 = 28x[/tex]
[tex]7x = 35[/tex]
[tex]x = 50[/tex]
Therefore, your average speed going to work is 50 miles per hour.
To solve this problem, we used the formula for speed, distance, and time. We t up an equation using the fact that the time it takes to travel to work is equal to the time it takes to travel 28 miles on the return trip. We then solved for the average speed going to work by setting the two times equal to each other and solving for "x". Finally, we found that the average speed going to work is 50 miles per hour.
Learn more about average speed
brainly.com/question/9834403
#SPJ11
Help with question in photo please!
Check the picture below.
Dylan, eli and fabian share some sweets.
the amount of sweets dylan gets to the amount of sweets eli gets is in the ratio 7:3
the amount dylan gets to the amount fabian gets is in the ratio 4:5
given fabian gets 21 more sweets than dylan.
work out how many sweets eli gets.
In the given ratio problem, Eli gets 21 sweets.
How many sweets did Eli get?Let's assume that Dylan gets 7x sweets, Eli gets 3x sweets, and Fabian gets 5y sweets.
From the given information, we know that:
[tex]5y = 7x + 21[/tex] (since Fabian gets 21 more sweets than Dylan)
We can simplify this expression by dividing both sides by 5:
[tex]y = (7/5)x + 21/5[/tex]
We can also express the ratio of the amount of sweets that Dylan gets to the amount that Fabian gets as [tex]4:5[/tex], which means that:
[tex]4x = (5/1)y[/tex]
Substituting y from the first equation, we get:
[tex]4x = (5/1)*[(7/5)x + 21/5][/tex]
Simplifying this equation, we get:
[tex]4x = 7x + 21[/tex]
[tex]3x = 21[/tex]
[tex]x = 7[/tex]
Therefore, Dylan gets [tex]7x = 49[/tex] sweets, Eli gets [tex]3x = 21[/tex] sweets, and Fabian gets [tex]5y = 70[/tex] sweets.
Hence, Eli gets [tex]21[/tex] sweets.
To learn more about ratio problems,
brainly.com/question/28368900
#SPJ11
Valerie is going to purchase a new car. the car she wants has a list price of $32,495. valerie is planning to make a down payment of $1,877. furthermore, she plans to trade in her current car, which is a 2006 hyundai sonata in good condition. she will finance the rest of the cost by making monthly payments over five years. she can finance the cost at a rate of 8.64%, compounded monthly. she will also have to pay 8.23% sales tax, a $2,243 vehicle registration fee, and a $314 documentation fee. if the dealer gives valerie 87.5% of the trade-in price on her car, listed below, approximately how much will valerie pay in total for her new car? (round all dollar values to the nearest cent, and consider the trade-in to be a reduction in the amount paid.) hyundai cars in good condition model/year 2004 2005 2006 2007 sonata $6,145 $6,520 $6,784 $7,066 tiburon $6,880 $7,144 $7,382 $7,785 elantra $4,211 $4,425 $4,598 $4,880 accent $5,676 $5,828 $6,005 $6,317 a. $37,385 b. $38,821 c. $38,287 d. $36,944
The approximate total amount Valerie will pay for her new car is $38,287.
How much will Valerie pay in total for her new car?
To calculate how much Valerie will pay in total for her new car, we need to consider several factors.
First, let's determine the trade-in value of her 2006 Hyundai Sonata. Since the car is in good condition, Valerie will receive 87.5% of the listed trade-in price for that year, which is $6,784. Therefore, the trade-in value is approximately $5,938.80 ($6,784 * 0.875).
Now, let's calculate the total cost of the new car. The list price is $32,495, and Valerie plans to make a down payment of $1,877. Thus, the remaining amount to be financed is $32,495 - $1,877 - $5,938.80 = $24,679.20.
Next, let's consider the interest on the financing. The interest rate is 8.64% per year, compounded monthly. Over five years, this amounts to 60 monthly payments. Using an amortization formula, we can determine that the monthly payment is approximately $516.27.
Additionally, Valerie will have to pay sales tax, vehicle registration fee, and documentation fee. The sales tax is 8.23% of the total cost, which is ($24,679.20 + $2,243) * 0.0823 = $2,329.48. The vehicle registration fee is $2,243, and the documentation fee is $314. The total additional fees amount to $2,329.48 + $2,243 + $314 = $4,886.48.
Finally, to calculate the total amount Valerie will pay, we add the down payment, monthly payments, trade-in value reduction, and additional fees: $1,877 + (60 * $516.27) + $5,938.80 + $4,886.48 = $38,285.88.
Rounding to the nearest cent, Valerie will pay approximately $38,286 for her new car. Thus, the correct answer is option c: $38,287.
Learn more about trade
brainly.com/question/8322028
#SPJ11
A sculpture is formed from a square-based pyramid resting on a cuboid.
the base of the cuboid and the base of the pyramid are both squares
of side 3 cm.
the height of the cuboid is 8 cm and the total height
of the sculpture is 15 cm.
the total mass of the sculpture is 738g.
15 cm
8 cm
3 cm
the cuboid-part of the sculpture is made of iron
with density 7. 8 g/cmº.
the pyramid is made from copper.
calculate the density, in g/cm', of the copper.
[the volume of a pyramid is:
3
-* area of base x perpendicular height. )
[5]
The density of the copper used in the pyramid is 8.4 g/cm³.
To find the density of the copper used in the pyramid, we first need to determine the volume of the cuboid and pyramid, and then find the mass of the copper.
1. Find the volume of the cuboid (V_cuboid):
V_cuboid = length × width × height
Since the base is a square, the length and width are both 3 cm.
V_cuboid = 3 cm × 3 cm × 8 cm = 72 cm³
2. Find the volume of the pyramid (V_pyramid):
First, find the height of the pyramid: total height (15 cm) - height of the cuboid (8 cm) = 7 cm.
V_pyramid = (1/3) × area of base × perpendicular height
The area of the base is 3 cm × 3 cm = 9 cm².
V_pyramid = (1/3) × 9 cm² × 7 cm = 21 cm³
3. Find the mass of the iron cuboid (m_iron):
Density of iron = 7.8 g/cm³
m_iron = density × V_cuboid = 7.8 g/cm³ × 72 cm³ = 561.6 g
4. Find the mass of the copper pyramid (m_copper):
Total mass of sculpture = 738 g
m_copper = total mass - m_iron = 738 g - 561.6 g = 176.4 g
5. Calculate the density of the copper (density_copper):
density_copper = m_copper / V_pyramid
density_copper = 176.4 g / 21 cm³ ≈ 8.4 g/cm³
The density of the copper is approximately 8.4 g/cm³.
Learn more about Density:
https://brainly.com/question/26364788
#SPJ11
One bag of dichondra lawn food contains 30 pounds of fertilizer and its recommended coverage is 4000 square feet. if you want to cover a rectangular lawn that is 160 feet by 160 feet, how many pounds of fertilizer do you need?
To cover a rectangular lawn of 160 feet by 160 feet with dichondra lawn food, you would need 210 pounds of fertilizer.
To find the area of the rectangular lawn
Area = Length x Width
Area = 160 ft x 160 ft
Area = 25,600 sq ft
Since one bag of lawn food can cover 4000 square feet, we need to divide the total area of the lawn by the coverage of one bag
Number of bags = Total area ÷ Coverage of one bag
Number of bags = 25,600 sq ft ÷ 4000 sq ft
Number of bags = 6.4
Since we cannot buy a fraction of a bag, we need to round up to the nearest whole number of bags, which is 7.
Therefore, we need 7 bags of lawn food to cover the rectangular lawn. To find the total weight of fertilizer needed, we multiply the number of bags by the weight of one bag
Total weight of fertilizer = Number of bags x Weight of one bag
Total weight of fertilizer = 7 bags x 30 pounds/bag
Total weight of fertilizer = 210 pounds
Thus, we need 210 pounds of fertilizer to cover the rectangular lawn.
To know more about Area:
https://brainly.com/question/31381433
#SPJ4
a rectangular prism’s base has an area of 80 square inches and a width of 18 square inches. What is the prism’s height?
The height of the rectangular prism is 4.4 inches
How to determine the areaThe formula for calculating the area of a rectangular prism is expressed with the equation;
A = wh
Such that the parameters of the formula are given as;
A is the area of the rectangular prismw is the width of the rectangular prismh is the height of the rectangular prismFrom the information given, we have that;
Area of the prism = 80 square inches
width of the rectangular prism = 18 square
Now, substitute the value, we have
80 = 18h
Divide both sides by the coefficient of the variable h, we have;
h = 80/18
divide the values
h = 4. 4 inches
Learn about area at: https://brainly.com/question/25292087
#SPJ1
Find the missing dimension of the cone.
the volume is 1/18π and the radius is 1/3. find the height.
Answer:
h = 3/2
Step-by-step explanation:
Volume of cone formula: V = 1/3 π r²h
We are given volume and the radius so we can plug in those values
1/18π = 1/3 π (1/3)²h
1/18π = 1/3 π 1/9 h
Multiply the fractions on the right side:
1/18π = 1/27πh
Multiply both sides by reciprocal of 1/27 (which is 27)
3/2π = πh
Divide both sides by π
h = 3/2
Hope this helps!
Note: enter your answer and show all the steps that you use to solve this problem in the space provided.
find the area of the parallelogram.
8 cm
9 cm
24 c.m.
not drawn to scale.
i need help i don’t understand
To find the area of a parallelogram, multiply the base length by the height. Therefore, the area of the parallelogram is 8 cm * 24 cm = 192 cm².
How to find the area of the parallelogram with side lengths 8 cm, 9 cm, and a height of 24 cm?To find the area of a parallelogram, you can use the formula A = base × height. In this case, the given measurements are 8 cm for the base, 9 cm for the height, and 24 cm for one of the sides of the parallelogram.
First, identify the base and height of the parallelogram. In this case, the base is 8 cm and the height is 9 cm.
Next, substitute the values into the formula for the area of a parallelogram: A = base × height.
A = 8 cm × 9 cm
Multiply the base and height:
A = 72 cm²
Therefore, the area of the parallelogram is 72 square centimeters. It's important to note that the area is not drawn to scale, so the measurements given are solely used for calculation purposes.
Learn more about formula
brainly.com/question/28647690
#SPJ11
Simplify 3y(y^2-3y+2)
Answer:
3y^3-9y^2+6y
Step-by-step explanation:
= 3y^3-9y^2+6y
Suppose that you buy an exercise ball with diameter of 85 cm and your brother buys an exercise ball with diameter of 65 cm. What is the difference between the volume and surface area of both balls? Justify your answer and round to the nearest hundredth
The difference between the volume and surface area of both balls is: 108101.69 cubic centimeters.
The formula for the volume of a sphere is V = (4/3)π[tex]r^3[/tex], where r is the radius of the sphere, and the formula for the surface area of a sphere is A = 4π[tex]r^2[/tex].
Let's start by finding the radius of each ball. The diameter of the first ball is 85 cm, so its radius is 85/2 = 42.5 cm. The diameter of the second ball is 65 cm, so its radius is 65/2 = 32.5 cm.
The volume of the first ball is:
V1 = (4/3)π[tex](42.5)^3[/tex] = 256905.53 cubic centimeters
The volume of the second ball is:
V2 = (4/3)π[tex](32.5)^3[/tex] = 139379.44 cubic centimeters
The difference in volume is:
V1 - V2 = 256905.53 - 139379.44 = 117526.09 cubic centimeters
To find the difference in surface area, we plug in the radius values:
A1 = 4π[tex](42.5)^2[/tex] = 22698.16 square centimeters
A2 = 4π[tex](32.5)^2[/tex] = 13273.76 square centimeters
The difference in surface area is:
A1 - A2 = 22698.16 - 13273.76 = 9424.40 square centimeters
Therefore, the difference between the volume and surface area of both balls is: 117526.09 cubic centimeters - 9424.40 square centimeters, rounded to the nearest hundredth, is 108101.69 cubic centimeters.
To know more about volume, refer to the link below:
https://brainly.com/question/10221905#
#SPJ11
Regina writes the expression y + 9 x 3/4. Which expression is equivalent to the one Regina writes?
The expression that is equivalent to the one Regina wrote is y + 27/4
Which expression is equivalent to the one Regina wrote?From the question, we have the following parameters that can be used in our computation:
y + 9 x 3/4
This means that
Expression = y + 9 x 3/4
Expanding the above expression, we have
Expanded expression = y + 27/4
Using the above as a guide, we have the following:
The expression that is equivalent to the one Regina wrote is y + 27/4
Read more about expression at
https://brainly.com/question/15775046
#SPJ1
The Wyoming State Trigonometric Society had decided to give away it’s extremely valuable piece of land to the first person who can correctly calculate the properties unique area. The perimeter of the regular hexagon is 24 km
Answer:
first you do the angles time the amount of times you watched the hub and you get the answer and alia use a protractor
Evaluate. Assume that x>0. J 563) 8 2 + X X dx
The integral ∫(8x/2 + 2/x^3)dx evaluates to 4x^2 - 2/x^2 + C, where C is the constant of integration.
The given integral ∫(8x/2 + 2/x^3)dx is definite integral without any integration limits. To evaluate this integral, we can split it into two parts
∫8x/2 dx + ∫2/x^3 dx
We made use of the power rule of integration to simplify the first term, and the inverse power rule to simplify the second term.
Simplifying each integral, we get
4x^2 - 2/x^2 + C
where C is the constant of integration.
Therefore, the final answer to the integral is
∫(8x/2 + 2/x^3)dx = 4x^2 - 2/x^2 + C
To know more about Integral:
https://brainly.com/question/18125359
#SPJ4
--The given question is incomplete, the complete question is given
" Evaluate. Assume that x>0. ∫(8x/2 + 2/x^3)dx"--
Sausage is 1/2 inch thick roll is 6 inches long how many pieces can be cut
If you cut a 6-inch long sausage roll that is 1/2 inch thick, you can make 12 pieces.
How many pieces can a 6-inch sausage roll with 1/2 inch thickness be cut into?To understand how to arrive at this answer, we need to use some basic math.
First, we need to determine the volume of the sausage roll. We can do this by multiplying the length, width, and height of the roll. In this case, the length is 6 inches, the width is 1/2 inch, and the height is also 1/2 inch. So:
Volume = Length x Width x Height
Volume = 6 x 1/2 x 1/2
Volume = 1.5 cubic inches
Next, we need to determine the volume of each individual piece. To do this, we divide the total volume of the sausage roll by the number of pieces we want to make. In this case, we want to make two equal pieces, so we divide the total volume by 2:
Volume per piece = Total volume / Number of pieces
Volume per piece = 1.5 / 2
Volume per piece = 0.75 cubic inches
Finally, we can determine the dimensions of each individual piece by using the volume per piece and the thickness of the sausage roll. We can calculate the length of each piece by dividing the volume per piece by the thickness:
Length per piece = Volume per piece / Thickness
Length per piece = 0.75 / 0.5
Length per piece = 1.5 inches
So each piece will be 1.5 inches long. To determine how many pieces we can make, we divide the total length of the sausage roll by the length of each piece:
Number of pieces = Total length / Length per piece
Number of pieces = 6 / 1.5
Number of pieces = 4
However, since we are cutting the sausage roll in half, we can make 2 sets of 4 pieces, for a total of 8 pieces.
Alternatively, if we want to make only one cut, we can make two 3-inch long pieces from each half, for a total of 12 pieces.
Learn more about sausage
brainly.com/question/12415483
#SPJ11
see attachment below..
The equation that represents the asymptote of the function, y = tan x is: C. x = π/4.
How to Determine the Equation that Represents the Asymptote of a Graph?Option A, x = -π, and Option D, x = (3π)/2, do not represent asymptotes of the graph of the function y = tan x.
Option B, x = 0, represents a vertical asymptote of the graph of y = tan x because tan x is undefined at x = π/2 + kπ, where k is an integer. Therefore, tan x is undefined at x = π/2, 3π/2, 5π/2, etc. and there is a vertical asymptote at x = 0.
Option C, x = π/4, represents a linear asymptote of the graph of y = tan x. As x approaches π/4 from either side, the tangent function approaches a straight line with slope 1 and x-intercept 0. Therefore, the equation of the asymptote is y = x - π/4.
Thus, the answer is C. x = π/4.
Learn more about the equation of an asymptote of a graph on:
https://brainly.com/question/1173395
#SPJ1
The possible values of 'r' in a-bq + r are 0, 1, 2, 3, 4 and q = 4 then the possible maximum value is
A) 20
B) 25
C) 24
D) None
The possible maximum value of the expression is (d) None
Calculating the possible maximum value of the expressionFrom the question, we have the following parameters that can be used in our computation:
a = bq + r
The above expression is an Euclid's Division statement
The Euclid's Division Algorithm states that "For any two positive integers a, b there exists unique integers q and r such that:"
a = bq + r
where 0 ≤ r < b.
From the question, we have
q = 4
Max r = 4
Using 0 ≤ r < b, we have
Minimum b = 5
So, we have
a = bq + r
This gives
Min a = 5 * 4 + 4
Min a = 24
The above represents the minimum value of a
The maximum value cannot be calculated because as b increases, the value of the expression also increases
Hence, the possible maximum value is (d) None
Read more about Euclid's Division at
https://brainly.com/question/26569165
#SPJ1
Let f(x) = 1 + x + x2 + x3 + x4+ x5 .
i) For the Taylor polynomial of f at x = 0 with degree 3, find T3(x), by using the definition of Taylor polynomials.
ii) Now find the remainder R3(x) = f(x) − T3(x).
iii) Now on the interval |x| ≤ 0.1, find the maximum value of f (4)(x) .
iv) Does Taylor’s inequality hold true for R3(0.1)? Use your result from the previous question and justify.
i) T3(x) = 1 + x + x^2 + x^3/3
ii) R3(x) = x^4/4 + x^5/5
iii) The maximum value of f(4)(x) on the interval |x| ≤ 0.1 is 144.
iv) Yes, Taylor's inequality holds true for R3(0.1) since the maximum value of f(4)(x) on the interval |x| ≤ 0.1 is less than or equal to 144, which is smaller than the upper bound of 625/24.
i) To find T3(x), we start by calculating the derivatives of f(x) up to order 3:
f(x) = 1 + x + x^2 + x^3 + x^4 + x^5
f'(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4
f''(x) = 2 + 6x + 12x^2 + 20x^3
f'''(x) = 6 + 24x + 60x^2
Then, we evaluate these derivatives at x = 0:
f(0) = 1
f'(0) = 1
f''(0) = 2
f'''(0) = 6
Using these values, we can write the Taylor polynomial of f at x = 0 with degree 3 as:
T3(x) = f(0) + f'(0)x + f''(0)x^2/2 + f'''(0)x^3/6
= 1 + x + x^2 + x^3/3
ii) To find R3(x), we use the remainder formula for Taylor polynomials:
R3(x) = f(x) - T3(x)
Substituting f(x) and T3(x) into this formula and simplifying, we get:
R3(x) = x^4/4 + x^5/5
iii) To find the maximum value of f(4)(x) on the interval |x| ≤ 0.1, we first calculate the fourth derivative of f(x):
f(x) = 1 + x + x^2 + x^3 + x^4 + x^5
f''''(x) = 24 + 120x
Then, we evaluate this derivative at x = ±0.1 and take the absolute value to find the maximum value:
|f(4)(±0.1)| = |24 + 12| = 36
Since 36 is the maximum value of f(4)(x) on the interval |x| ≤ 0.1, we know that the upper bound for the remainder formula is 625/24.
iv) Taylor's inequality states that the absolute value of the remainder Rn(x) for a Taylor polynomial of degree n at a point x is bounded by a constant multiple of the (n+1)th derivative of f evaluated at some point c between 0 and x. Specifically, we have:
|Rn(x)| ≤ M|x-c|^(n+1)/(n+1)!
where M is an upper bound for the (n+1)th derivative of f on the interval containing x.
In this case, we have n = 3, x = 0.1, and c = 0. The (n+1)th derivative of f is f(4)(x) = 24 + 120x.
For more questions like Derivative click the link below:
https://brainly.com/question/25324584
#SPJ11
A segment with endpoints A (4, 2) and C (1,5) is partitioned by a point B such that AB and BC form a 1:3 ratio. Find B.
O (1, 2. 5)
O (2. 5, 3. 5)
O (3. 25, 2. 75)
O (3. 75, 4. 5)
The answer is (3.25, 2.75)
To find point B, we can use the fact that AB and BC form a 1:3 ratio. Let's start by finding the coordinates of point B.
First, we need to find the distance between A and C. We can use the distance formula for this:
[tex]d = \sqrt{ ((x2 - x1)^2 + (y2 - y1)^2)[/tex]
where [tex](x1, y1) = (4, 2)[/tex] and [tex](x2, y2) = (1, 5)[/tex]
[tex]d = \sqrt{((1 - 4)^2 + (5 - 2)^2)} = \sqrt{(9 + 9)} = \sqrt{(18)}[/tex]
Next, we need to find the distance between A and B, which we'll call x, and the distance between B and C, which we'll call 3x (since AB and BC are in a 1:3 ratio).
Using the distance formula for AB:
[tex]x = \sqrt{\\((x2 - x1)^2 + (y2 - y1)^2)[/tex]
where [tex](x1, y1) = (4, 2)[/tex] and [tex](x2, y2) = (Bx, By)[/tex]
[tex]x = \sqrt{((Bx - 4)^2 + (By - 2)^2)[/tex]
Using the distance formula for BC:
[tex]3x = \sqrt{((x2 - x1)^2 + (y2 - y1)^2)[/tex]
where [tex](x1, y1) = (1, 5)[/tex] and [tex](x2, y2) = (Bx, By)[/tex]
[tex]3x = \sqrt{((Bx - 1)^2 + (By - 5)^2)[/tex]
Now we can set up an equation using the fact that AB and BC are in a 1:3 ratio:
[tex]x / 3x = 1 / 4[/tex]
Simplifying this equation, we get:
[tex]4x = 3(AB)[/tex]
[tex]4x = 3\sqrt{((Bx - 4)^2 + (By - 2)^2)[/tex]
And
[tex]9x = \sqrt{((Bx - 1)^2 + (By - 5)^2)[/tex]
Now we have two equations and two unknowns (Bx and By). We can solve for Bx in the first equation and substitute into the second equation:
[tex]Bx = (3\sqrt{((Bx - 4)^2 + (By - 2)^2))} / 4[/tex]
[tex]9x = \sqrt{((Bx - 1)^2 + (By - 5)^2)[/tex]
[tex]81((Bx - 4)^2 + (By - 2)^2) / 16 = (Bx - 1)^2 + (By - 5)^2[/tex]
Expanding the squares and simplifying, we get:
[tex]81Bx^2 - 648Bx + 1245 = 16Bx^2 - 32Bx + 266[/tex]
[tex]65Bx^2 - 616Bx + 979 = 0[/tex]
Using the quadratic formula, we get:
[tex]Bx = (616 ± \sqrt{(616^2 - 4(65)(979)))} / (2(65))[/tex]
[tex]Bx = (616 ± \sqrt{(223456))} / 130[/tex]
[tex]Bx = 3.25[/tex] or [tex]Bx = 10.2[/tex]
We can eliminate the solution Bx ≈ 10.2 because it is outside the segment AC. Therefore, the solution is:
B = (3.25, 2.75)
To know more about distance refer here
https://brainly.com/question/47777661#
#SPJ11
Construct the class boundaries for the following frequency distribution table. also construct less than cumulative and greater than cumulative frequency tables.
ages:- 1 - 3, 4-6, 7-9, 10-12, 13-15
no of children:- 10,12,15,13,9
The class boundaries are 0.5 - 3.5, 3.5 - 6.5, 6.5 - 9.5, 9.5 - 12.5, 12.5 - 15.5.
To find the class boundaries, we need to add and subtract 0.5 from the upper and lower limits of each class interval, respectively.
Using this formula, we get the following class boundaries:
Class Boundaries:
0.5 - 3.5, 3.5 - 6.5, 6.5 - 9.5, 9.5 - 12.5, 12.5 - 15.5
To construct the less than cumulative frequency table, we need to add up the frequencies of all the classes up to each class. For example:
Less than Cumulative Frequency Table:
Ages No. of Children Cumulative Frequency
1-3 10 10
4-6 12 22
7-9 15 37
10-12 13 50
13-15 9 59
To construct the greater than cumulative frequency table, we need to subtract the frequency of each class from the total frequency and then add the resulting values up to obtain the cumulative frequency. For example:
Greater than Cumulative Frequency Table:
Ages No. of Children Cumulative Frequency
13-15 9 59
10-12 13 50
7-9 15 37
4-6 12 22
1-3 10 10
Note that the last value of the greater than cumulative frequency table is always equal to the total frequency, which in this case is 59.
Know more about class boundaries here:
https://brainly.com/question/30267084
#SPJ11
El perímetro de un rectángulo es de 54 pulgadas. su longitud dos veces es ancho. encontrar la longitud y anchura del hallazgo rectángulo el área del rectángulo
The given question is in Spanish, English translation of given question is below.
The perimeter of a rectangle is 54 inches. its length is twice as wide. find the length and width of the rectangle find the area of the rectangle.
The width of the rectangle is 9 inches, the length of the rectangle is 18 inches, and the area of the rectangle is 162 square inches.
Let us assume the width of the rectangle w and the length l.
Given, the perimeter of the rectangle is 54 inches:
We know that
Perimeter = 2(length + width) = 54
2(l + w) = 54
Given, length is twice as width i.e. l=2w
2(2w + w) = 54
2(3w) = 52
6w = 54
w = 54/6
w = 9
l = 2(9)
l = 18
We know that
Area = length x width
Area = 18 x 9
= 162
Therefore, the width of the rectangle is 9 inches, the length of the rectangle is 18 inches, and the area of the rectangle is 162 square inches.
Learn more about area of rectangle here
https://brainly.com/question/15218510
#SPJ4
A doctor collected data to determine the association between age of an infant and its weight. she modeled the equation y = 1.25x+ 7 for the line of best fit. the independent variable, x, is time in months and the dependent variable, y, is weight in pounds. what
does the slope mean in this context?
In this context, the slope of the line of best fit, represented by the equation y = 1.25x + 7, represents the relationship between the age of an infant (in months) and its weight (in pounds) and the independent variable, x, represents the age of the infant in months, and the dependent variable, y, represents the weight of the infant in pounds.
The slope of the line, 1.25, indicates the rate at which the infant's weight changes with respect to its age. Specifically, it shows that for each additional month of age, the infant's weight is expected to increase by 1.25 pounds. This means that, on average, an infant gains 1.25 pounds per month.
In conclusion, the slope (1.25) in this context represents the average weight gain per month for an infant, based on the data collected by the doctor. It helps to understand the general association between an infant's age and its weight, and can be useful in predicting an infant's weight at a given age. However, it's important to remember that this is an average value and individual infants may have different weight gain patterns.
Know more about slope here:
https://brainly.com/question/19131126
#SPJ11
Marvin is paying off a $6,800 loan that he took out for his new business. The loan has a 5. 2% interest rate and Marvin will pay it off in 5 years by making monthly payments of $128. 95. Find the total cost of repayment and the interest Marvin will pay on his loan
The total cost of repayment will be $7,737.00, and Marvin will pay $937.00 in interest over the 5-year period.
To find the total cost of repayment, we need to calculate the total amount that Marvin will pay over the course of 5 years. Since he is making monthly payments, we need to first find the total number of payments he will make:
Total number of payments = 5 years x 12 months/year = 60 payments
The total amount Marvin will pay is then:
Total amount = 60 payments x $128.95/payment = $7,737.00
To find the total interest Marvin will pay, we need to subtract the original amount of the loan from the total amount he will pay:
Total interest = Total amount - Loan amount
Total interest = $7,737.00 - $6,800.00
Total interest = $937.00
Therefore, the total cost of repayment will be $7,737.00, and Marvin will pay $937.00 in interest over the 5-year period.
To know more about costs , refer here :
https://brainly.com/question/14725550#
#SPJ11
If john buys 8 jackets at x dollars a piece and 2 movie tickets at $11 a piece, whats the most he can spend on each jackets if his total budget is $200
Answer:
22.25
Step-by-step explanation:
8x+ (11*2)=200
first, multiply 11 and 2 =22
that leaves 8x+22=200
so now let's subtract the 22 from both sides
8x=178 now divide the 8
x= 22.25 so that is the most the jackets could have cost
Can you help me with number 19?
The possible values of the arc AE are 175 and 185 degrees
Calculating the possible values of the arc AEFrom the question, we have the following parameters that can be used in our computation:
The circle R
Where the measures of the arcs are
AB = 60
BC = 25
CD = 70
DE = 20
Add the measures of the above arcs
So, we have
AE = 60 + 25 + 70 + 20
Evaluate
AE = 175
Another possible value is
AE = 360 - minor AE
AE = 360 - 175
Evaluate
AE = 185
Hence, the possible values of the arc AE are 175 and 185 degrees
Read more about angles at
https://brainly.com/question/25716982
#SPJ1
Find the value of the variable.
(ill be needing an explanation along with the answer, ty!)
Thus, the value of the angle x for the given angles of value 100 and 112 is found as 36.
Define about the linear pair:An adjacent pair of additional angles is known as a linear pair. Adjacent refers to being next to one another, and supplemental denotes that the sum of the two angles is 180 degrees. As previously said, neighbouring angles are those that are close to one another.
An angle pair that forms a line is known as a "line-ar pair."
For the given triangle:
Using the triangle's angle sum property:
x + (180 - 100) + (180 - 112) = 180
(the other two angles except x are linear pair with the angles of value 100 and 112)
So,
x + 80 + 180 - 112 = 180
x = 112 - 80
x = 32
Thus, the value of the angle x for the given angles of value 100 and 112 is found as 36.
know more about the linear pair:
https://brainly.com/question/18944511
#SPJ1
Correct the error in finding the area of sector XZY when the area of ⊙Z is 255 square feet. Round to the nearest tenth. The area should equal ft2
The error in finding area of the sector is in formula applied the correct value is equal to 81.46 square feet.
Area of the sector with center Z is equal to 255 square feet.
Angle subtended in the center of the circle = 115 degrees
Let us consider 'r' be the radius of the circle.
And 'θ' be the angle subtended at the center of the circle.
Using the formula of a area of a sector we have,
Area of sector = θ/360 × πr²
Error in the calculation was made by applying wrong formula ,
Area of circle = 255 square feet
Center angle 'θ' = 115°
Substitute the value in the formula we have ,
⇒ Area of sector = (115°/360) × 255
⇒ Area of sector = 81.4583 square feet
⇒ Area of sector ≈ 81.46 square feet
From the attached figure the area of sector is 162.32ft².
Therefore, the error in finding area of the sector is in formula the correct answer is 81.46 square feet.
Learn more about area here
brainly.com/question/31407549
#SPJ4
The above question is incomplete, the complete question is:
Correct the error in finding the area of sector XZY when the area of ⊙Z is 255 square feet. Round to the nearest tenth. The area should equal ft2
Attached figure.
Ariel is filling a giant beach ball with air. The radius of the beach ball is 30 cm. What is the volume of air that the beach ball will hold? Either enter an exact answer in terms of Pi.
The volume of air that the beach ball will hold is 36000π cubic cm
What is the volume of air that the beach ball will holdFrom the question, we have the following parameters that can be used in our computation:
The radius of the beach ball is 30 cm.
This means that
r = 30
The volume of air that the beach ball will hold is calculated as
V = 4/3πr³
Substitute the known values in the above equation, so, we have the following representation
V = 4/3π * 30³
Evaluate
V = 36000π
Hence, the volume of air that the beach ball will hold is 36000π cubic cm
Read more about volume at
https://brainly.com/question/463363
#SPJ1
Will give brainliest for the answer no links
find the lateral surface area of this
cylinder. round to the nearest tenth.
8ft
4ft
[?] ft?
The lateral surface area of a cylinder is given by the formula:
Lateral surface area = 2πrh
where r is the radius of the cylinder and h is the height of the cylinder.
In this case, the height of the cylinder is 8 ft and the radius of the cylinder is 4 ft (half of the diameter). So, we can plug in these values to get:
Lateral surface area = 2π(4 ft)(8 ft)
Lateral surface area = 64π square feet
Rounding to the nearest tenth, we get:
Lateral surface area ≈ 201.1 square feet (rounded to one decimal place)
Therefore, the lateral surface area of the cylinder is approximately 201.1 square feet.
To know more about lateral surface area , refer here :
https://brainly.com/question/11385509#
#SPJ11