Question 1 (2 points)


2. 5 L of a gas is heated from 200 K to 300 K. What is the final volume of the gas?

Answers

Answer 1

The final volume of the gas can be determined using the ideal gas law, which states that pressure multiplied by volume is equal to the number of moles of a gas multiplied by the gas constant and the temperature (PV=nRT).

Since the pressure is constant, the final volume can be determined by simply calculating the ratio of the final temperature (300 K) over the initial temperature (200 K). Thus, the final volume of the gas would be 5L x (300/200) = 7.5L.

This is based on the assumption that the ideal gas law holds true, meaning that the gas particles are well separated, the forces between them are negligible, and the volume occupied by the gas particles is negligible.

This equation works well for most gases at relatively low pressures and temperatures, but it fails to accurately describe some gases in extreme conditions.

Know more about Ideal gas law here

https://brainly.com/question/28257995#

#SPJ11


Related Questions

4NH3+6NO --> 5N2 + 6H20


How many liters of NH3 at 32. 6 °C and 4. 25 kPa are needed to react


completely with 30. 0L of NO at STP?

Answers

According to the question 19.2 liters of NH3 at 32.6°C and 4.25 kPa is required to react completely with 30.0L of NO at STP.

What is STP?

STP (Standard Temperature and Pressure) is an important concept in the physical sciences. It is the reference state for temperature and pressure in which most measurements are made. In chemistry, STP is used as a reference state for calculating the physical properties of various substances. It is also used in thermodynamics to calculate the physical state of a system. STP is defined as 0 °C (273.15 K) and a pressure of 1 atmosphere (101.325 kPa).

According to the balanced equation, for every 6 moles of NO, 5 moles of NH3 is required. Therefore, we need to calculate the number of moles of NO first.

1 mole of gas at STP occupies 22. 4 liters, so 30.0 liters of NO at STP is equal to 30.0/22.4 = 1.34 moles of NO.

Since we need 5 moles of NH3 for every 6 moles of NO, we need 5/6 x 1.34 = 1.12 moles of NH3.

At 32.6°C and 4.25 kPa, 1 mole of NH3 occupies 17.1 liters, so 1.12 moles of NH3 is equal to 1.12 x 17.1 = 19.2 liters of NH3.

Therefore, 19.2 liters of NH3 at 32.6°C and 4.25 kPa is required to react completely with 30.0L of NO at STP.

To learn more about STP

https://brainly.com/question/27100414

#SPJ4

8250 J of heat is applied to a piece of aluminum, causing a 40. 0 °C increase in its temperature. The specific heat of aluminum is 0. 9025 J/g ·°C. What is the mass of the aluminum?

Answers

We can use the formula for calculating heat:

Q = m × c × ΔT

where Q is the amount of heat transferred, m is the mass of the substance, c is its specific heat, and ΔT is the change in temperature.

Plugging in the given values, we get:

8250 J = m × 0.9025 J/g ·°C × 40.0 °C

Simplifying, we get:

8250 J = m × 36.1 J/g

Solving for m, we get:

m = 8250 J ÷ 36.1 J/g

m ≈ 228.26 g

Therefore, the mass of the aluminum is approximately 228.26 g.

To know more about calculating refer here

https://brainly.com/question/30151794#

#SPJ11

If the original volume of a gas was 300 L at 0. 250 atm and 400. 0 K, what is the volume of the gas at 2. 00 atm and 200. 0 K?

Answers

The volume of the gas at 2.00 atm and 200.0 K is 18.75 L.

We can use the combined to solve this problem:

(P1 * V1) / (T1) = (P2 * V2) / (T2)

where P is pressure, V is volume, and T is temperature.

Plugging in the given values:

(0.250 atm * 300 L) / (400.0 K) = (2.00 atm * V2) / (200.0 K)

Simplifying:

V2 = (0.250 atm * 300 L * 200.0 K) / (2.00 atm * 400.0 K)

V2 = 18.75 L

Therefore, the volume of the gas at 2.00 atm and 200.0 K is 18.75 L.

Gas laws refer to a set of principles that describe the behavior of gases under different conditions, including pressure, temperature, and volume.

There are several gas laws, including Boyle's law, Charles's law, Gay-Lussac's law, and the ideal gas law.

To know more about combined gas law refer to-

https://brainly.com/question/30458409

#SPJ11

How many moles of ice will form if 105 kJ of heat is removed from liquid
water at 0°C? The enthalpy of solidification for water is 6.01 kJ/mol.​

Answers

17.5 moles of ice will form if 105 kJ of heat is removed from liquid water at 0°C.

What is moles?

Moles are small, burrowing mammals that belong to the Talpidae family. They are dark brown or black in color, with short, velvety fur and a pointed snout. Moles are solitary creatures and feed mainly on insects, earthworms, and grubs. They dig extensive tunnel systems and use their powerful front claws to break through the soil. Moles have poor eyesight, so they rely on their sense of touch and smell to find food and explore their environment. They are found in many parts of the world, including North America, Europe, and Asia. Moles are important for the ecosystem because they aerate the soil and help disperse plant seeds.

The amount of ice formed can be calculated using the equation:
Q = moles x enthalpy of solidification
where Q is the amount of heat removed (105 kJ), moles is the number of moles of ice formed, and enthalpy of solidification is 6.01 kJ/mol.
Solving for moles, we get:
moles = Q/enthalpy of solidification
moles = 105 kJ/6.01 kJ/mol
moles = 17.5 moles.

To learn more about moles
https://brainly.com/question/15356425
#SPJ1

From the following data, determine the order of the reaction in ligand and substrate, and write the rate equation.

[substrate] (m) [ligand] (m) rate (ms^-1)
5 1.0 1.0
5.0 10.0 25
1.0 200 2.0

find the msds for decahydronaphthalene.

Answers

The order of the reaction in ligand is zeroth order, as changing the ligand concentration from 1.0 mM to 200 mM does not affect the reaction rate. The rate equation is: rate = k[substrate], where k is the rate constant.

The order of the reaction in substrate is first order, as doubling the substrate concentration (from 5 mM to 10 mM) leads to a doubling of the reaction rate so the or.

To find the MSDS for decahydronaphthalene, one can search for it on the website of the manufacturer or supplier. Alternatively, one can search for it on the website of the National Institute for Occupational Safety and Health (NIOSH), which provides a database of MSDSs for various chemicals.

It is important to consult the MSDS before handling or using the chemical, as it contains information on its physical and chemical properties, hazards, and precautions for safe use and disposal.

To know more about rate constant click on below link:

https://brainly.com/question/31742254#

#SPJ11

Calculate the pH of a solution


in which [H3O+] = 0. 050 M.

Answers

The pH of the solution is 1.30

To determine the pH of a solution, the formula:

pH = -log[H3O+]

Given a concentration of H3O+ in the solution as 0.050 M, substituting this value into the formula yields:

pH = -log(0.050)

By evaluating this expression using a calculator, the pH is found to be 1.30. This pH value indicates that the solution is acidic since it is less than 7. The pH scale is logarithmic, meaning that each unit change in pH corresponds to a tenfold change in the acidity or basicity of the solution. Consequently, a solution with a pH of 1 is ten times more acidic than a solution with a pH of 2, and a hundred times more acidic than a solution with a pH of 3, and so forth.

Therefore, a pH of 1.30 denotes a moderately acidic solution.

Know more about pH here:

https://brainly.com/question/2288405

#SPJ11

G Trehalose, C12H22O11, is a nonreducing sugar that is only 45% as sweet as sugar. When hydrolyzed by aqueous acid or an alpha-glucosidase, it forms only D-glucose. When it is treated with excess methyl iodide in the presence of Ag2O and then hydrolyzed with water under acidic conditions, only 2,3,4,6-tetra-O-methyl-D-glucose is formed. Complete the structure of trehalose

Answers

The structure of trehalose can be determined based on its chemical formula, [tex]C12H22O11[/tex], and the fact that it only forms D-glucose upon hydrolysis.

Trehalose is a disaccharide composed of two glucose molecules linked by an alpha-1,1 glycosidic bond. This means that the glucose molecules are joined together through their first and first carbon atoms, respectively. The structure can be written as:

[tex]HOCH2(CHOH)4α-D-Glc-(1→1)-α-D-Glc-CH2OH[/tex]

where [tex]"α-D-Glc"[/tex] represents a glucose molecule in its alpha configuration.

To visualize the structure, we can draw it in a condensed form, where the two glucose molecules are shown connected by a straight line:

[tex]HOCH2(CHOH)4α-D-Glc-(1→1)-α-D-Glc-CH2OH[/tex]

To know more about chemical formula refer to-

https://brainly.com/question/31713710

#SPJ11

Dangers in your home: knowing how to handle household products containing
hazardous materials or chemicals can reduce the risk of injury. It is important to store
household chemicals where children cannot access them. Remember that common
products such as aerosol cans of hair spray and deodorant, nail polish and nail polish
remover, toilet bowl cleaners and furniture polishes are hazardous
materials. Sometimes using these products incorrectly can result in a dangerous
situation.
Many household cleaners, particularly toilet cleaners and some drain cleaners have
acid in them. This is the equation representing hydrocloric acid plus bleach.
NaCIO + 2 HCI- Cl₂ + H₂O + NaCl
Imagine you have just mixed the two seemingly non-toxic products, toilet bowl
cleaner and bleach to do a really thorough job in your bathroom. All of a sudden you
feel dizzy and your eyes and nose are burning. Explain what has happened.

You mixed the products in a confined space and there is not much oxygen left to
breathe.

By mixing the two, the chemical reaction released a product that is potentially
toxic: chlorine gas.

A chemical reaction occurred and you released sodium chloride into the air that
caused your dizziness.

When the NaCIO decomposes during mixing, the excess oxygen in the air will
produce dizziness.

Answers

By mixing toilet bowl cleaner and bleach, a chemical reaction occurs, which releases a potentially toxic gas: chlorine gas. Chlorine gas can cause irritation to the eyes, nose, and throat, as well as difficulty breathing, coughing, and wheezing. The correct answer is 2.

Inhaling high levels of chlorine gas can even lead to chest pain, vomiting, and death. It is important to always read and follow the labels on household cleaning products and never mix different products together, especially those containing bleach and acids. If you accidentally mix these products and experience symptoms of chlorine gas exposure, seek fresh air and medical attention immediately. Hence option 2 is correct.

To know more about Chlorine gas , here

brainly.com/question/14748176

#SPJ1

How many total electrons are transferred during the reaction of the oxidation of chromium



metal according to the following reaction?



4Cr(s) + 302(g)



-->



2Cr2O3(s)



O4 electrons



6 electrons



8 electrons



O2 electrons

Answers

In the reaction of the oxidation of chromium, 4 chromium atoms each lose 3 electrons to become positively charged ions, and 3 oxygen molecules each gain 4 electrons to become negatively charged ions. This means that a total of 12 electrons are transferred in the oxidation of chromium.


The oxidation of chromium can be broken down into two half-reactions:


1) The oxidation of chromium:
4Cr(s) --> 4Cr³⁺(aq) + 12e-

In this half-reaction, each

chromium atom loses 3 electrons to become a positively charged ion (Cr³⁺), and a total of 12 electrons are

transferred

.

2) The reduction of oxygen:
3O₂(g) + 12e- --> 6O²⁻(aq)

In this half-reaction, each oxygen molecule gains 4 electrons to become a negatively charged ion (O²⁻), and a total of 12 electrons are transferred.

Therefore, the total number of electrons transferred during the reaction of the oxidation of chromium is 12. It is important to note that this reaction involves the transfer of O₂ electrons, not O₄ electrons.

Learn more about "oxidation of chromium" https://brainly.com/question/31860895 #SPJ11

1. Suppose a gas compresses by 185 mL against a pressure of. 0. 400 atm. How much work is done on the system due to its compression? Show your work and report your answer in Joules

Answers

The amount of work done on the system is 34 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.

Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).

The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:

W system= -p∆V

W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)

p: Pressure. Its unit of measurement in the International System is the pascal (Pa)

∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)

In this case:

p= 0.400 atm

ΔV=(185-100)ml = 85 ml

W system=  0.400 atm× 85 ml =34 J

The amount of work done on the system is 34 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.

To know more about work done here

https://brainly.com/question/24278738

#SPJ4

Converting mass to moles ccc scale proportion and quantity the table shows how many moles are in 6 grams of four elements the equation shows how to use carbon molar mass to find the moles of carbon

Answers

Converting mass to moles ccc requires knowing the molar mass of the substance and using it to divide the given mass to find the number of moles

Moles ccc is a unit used to measure the amount of substance, particularly in chemistry. It is defined as the number of atoms, molecules, or ions in 12 grams of pure carbon-12. One mole of any substance contains Avogadro's number of particles, which is approximately 6.022 x 10^23.

To convert mass to moles on the ccc scale, you need to know the molar mass of the substance. Molar mass is the mass of one mole of a substance, expressed in grams per mole. To find the number of moles of a substance, you divide the given mass by its molar mass.

For example, the table given shows how many moles are in 6 grams of four elements: oxygen, sulfur, sodium, and iron. To find the number of moles of oxygen, you divide 6 grams by its molar mass, which is 16 grams per mole. This gives you 0.375 moles of oxygen.

The equation given shows how to use carbon molar mass to find the moles of carbon. The molar mass of carbon is 12 grams per mole. Therefore, if you have a sample of carbon with a mass of 24 grams, you can find the number of moles by dividing 24 grams by 12 grams per mole, which equals 2 moles of carbon.

In summary, converting mass to moles ccc requires knowing the molar mass of the substance and using it to divide the given mass to find the number of moles. The moles ccc scale is a useful unit for measuring the amount of substance in chemistry.

To know more about mass, visit:

https://brainly.com/question/19694949#

#SPJ11

the acid-dissociation constant for benzoic acid (c6h5cooh) is 6.3 x 10-5. calculate the equilibrium concentrations of h3o c6h5coo-, and c6h5cooh in the solution if the initial concentration of c6h5cooh is 0.050 m.

Answers

At equilibrium, the concentrations of [tex]H_{3} O+, C_{6} H_{5}COO[/tex]-, and [tex]C_{6} H_{5}COO[/tex] in the solution will be 0.038 M, 0.038 M, and 0.012 M, respectively.

First, we can write the chemical equation for the dissociation of benzoic acid in water as follows:  [tex]C_{6}H5COOH + H_{2}O[/tex] ⇌[tex]C_{6}H_{5}COO- + H_{3}O[/tex]

The acid dissociation constant, Ka, is given as 6.3 × 10^-5.

[tex]Ka = [C_{6}H_{5}COO-][H_{3}O+] / [C_{6}H_{5}COOH][/tex]

We can assume that the initial concentration of [tex]C_{6}H_{5}COOH[/tex] is equal to its concentration at equilibrium, x. Thus, at equilibrium:

[tex][C_{6}H_{5}COOH] = x M \\[/tex]

[tex][C_{6}H_{5}COO-] = y M \\[/tex]

[tex][H_{3}O+] = y M\\[/tex]

Using the equilibrium expression and the given value of Ka, we can solve for the values of x and y:

[tex]Ka = [C_{6}H_{5}COO-][H_{3}O+] / [C_{6}H_{5}COOH]\\6.3 * 10^-5 = y^2 / x[/tex]

Since we know that the initial concentration of benzoic acid is 0.050 M, we can write: [tex]x + y = 0.050 M[/tex]

Now we have two equations and two unknowns. Solving for x and y:

[tex]x = 0.012 M\\y = 0.038 M[/tex]

To know more about equilibrium, here

brainly.com/question/30807709

#SPJ4

How could you use iron oxide to prepare iron nitrate?

Answers

Iron oxide can be reacted with nitric acid to prepare iron nitrate. This reaction involves the displacement of hydrogen ions in nitric acid by iron ions in iron oxide, leading to the formation of iron nitrate and water.

To use iron oxide to prepare iron nitrate, you can follow these steps:

1. Begin with iron oxide (Fe₂O₃), which is a compound consisting of iron and oxygen.

2. Dissolve the iron oxide in a strong acid, such as concentrated nitric acid (HNO₃). This reaction will produce iron nitrate (Fe(NO₃)₃) and water as byproducts. The chemical equation for this reaction is:

  2Fe₂O₃ + 6HNO₃ → 4Fe(NO₃)₃ + 3H₂O

3. After the reaction is complete, you can separate the iron nitrate from the remaining mixture by filtration or evaporation. The iron nitrate can then be collected in a crystalline form for further use.

By following these steps, you can successfully use iron oxide to prepare iron nitrate.

Learn more about iron oxide at https://brainly.com/question/11801757

#SPJ11

2. Draw four reasonable resonance structures for the PO3F
2- ion. The central P atom is bonded to the three O atoms and to the F atom. Show formal charges for all four structures.

Answers

Four reasonable resonance structures for the [tex]PO_3F^2^-[/tex] are:

Structure 1:
O- P(=O)-O- F

Structure 2:
O- P(-O•)-O•- F

Structure 3:
O•- P(-O)-O- F,

Structure 4:
O•- P(-O•)-O•- F

The [tex]PO_3F^2^-[/tex] ion has four reasonable resonance structures, which are shown below:

Structure 1:
O- P(=O)-O- F, with formal charges of +1 on the P atom, -1 on the F atom, and -1 on each of the two terminal O atoms.

Structure 2:
O- P(-O•)-O•- F, with formal charges of 0 on the P atom, -1 on the F atom, and -1 on each of the two terminal O atoms.

Structure 3:
O•- P(-O)-O- F, with formal charges of -1 on the P atom, -1 on the F atom, and 0 on each of the two terminal O atoms.

Structure 4:
O•- P(-O•)-O•- F, with formal charges of -2 on the P atom, -1 on the F atom, and 0 on each of the two terminal O atoms.

To draw four reasonable resonance structures for the [tex]PO_3F^2^-[/tex] ion, consider that the central phosphorus (P) atom is bonded to the three oxygen (O) atoms and to the fluorine (F) atom. Here are the four resonance structures with formal charges:

1. P is double bonded to one O, single bonded to the other two O atoms, and single bonded to F. The O atom with a double bond has a formal charge of 0, the other two O atoms have a formal charge of -1 each, P has a formal charge of +1, and F has a formal charge of 0.

2. P is double bonded to the second O, single bonded to the other two O atoms, and single bonded to F. The O atom with a double bond has a formal charge of 0, the other two O atoms have a formal charge of -1 each, P has a formal charge of +1, and F has a formal charge of 0.

3. P is double bonded to the third O, single bonded to the other two O atoms, and single bonded to F. The O atom with a double bond has a formal charge of 0, the other two O atoms have a formal charge of -1 each, P has a formal charge of +1, and F has a formal charge of 0.

4. P is single bonded to all three O atoms and single bonded to F. One O atom has a formal charge of 0, the other two O atoms have a formal charge of -1 each, P has a formal charge of +1, and F has a formal charge of -1.

These four resonance structures show the distribution of electrons and formal charges for the [tex]PO_3F^2^-[/tex] ion, illustrating its resonance stabilization.

For more question on resonance structures

https://brainly.com/question/419650

#SPJ11

_____is a sequence of a chain of amino acids

Answers

Answer: polypeptide chain

Explanation:

Consider what happens when the strong acid, nitric acid (hno3), reacts with water.

a) write the balanced equation for the ionization reaction. (there are two ways to write it.)

b) write the two expressions for ka.

c) what can we say about the size of ka for this reaction?

Answers

a) The ionization reaction of nitric acid (HNO₃) with water can be written in two different ways:

HNO₃ + H₂O → H₃O⁺ + NO₃⁻

or

HNO₃ + H₂O ⇌ H⁺ + NO₃⁻ + H₂O

Both equations are balanced.

b) The two expressions for the acid dissociation constant (Ka) can be derived from the two equations above:

Ka = [H₃O⁺][NO₃⁻] / [HNO₃]

or

Ka = [H⁺][NO₃⁻] / [HNO₃]

c) Nitric acid is a strong acid, meaning that it fully dissociates in water. As a result, the concentration of HNO3 in the equation is very low, making the Ka value very large. In fact, the Ka value for nitric acid is around 24, which is significantly higher than the Ka values for weak acids. This indicates that nitric acid is a very strong acid.

Let us learn more about this.

a) Ionization reaction - The ionization reaction refers to the process in which a molecule or compound dissociates into ions when it comes into contact with a solvent such as water. In the case of nitric acid (HNO₃), when it is added to water, it ionizes to produce hydronium ions (H₃O⁺) and nitrate ions (NO₃⁻), which is represented by the following balanced equation: HNO₃ + H₂O -> H₃O⁺ + NO₃⁻

b) Ka - To define Ka, we need to first understand that it is the equilibrium constant for the ionization reaction, which indicates the strength of an acid. Specifically, Ka measures the extent to which an acid dissociates in water, which can be expressed as the following two equations: Ka = [H₃O⁺][NO₃⁻]/[HNO₃] Ka = [H⁺][NO₃⁻]/[HNO₃] where [H₃O⁺] and [H⁺] represent the concentration of hydronium ions, and [NO₃⁻] and [HNO₃] represent the concentration of nitrate ions and nitric acid, respectively.

c) As nitric acid is a strong acid, it dissociates completely in water, meaning that the concentration of H₃O⁺ and NO₃⁻ ions will be high compared to the concentration of undissociated HNO₃. Therefore, the value of Ka for this reaction will be very large, indicating that nitric acid is a strong acid with a high degree of ionization.

Learn more about Ka at https://brainly.com/question/31432380

#SPJ11

Help pls! Assuming non-ideal behavior, a 2. 0 mol sample of CO₂ in a 7. 30 L container at 200. 0 K has a pressure of 4. 50 atm. If a = 3. 59 L²・atm/mol² and b = 0. 0427 L/mol for CO₂, according to the van der Waals equation what is the difference in pressure (in atm) between ideal and nonideal conditions for CO₂?

Answers

The difference in pressure between ideal and non-ideal conditions for CO₂ is 23.42 atm.

To find the difference in pressure between ideal and non-ideal conditions for CO₂, we need to use the van der Waals equation:

(P + a(n/V)²)(V - nb) = nRT

where P is the pressure, n is the number of moles, V is the volume, T is the temperature, R is the gas constant, a is a constant related to the attractive forces between molecules, and b is a constant related to the volume of the molecules.

First, we need to calculate the volume of the CO₂ molecules using the given values of n and V:

V/n = V/2.0 mol = 7.30 L/2.0 mol = 3.65 L/mol

Next, we can plug in the given values of a, b, n, V, and T into the van der Waals equation:

(P + a(n/V)²)(V - nb) = nRT

(4.50 atm + 3.59 L²・atm/mol²(2.0 mol/3.65 L)²)(7.30 L - 0.0427 L/mol × 2.0 mol) = 2.0 mol × 0.0821 L・atm/mol・K × 200.0 K

Simplifying the equation, we get:

(4.50 + 3.59(2.0/3.65)²)(7.30 - 0.0427 × 2.0) = 32.19

Therefore, the non-ideal pressure is:

Pnon-ideal = 32.19 atm

To find the ideal pressure, we can use the ideal gas law:

PV = nRT

Pideal = nRT/V = 2.0 mol × 0.0821 L・atm/mol・K × 200.0 K/7.30 L

Pideal = 8.77 atm

Finally, we can calculate the difference in pressure between ideal and non-ideal conditions:

ΔP = Pnon-ideal - Pideal = 32.19 atm - 8.77 atm = 23.42 atm

Therefore, the difference in pressure between ideal and non-ideal conditions for CO₂ is 23.42 atm.

Know more about Van der Waals equation here:

https://brainly.com/question/29412319

#SPJ11

The Ksp of nickel hydroxide =6.0×10−16 M.
You may want to reference(Pages 744 - 750) Section 17.5 while completing this problem.
1.) Calculate the molar solubility of Ni(OH)2 when buffered at pH= 8.0.
Express your answer using one significant figure.
2.) Calculate the molar solubility of Ni(OH)2 when buffered at pH= 10.3.
Express your answer using one significant figure.
3.) Calculate the molar solubility of Ni(OH)2 when buffered at pH= 11.9.

Answers

the molar solubility of Ni(OH)2 when buffered at pH 8.0, 10.3, and 11.9 is approximately 3.9×10^-6 M in all cases.

The solubility of Ni(OH)2 depends on the pH of the solution because it can undergo acid-base reactions according to the following equilibrium:

Ni(OH)2(s) + 2 H2O(l) ⇌ Ni(OH)2(aq) + 2 OH^-(aq)

1. At pH 8.0, the solution is slightly basic, so we can assume that the hydroxide ion concentration is 10^-6 M.

The solubility product expression for Ni(OH)2 is:

Ksp = [Ni2+][OH^-]^2

Since the solution is buffered at pH 8.0, we can assume that the concentration of Ni2+ is negligible compared to the concentration of OH^-.

Therefore, [OH^-]^2 = Ksp = 6.0×10^-16 M^3

[OH^-] = sqrt(Ksp) = 7.7×10^-6 M

The molar solubility of Ni(OH)2 is half the hydroxide ion concentration, or 3.9×10^-6 M.

2. At pH 10.3, the hydroxide ion concentration is 10^-4.7 M.

[OH^-]^2 = Ksp = 6.0×10^-16 M^3

[OH^-] = sqrt(Ksp) = 7.7×10^-6 M

The excess hydroxide ion concentration is:

[OH^-] - 10^-4.7 M = -7.6×10^-6 M

Since the excess hydroxide ion concentration is small compared to the total concentration of OH^-, we can assume that the concentration of Ni2+ is negligible compared to the concentration of OH^-.

The molar solubility of Ni(OH)2 is half the hydroxide ion concentration, or 3.9×10^-6 M.

3. At pH 11.9, the hydroxide ion concentration is 10^-3.1 M.

[OH^-]^2 = Ksp = 6.0×10^-16 M^3

[OH^-] = sqrt(Ksp) = 7.7×10^-6 M

The excess hydroxide ion concentration is:

[OH^-] - 10^-3.1 M = -9.9×10^-6 M

Since the excess hydroxide ion concentration is small compared to the total concentration of OH
^-, we can assume that the concentration of Ni2+ is negligible compared to the concentration of OH^-.

The molar solubility of Ni(OH)2 is half the hydroxide ion concentration, or 3.9×10^-6 M.

Therefore, the molar solubility of Ni(OH)2 when buffered at pH 8.0, 10.3, and 11.9 is approximately 3.9×10^-6 M in all cases.
Visit to know more about solubility:-

https://brainly.com/question/23946616

#SPJ11

What is the mass of solute in a 500mL solutiom of 0. 200 M Sodium Phosphate

Answers

The mass of solute in a 500mL solution of 0.200 M Sodium Phosphate is approximately 16.394 grams.

To find the mass of solute in a 500mL solution of 0.200 M Sodium Phosphate, we can follow these steps:

1. Identify the molar concentration (M) of the solution, which is given as 0.200 M.
2. Convert the volume of the solution from mL to L: 500mL = 0.500L.
3. Calculate the moles of solute (Sodium Phosphate) using the formula: moles = Molarity × Volume. So, moles = 0.200 M × 0.500 L = 0.100 moles.
4. Find the molar mass of Sodium Phosphate (Na3PO4). The molar mass of Na is 22.99 g/mol, P is 30.97 g/mol, and O is 16.00 g/mol. Therefore, the molar mass of Na3PO4 is (3 × 22.99) + 30.97 + (4 × 16.00) = 163.94 g/mol.
5. Finally, calculate the mass of solute using the formula: mass = moles × molar mass. So, mass = 0.100 moles × 163.94 g/mol = 16.394 g.

In summary, the mass of solute in a 500mL solution of 0.200 M Sodium Phosphate is approximately 16.394 grams.

To know more about Sodium Phosphate, visit:

https://brainly.com/question/10559079#

#SPJ11

a student is asked to transfer 0.03 ml of a concentrated solution in order to accurately dilute the solution to 0.020 m. which measuring tool would you choose to obtain the needed volume of the original concentrated solution?

Answers

To accurately measure a very small volume of liquid like 0.03 ml, a micropipette would be the most appropriate measuring tool to use.

What is micropipette?

A micropipette is a laboratory instrument commonly used in biology, chemistry, and other related fields to accurately and precisely measure and transfer small volumes of liquids. It typically operates through a piston-driven air displacement system, allowing for very precise measurements in the microliter (μL) or even nanoliter (nL) range.

Micropipettes are commonly used in applications such as DNA sequencing, PCR, and protein assays, where precise and accurate liquid handling is essential for accurate results.

Find out more on micropipette here: https://brainly.com/question/28425080

#SPJ1

According to the general procedure of Experiment A2b, 213 mg of (E)-stilbene (180. 25 g/mol) was reacted with 435 mg of pyridinium bromide perbromide (319. 82 g/mol) to afford 342 mg of meso-stilbene dibromide (340. 05 g/mol) as a white solid. Calculate the percent yield for this reaction. Enter your answer as digits only (no units), using the proper number of significant figures

Answers

The percent yield of the reaction is 80%.

To calculate the percent yield, we need to use the following formula:

Percent yield = (actual yield / theoretical yield) x 100

The actual yield of the reaction is 342 mg.

To calculate the theoretical yield, we need to first calculate the number of moles of (E)-stilbene and pyridinium bromide perbromide used in the reaction:

Number of moles of (E)-stilbene

= 213 mg / 180.25 g/mol = 0.001182 mol

Number of moles of pyridinium bromide perbromide

= 435 mg / 319.82 g/mol = 0.001361 mol

Theoretical yield of meso-stilbene dibromide = number of moles of (E)-stilbene x 2 = 0.002364 mol x 340.05 g/mol = 803 mg

Now we can substitute the values into the formula:

Percent yield = (342 mg / 803 mg) x 100 = 80%

Therefore, the percent yield of the reaction is 80%.

To learn more about percent yield, here

https://brainly.com/question/17042787

#SPJ4

calculate the molality of a solition with 85 g of KOH added to 590. g of water

Answers

The modily Of a solution With 85 can be added Yo 590 this is my answer

How many moles of gas occupy 128L at a pressure of 4. 2 atm and a temperature of 382K​

Answers

To solve this problem, we need to use the ideal gas law which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. Rearranging this equation, we can solve for n by dividing both sides by RT.

n = PV/RT
Now, we can plug in the given values:
n = (4.2 atm)(128 L)/(0.0821 L*atm/mol*K)(382 K)

n = 16.4 moles
Therefore, 16.4 moles of gas occupy 128L at a pressure of 4.2 atm and a temperature of 382K.

It's important to note that the ideal gas law is only applicable to ideal gases, which follow certain assumptions such as having no intermolecular forces and having particles with negligible volume. Real gases can deviate from these assumptions, especially at high pressures and low temperatures. However, for most practical purposes, the ideal gas law provides a good approximation of gas behavior.

To know more about ideal gas law refer here

https://brainly.com/question/28257995#

#SPJ11

The Haber Process involves nitrogen gas combining with hydrogen gas to produce ammonia. If 11. 0 grams of nitrogen gas combines with 2. 0 grams of hydrogen gas, find the following: the molar mass of reactants and products, the limiting reactant, the excess reactant, the amount of ammonia produced, the amount of excess chemical not used in the reaction. Nitrogen gas + hydrogen gas ↔ ammonia gas N2 + H2 -> NH3 (Make sure to balance the chemical equation first)

28. 014 grams/mole


17. 031 grams/mole


1. 736 grams


11. 26 grams


Nitrogen Gas


2. 012 grams/mole


Hydrogen Gas

1.
The excess reactant (reagent).

2.
The limiting reactant (reagent).

3.
The amount of excess reagent not used in the reaction.

4.
The molar mass of hydrogen.

5.
The molar mass of ammonia.

6.
The molar mass of nitrogen gas.

7.
The amount of product produced.

(Fill in blank)

Answers

Nitrogen gas ([tex]N_2[/tex]) has a molar mass of 28.02 g/mol, while hydrogen gas ([tex]H_2[/tex]) has a molar mass of 2.02 g/mol. Ammonia ([tex]NH_3[/tex]) has a molar mass of 17.03 g/mol.

We must calculate the moles of each reactant in order to identify the limiting reactant. We may determine that there are 5.0 moles of [tex]N_2[/tex] and 1.0 moles of [tex]H_2[/tex] based on the stated masses. The reaction is described by the balanced chemical equation [tex]N_2 + 3H_2 2NH_3[/tex], which indicates that 1 mole of [tex]N_2[/tex] reacts with 3 moles of [tex]H_2[/tex]. As a result, [tex]H_2[/tex] is the limiting reactant and there will be an excess reactant of 2.0 - (1.0/3) = 1.67 grams of [tex]H_2[/tex].

To know more about Nitrogen gas, here

brainly.com/question/11426882

#SPJ4

--The complete Question is, What is the molar mass of nitrogen gas, hydrogen gas, and ammonia in the Haber Process? Given that 11.0 grams of nitrogen gas and 2.0 grams of hydrogen gas are available, which reactant is the limiting reactant? What is the amount of excess reactant left over after the reaction?--

What was the mass of zinc used in the first reaction of the experiment? note: depending on the actual amount of substances dispensed in the lab, there is a range of possible answers. Pick the value that is closest to yours

Answers

When zinc reacts with hydrochloric acid, the response bubbles vigorously as hydrogen fueloline is produced.

The manufacturing of a fueloline is likewise an illustration that a chemical response is occurring. When dilute hydrochloric acid is introduced to granulated zinc positioned in a take a look at tube, zinc metallic is transformed to zinc chloride and hydrogen fueloline is developed withinside the response. In the response we will see that a zinc chloride salt is fashioned and hydrogen fueloline is developed. The developed hydrogen fueloline is colourless and odourless. When Zinc granules reacts with Hydrochloric acid ,it'll produces hydrogen fueloline and zinc chloride.

To learn more about hydrochloric acid check the link below-

https://brainly.com/question/24586675

#SPJ4

14. Lab Analysis: You forgot to label your chemicals and do not know whether your unknown solution is strontium nitrate or magnesium nitrate. You use the solutions potassium carbonate and potassium sulfate in order to determine your mistake. unknown + potassium carbonate & unknown + potassium sulfate . Write the complete balanced molecular equation(s) below of the reaction(s) that occurred, including the states of matter. HINT: Try writing ALL possible reactions that could have been created, and then decide which reactions actually occurred.

Answers

Unknown + Potassium Carbonate → Potassium Nitrate + Unknown Carbonate

[tex]Sr(NO_3)_2[/tex] + [tex]K_2CO_3[/tex] → [tex]2KNO_3[/tex] + [tex]SrCO_3[/tex] (if the unknown is strontium nitrate)

[tex]Mg(NO_3)_2[/tex]+ [tex]K_2CO_3[/tex] → [tex]2KNO_3[/tex] + [tex]MgCO_3[/tex] (if the unknown is magnesium nitrate)

Here are the balanced molecular equations for the reactions that could have occurred between the unknown solution (either strontium nitrate or magnesium nitrate) and potassium carbonate and potassium sulfate: Unknown + potassium carbonate → potassium nitrate + magnesium or strontium carbonate (depending on the unknown)

Unknown + potassium sulfate → potassium nitrate + magnesium or strontium sulfate (depending on the unknown)

Unknown + Potassium Sulfate → Potassium Nitrate + Unknown Sulfate

[tex]Sr(NO_3)_2[/tex] + [tex]K_2SO_4[/tex] → [tex]2KNO_3[/tex] + [tex]SrSO_4[/tex] (if the unknown is strontium nitrate)

[tex]Mg(NO_3)_2[/tex] + [tex]K_2SO_4[/tex] → [tex]2KNO_3[/tex] + [tex]MgSO_4[/tex] (if the unknown is magnesium nitrate)

To determine which reaction occurred, you would need to observe which products were formed. If [tex]SrCO_3[/tex] or [tex]SrSO_4[/tex] were formed, then the unknown was strontium nitrate.

If [tex]MgCO_3[/tex] or [tex]MgSO_4[/tex] were formed, then the unknown was magnesium nitrate.

For more such questions on magnesium, click on:

https://brainly.com/question/30333465

#SPJ11

1 point
for the reaction represented by the equation 2na + 2h20 -> 2naoh + h2,
how many grams of sodium hydroxide are produced from 68.97g of sodium with an excess of water?
o a 40.00 g
b. 80.00 g
c. 120.0 g
d. 240.0 g

Answers

The answer is 120.0 g of sodium hydroxide are produced. The correct answer is option c.

The balanced equation for the reaction is:

[tex]2 Na + 2 H2O → 2 NaOH + H2[/tex]

From the equation, it can be seen that 2 moles of NaOH are produced for every 2 moles of Na that react. Therefore, the number of moles of NaOH produced can be calculated as follows:

moles of NaOH = moles of Na = mass of Na / molar mass of Na

molar mass of Na = 22.99 g/mol

moles of NaOH = 68.97 g / 22.99 g/mol = 3.00 mol

So, 3.00 moles of NaOH are produced. To convert to grams, we can use the molar mass of NaOH:

molar mass of NaOH = 40.00 g/mol

mass of NaOH = moles of NaOH x molar mass of NaOH

mass of NaOH = 3.00 mol x 40.00 g/mol = 120.00 g

Therefore, the answer is (c) 120.0 g of sodium hydroxide are produced.

To know more about  sodium hydroxide refer to-

https://brainly.com/question/29327783

#SPJ11

how does hydrogen peroxide contribute to photochemical smog?

Answers

Hydrogen peroxide is a major contributor to photochemical smog, which is a type of air pollution that is formed through the reaction of sunlight with various pollutants in the atmosphere.

When sunlight shines on the atmosphere, it causes a chain reaction that leads to the formation of photochemical smog.

Hydrogen peroxide is produced in the atmosphere through the reaction of hydrocarbons and nitrogen oxides. Hydrocarbons are compounds that contain carbon and hydrogen, and they are emitted by vehicles, factories, and other sources. Nitrogen oxides are emitted by vehicles and power plants.

When these two pollutants react with sunlight, they form a variety of other compounds, including hydrogen peroxide. The hydrogen peroxide then reacts with other pollutants in the atmosphere, such as volatile organic compounds, to form photochemical smog.

Photochemical smog is a serious environmental issue because it can cause a variety of health problems, including respiratory issues, eye irritation, and even cancer. It can also damage crops and other vegetation, and can contribute to global warming.

Overall, hydrogen peroxide plays a key role in the formation of photochemical smog, and reducing its emissions is an important step in improving air quality and protecting public health.

To know more about Hydrogen peroxide, visit:

https://brainly.com/question/29102186#

#SPJ11

A piece of unknown metal with a mass of 23.8 g is heated to 100.0°C and is dropped into 50.0 g of water at 24.0°C. The final temperature is 32.5°C. What is the specific heat of the metal?

Answers

The metal has a specific heat of 0.385 J/g°C.

To solve for the specific heat of the metal, we need to use the equation:
Q = mCΔT
where Q is the heat transferred, m is the mass of the substance, C is the specific heat, and ΔT is the change in temperature.

In this case, the heat transferred from the metal to the water can be calculated as:
Q = mcΔT
where c is the specific heat of water (4.184 J/g°C) and ΔT is the change in temperature of the water (from 24.0°C to 32.5°C).

Q = (50.0 g)(4.184 J/g°C)(32.5°C - 24.0°C)
Q = 1743.8 J

The heat transferred from the metal to the water is equal to the heat absorbed by the metal:
Q = mCΔT

where m is the mass of the metal and ΔT is the change in temperature of the metal (from 100.0°C to 32.5°C).
1743.8 J = (23.8 g)C(100.0°C - 32.5°C)
C = 0.385 J/g°C

Therefore, the specific heat of the metal is 0.385 J/g°C.

For more question on metal

https://brainly.com/question/4701542

#SPJ11

which of these atoms has the most stable nuclei? Ra
Po
Rn
Au

Answers

Answer:

Rn has the most stable nucleus

Rn (Radon) has the most stable nuclei due to its closer proximity to the magic number 126.

Option (3) is correct.

The stability of a nucleus depends on the arrangement of protons and neutrons within it. Certain numbers of protons and neutrons result in more stable nuclei. These numbers are known as magic numbers, and they correspond to complete nuclear shells.

Among the given atoms:

Ra (Radium) has 88 protons and a varying number of neutrons.

Po (Polonium) has 84 protons and a varying number of neutrons.

Rn (Radon) has 86 protons and a varying number of neutrons.

Au (Gold) has 79 protons and a varying number of neutrons.

Radon (Rn) has the most stable nuclei because it is closer to the magic number 126 for neutrons. Elements with magic numbers of protons or neutrons tend to have more stable configurations, making Rn the most stable among the options provided.

To learn more about Rn (Radon)  here

https://brainly.com/question/28919596

#SPJ2

Other Questions
When the sun is at a certain angle in the sky, a 100 foot building will cast a 25 foot shadow , how tall is a person if he casts a 1.5 foot shadow at the same time Name and describe the two ways a person can be natural born citizen? Here are the numbers of calls received at a customer support service during 8 randomly chosen, hour-long intervals.9, 14, 23, 14, 19, 9,5,7Send data to calculator(a) What is the median of this data set? If your answer is not 0an integer, round your answer to one decimal place.(b) What is the mean of this data set? If your answer is not aninteger, round your answer to one decimal place.(c) How many modes does the data set have, and what aretheir values? Indicate the number of modes by clicking in theappropriate circle, and then indicate the value(s) of themode(s), if applicable.0OOzero modesO one mode: 0two modes:and Which expression had a value less than 1 In the month of May, Concord Corporation wrote checks in the amount of $51800. In June, checks in the amount of $70885 were written. In May, $47421 of these checks were presented to the bank for payment and $60945 in June. Required:What is the amount of outstanding checks at the end of June? What was an argument made by women in the Progressive movement?A. They felt that strikes and marches were too public a show ofsupport.B. They could best create change by supporting men in public life.OC. They had a duty to improve society.D. They could best create change by focusing on their home lives.SUBMIT 1. Why does the family often pick up and leave in the middle of the night? a) Rose Mary wants the children to travel all of the time. B) The weather makes the baby sick. C) Rex is a convict and the family must not be discovered. D) Rex is convinced that government agents or police are after the family. To find out what Camilas grandparents are like, complete the phrases with the correct forms of saber and conocer. -9 -7 -5 sequence name pls After implementing a solution to an environmental problem, environmental workers often continue to collect and analyze data associated with the problem area. Why is it important for public officials to follow through and check the results of implemented solutions to environmental problems? Check all the following combinations of elements that would not form a covalent bond. 1. C and H 2. N and CI 3. S and CI 4. Na and O 5. Cu and O In chapter 6 of the Great Gatsby, what was Jay Gatsby supposed to have inherited from Dan Cody? What did he get? Who got the rest?No plagiarizing! For questions 1,2, and 3 find intervals of positive and negative r values. 1. r= 1 - 2 cos 2. r= 5 sin (3) 3. r= 1 - 5 sin 1. Summarize Lane Wallace begins her argument with a series of questions toget her readers thinking about what is selfish and what is heroic. In your ownwords, state the claim that she expresses in lines 18-21. Take into account theinformation she presents in the rest of her argument, including her conclusionsat the end. How do the creative descriptions of wheat fields and buildings impact you as a reader? What do you think the poet is saying about how people and nature work together? Include at least two examples from the poem to support your response a flow chart shows an aspect of fiscal policy. money goes from the government, to household, and to firms. the diagram shows an aspect of fiscal policy. what aspect of fiscal policy does this diagram show? the way in which a government creates a budget a budget that is severely unbalanced government spending to strengthen the economy ways in which governments spend money What is the theme of this story? Stephanie was on her way home from school when she came across the shiny gold lamp in the street. After making sure that it didn't belong to anybody in the neighborhood, she picked it up. She squinted at the unfamiliar lettering on the outside of the lamp: "Rub me. " So she did. As she rubbed the lamp with her shirttail, a man in a turban materialized from the lamp hole in a puff of blue smoke. "Greetings," said the man. "I am Al-Abuzar, the famous genie of the lamp. For freeing me from my prison, you get one wish. " "I thought it was three," said Stephanie. "One wish," said the genie. "Okay," Stephanie said. "I wish for a million wishes!" "Get serious," the genie said as he rolled his eyes. "That never works. " "Then in that case, I don't know what to wish for," Stephanie said. She thought of many things. She wanted a new bike. She wanted to get good grades on every single paper she turned in. She wanted her favorite food: pizza. In fact, she thought it would be great if everything she ate tasted like pizza. "Okay," she said. "I want everything I eat to taste like pizza!" "Your wish is my command," the genie said. "Good-bye, master. " The genie disappeared into the lamp. Stephanie tucked the lamp into her backpack and walked into the corner diner. She ordered a hamburger and fries. They tasted just like a pizza. It wasn't bad; it was just a little disturbing. For dessert, Stephanie had pizza ice cream. After eating the strange dessert, Stephanie began to think that her wish was a mistake. When she got home, her mother greeted her at the door. "Guess what sweetie?! We're having pizza!" Stephanie groaned. This was not what she wanted to hear! thomas hutchinson argument against independence The author's use of an ethical appeal in paragraphs 3-4 is most likely intended to help the readerA. identify the religion of the authorB. identify the nationality of the authorC. recognize the victims whom the author namesD. recognize that the author speaks from experience BRAINLIEST :) Human height is a good example of polygenic inheritance. Assume that three genes control height. The capitalletter alleles (A, B and C) produce proteins that stimulate growth in skeletal muscles and bones. The lower casealleles of these three genes (a, b & c) dont produce these proteins. A genotype with all capital genes (AABBCC)has the maximum amount of protein for growing tall. A genotype with all lower-case allele (aabbcc) has nocapital letters, and would very short in stature. A genotype with three capital alleles and three lower casealleles (AaBbCc) has a medium amount of protein and would be average height. Cross the following genotypes: AABbCc x AaBbCC28. List all of the possible genotypes that have at least 5 growth protein factors. What is the probability ofhaving a child that has 5 or more units of growth protein?29. What is the least amount of capital letters an offspring could receive? What is the probability of having this type of individual?