Help asap giving branlist!!
Answer:
option 3
Step-by-step explanation:
x = 2 is a vertical line with an x-intercept of (2, 0) so the answer is Option 3.
Answer:
Option 3
Step-by-step explanation:
The value of x will always be 2. Y can be anything it wants to be and x will still be 2 no matter what, You could pick multiple points on the line for each graph, and only Option 3 will have x always being 2.
what is the output from the following machine when the input is 4
Answer:
4 - 7 = -3
-3 / 3 = -1
Change the fraction1/5 to a percent
Answer:
Step-by-step explanation:
What’s the correct answer for this?
Answer:
(2,-2)
Step-by-step explanation:
In the attached file
Express the following ratio in it’s simplest form.
25:30
Answer:
5/6
Step-by-step explanation:
Find the factor that divides both numbers...
25/5=5
30/5=6
5/6 is the simplified ratio
P.S. Please give me brainliest, i have only have two!
Answer:
1/3:1/4
Step-by-step explanation:
203/259
write in simplest form
2 hours to 45 seconds
Express ratio
15:1
simplest form
1/3:1/4
f(x)=x^3+10x^2-25x-250
Answer:
-16x^5
Step-by-step explanation:
f(x)=x^3+10x^2-25x-250
f(x) = x^3-15x+x^2-250
f(x) = x^5-15x-250
f(x) = x^5 -x + 16
f(x) = -x^5+16
f(x) = -16x^5
// have a great day //
Solve the two-step equation.
-9x + 0.4 = 4
Which operation must be performed to move all the constants to the right side of the equation?
Answer:
x = -0.4
multi-step equation
Step-by-step explanation:
subtract 0.4 from 4 and 0.4 so it cancells out,
0.4 - 0.4 = 0 (cancelled out)
4 - 0.4 = 3.6
then bring down -9x and divide -9 from both sides
-9/-9 = 0 (cancelled out)
3.6 / -9 = -0.4
x = -0.4
Answer:
x = -0.4
Step-by-step explanation:
We have the equation:
-9x + 0.4 = 4
First, the operation to move all the constants to the right side is subtraction since we would have to subtract 0.4 from each side, let's see this:
Now, we have all the constants on the right side of the equation.
Now, the operation we need to perform to isolate the variable is division (since the x has a -9 that is being multiplied by x) we need to do the opposite operation:
Thus, the answer to this equation is x= -0.4
convert 6 kilograms to grams
Answer:
6000 grams the formula would be multiply the mass value by 1000
Step-by-step explanation:
Answer:
6000 grams
Step-by-step explanation:
6 kilograms
To convert kg into grams, we multiply by 1000
So,
=> 6 * 1000 grams
=> 6000 grams
WILL GIVE BRAINLIEST 4 FIRST ANSWER.
When converted to speeds, which list is in order from slowest to fastest?
A: 17 miles in 2 minutes;
26 miles in 4 minutes;
33 miles in 6 minutes;
60 miles in 8 minutes
B: 17 miles in 2 minutes;
60 miles in 8 minutes;
26 miles in 4 minutes;
33 miles in 6 minutes
C: 33 miles in 6 minutes;
26 miles in 4 minutes;
60 miles in 8 minutes;
17 miles in 2 minutes
D: 60 miles in 8 minutes;
33 miles in 6 minutes;
26 miles in 4 minutes;
17 miles in 2 minutes
Answer:
c
Step-by-step explanation:
you should divide the distance on time
so
33/6=5.5
26/4=6.5
60/8=7.5
17/2=8.5
you can see answer in this order in c
Answer:
Answer:
c
Step-by-step explanation:
you should divide the distance on time
so
33/6=5.5
26/4=6.5
60/8=7.5
17/2=8.5
you can see answer in this order in c
Step-by-step explanation:
What is an equation of a line, in point-slope form, that
passes through (1, – 7) and has a slope of -2/3
y-7= }(1-1)
y+7= (1+1)
y-7=-|(+1)
y+7=-3(2-1)
Answer:
y + 7 = -2/3 (x - 1)
Step-by-step explanation:
Point-slope form is y - y1 = m (x - x1)
-7 is y1, -2/3 is m, and 1 is x1
When you plug the values in, you get y + 7 = -2/3 (x - 1)
For many years "working full-time" was 40 hours per week. A business researcher gathers data on the hours that corporate employees work each week. She wants to determine if corporations now require a longer work week. Group of answer choices Testing a claim about a single population proportion. Testing a claim about a single population mean. Testing a claim about two population proportions. Testing a claim about two population means.
Answer:
Correct option is: Testing a claim about two population means.
Step-by-step explanation:
In this provided scenario, a researchers wants to determine if corporations require a longer work week for the employees "working full-time".
It is given that for many years "working full-time" was 40 hours per week.
The researchers researcher gathers data on the hours that corporate employees work each week.
It is quite clear that the researcher wants to determine whether the number of hours worked per week must be increased from 40 hours or not.
A test for the difference between two population means would help the researcher to reach the conclusion.
Thus, the correct option is: Testing a claim about two population means.
If g(x) = 2x - 4), find the value of xf g(x) = 20. 12 points)
Answer:
x = 12
Step-by-step explanation:
g(x)= 2x-4
g(x)= 20
Therefore,
2x-4 = 20
Bringing -4 to the other side it becomes positive,so..
2x= 20+4
= 24
x =24/2
= 12
someone pls pls pls help me
Answer:
A, C, D, E
Step-by-step explanation:
According to the rational root theorem, any rational roots will be of the form ...
±(divisor of the constant)/(divisor of the leading coefficient)
The constant is 8, and its divisors are 1, 2, 4, 8.
The leading coefficient is 6, and its divisors are 1, 2, 3, 6.
So, no rational root will have 3 in the numerator, eliminating choices B and F. The remaining choices are possible rational roots:
A, 2/3C, -8D, 4E, -1/6The top and bottom margins of a poster are each 15 cm and the side margins are each 10 cm. If the area of printed material on the poster is fixed at 2400 cm2, find the dimensions of the poster with the smallest area.
Answer:
the dimension of the poster = 90 cm length and 60 cm width i.e 90 cm by 60 cm.
Step-by-step explanation:
From the given question.
Let p be the length of the of the printed material
Let q be the width of the of the printed material
Therefore pq = 2400 cm ²
q = [tex]\dfrac{2400 \ cm^2}{p}[/tex]
To find the dimensions of the poster; we have:
the length of the poster to be p+30 and the width to be [tex]\dfrac{2400 \ cm^2}{p} + 20[/tex]
The area of the printed material can now be: [tex]A = (p+30)(\dfrac{2400 }{p} + 20)[/tex]
=[tex]2400 +20 p +\dfrac{72000}{p}+600[/tex]
Let differentiate with respect to p; we have
[tex]\dfrac{dA}{dp}= 20 - \dfrac{72000}{p^3}[/tex]
Also;
[tex]\dfrac{d^2A}{dp^2}= \dfrac{144000}{p^3}[/tex]
For the smallest area [tex]\dfrac{dA}{dp }=0[/tex]
[tex]20 - \dfrac{72000}{p^2}=0[/tex]
[tex]p^2 = \dfrac{72000}{20}[/tex]
p² = 3600
p =√3600
p = 60
Since p = 60 ; replace p = 60 in the expression q = [tex]\dfrac{2400 \ cm^2}{p}[/tex] to solve for q;
q = [tex]\dfrac{2400 \ cm^2}{p}[/tex]
q = [tex]\dfrac{2400 \ cm^2}{60}[/tex]
q = 40
Thus; the printed material has the length of 60 cm and the width of 40cm
the length of the poster = p+30 = 60 +30 = 90 cm
the width of the poster = [tex]\dfrac{2400 \ cm^2}{p} + 20[/tex] = [tex]\dfrac{2400 \ cm^2}{60} + 20[/tex] = 40 + 20 = 60
Hence; the dimension of the poster = 90 cm length and 60 cm width i.e 90 cm by 60 cm.
In the United States, the mean and standard deviation of adult men's heights are 70 inches (5 feet 10 inches) and 4 inches, respectively. Suppose the American adult men's heights have a normal distribution Whe probability that a randomly chosen American man is taller than 6 feet (72 inches) is equal to:___________. (round off to fourth decimal place, use the given table)
a. 0.6853
b. 0.0062
c. 0.3085
d.0.6915
e. None of these
Answer:
[tex]P(X>72)=P(\frac{X-\mu}{\sigma}>\frac{72-\mu}{\sigma})=P(Z>\frac{72-70}{4})=P(z>0.5)[/tex]
And we can find this probability using the complement rule and the normal standard table:
[tex]P(z>0.5)=1-P(z<0.5)= 1- 0.69146= 0.3085[/tex]
And the best solution would be:
c. 0.3085
Step-by-step explanation:
For this case we can convert all the values to inches in order to standardize the solution:
[tex] 5ft * \frac{12 in}{1ft}= 60 in[/tex]
[tex] 6ft * \frac{12 in}{1ft}= 72 in[/tex]
Let X the random variable that represent the heights of US mens, and for this case we know the distribution for X is given by:
[tex]X \sim N(70,4)[/tex]
Where [tex]\mu=70[/tex] and [tex]\sigma=4[/tex]
We are interested on this probability
[tex]P(X>72)[/tex]
We can use the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using this formula we got:
[tex]P(X>72)=P(\frac{X-\mu}{\sigma}>\frac{72-\mu}{\sigma})=P(Z>\frac{72-70}{4})=P(z>0.5)[/tex]
And we can find this probability using the complement rule and the normal standard table:
[tex]P(z>0.5)=1-P(z<0.5)= 1- 0.69146= 0.3085[/tex]
And the best solution would be:
c. 0.3085
Using the normal distribution, it is found that the probability that a randomly chosen American man is taller than 6 feet (72 inches) is equal to:
c. 0.3085
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.In this problem:
Mean of 70 inches, thus [tex]\mu = 70[/tex].Standard deviation of 4 inches, thus [tex]\sigma = 4[/tex].The probability of being taller than 72 inches is 1 subtracted by the p-value of Z when X = 72, thus:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{72 - 70}{4}[/tex]
[tex]Z = 0.5[/tex]
[tex]Z = 0.5[/tex] has a p-value of 0.6915.
1 - 0.6915 = 0.3085
Thus, option c.
A similar problem is given at https://brainly.com/question/24855678
Help me which answer is it
Answer:
C.
Step-by-step explanation:
[tex]\frac{1}{5} +\frac{5}{6}[/tex] ≈ 1
5 + 8 + 1 = 14
A sports shop sells tennis rackets in 4 different weights, 2 types of string, and 3 grip sizes. How many different rackets
could they sell?
O 32
O 18
0 24
0 9
Answer: C) 24
Step-by-step explanation:
first we take down the information given to us
sports shop sells rackets in
4 different weights
2 types of strings
3 grip sizes
Now to get the number of different rackets they could sell, you simply take the multiplication of the number of racket gripe sizes, the types of strings and different weights they sell
so
4 * 2 * 3 = 24
therefore the sport shop could sell up to 24 different rackets .
Answer:
24
Step-by-step explanation: got it right on my test
pls help it due tomorrow
Answer:
Finding 1/5 of something is the same as dividing that number by 5. Since 24 isn't divisible by 5, 24 / 5 is not an integer. Since you can't have 4.8 species of animals the answer to (a) is no.
For (b), 1/3 * 24 = 8 and 24 - 8 = 16.
I wanted to compare my 5 hamsters’ average intelligence to see if they are different from the average intelligence of the 6 hamsters of another faculty member at a different university. Assume α = .01, then the cutoff for my hypothesis testing is ______.
Answer:
Step-by-step explanation:
The test to use is the t-test of independent means.
To determine the cutoff for the study then you need to find the degree of freedom and the alpha level. After the hypothesis testing, the calculated t value is then compared to the critical t value from the t distribution table using the degrees of freedom.
2. {5.0A.A.1, 5.0A.A.2} Write an expression to show....the product of eight
and two, minus the product of three and four. *
Answer:
[tex]\left ( 8\times 2 \right )-\left ( 3\times 4 \right )[/tex]
Step-by-step explanation:
Given: The statement is ' the product of eight and two, minus the product of three and four'
To find: expression for the given statement
Solution:
An algebraic expression is an expression consists of coefficients, variables, and the arithmetic operations.
Product of eight and two = [tex]\left ( 8\times 2 \right )[/tex]
Product of three and four = [tex]\left ( 3\times 4 \right )[/tex]
Therefore,
Product of eight and two, minus the product of three and four = [tex]\left ( 8\times 2 \right )-\left ( 3\times 4 \right )[/tex]
Solve the equation 3 Z + 5 = 35
Answer:
z=10 i hope this will help you
Step-by-step explanation:
3z+5=35
3z=35-5
3z=30
z=10
Answer:
Z = 10
Step-by-step explanation:
3Z+5=35
Subtract 5 from both sides
3Z=30
Divide both sides by 3
Z=10
WILL GIVE BRAINLIEST IF ANSWERED NOW
Write an equation of a line that passes through the point (3, 2) and is parallel to the line y = 3x +7
y = 3x -7
y = 1/3x+2
y= 1/3x-2
Answer:
y=3x-7
Step-by-step explanation:
lines are parallel hence gradient from the equation in question is the same as the gradient of the equation to be found.. comparing to y=mx+c, eq in question has grad 3... from the formula y-y1=m(x-x1) where (x1,y1) is equal to the point in question
Answer:
Make That Guy Brainliest Now ^^^^^ You can now that there are two answers!
an amount was invested at r% per quarter. what value of r will ensure that accumulated amount at the end of one year is 1.5 times more than amount invested
Answer:
[tex]r=25.7\%[/tex] will ensure that accumulated amount at the end of one year is 1.5 times more than amount invested
Step-by-step explanation:
Given: An amount was invested at r% per quarter.
To find: value of r such that accumulated amount at the end of one year is 1.5 times more than amount invested
Solution:
Let P denotes amount invested and n denotes time
As an amount (A) was invested at r% per quarter,
[tex]A=P\left ( 1+\frac{r}{400} \right )^{4n}[/tex]
According to question, accumulated amount at the end of one year is 1.5 times more than amount invested.
So,
[tex]A=1.5P+P=2.5P\\A=2.5P\\P\left ( 1+\frac{r}{400} \right )^{4n}=2.5P[/tex]
Put n = 1
[tex]P\left ( 1+\frac{r}{400} \right )^{4}=2.5P\\\left ( 1+\frac{r}{400} \right )^{4}=2.5\\1+\frac{r}{400} =(2.5)^{\frac{1}{4}}\\\frac{r}{100}=(2.5)^{\frac{1}{4}}-1\\r=100\left [ (2.5)^{\frac{1}{4}}-1 \right ]\\=25.7\%[/tex]
Hitchhiker Snails A type of small snail is very widespread in Japan, and colonies of the snails that are genetically similar have been found very far apart. Scientists wondered how the snails could travel such long distances. A recent study1 provides the answer. Biologist Shinichiro Wada fed live snails to birds and found that of the snails were excreted live out the other end. The snails apparently are able to seal their shells shut to keep the digestive fluids from getting in.
What is the best estimate for the proportion of all snails of this type to live after being eaten by a bird?
Answer: 0.149
Step-by-step explanation:
As Scientists wondered how the snails could travel such long distances. A recent study provides the answer. Biologist Shinichiro Wada fed 174 live snails to birds and found that 26 of the snails were excreted live out the other end.
The best estimate for the proportion of all snails of this type to live after being eaten by a bird can be achieved by calculating the ratio of survival/number of eaten snails
Where the number of eaten snails = 174
The number of survivors = 26
Estimated proportion = 26/174 = 0.1494
Therefore, the best estimate for the proportion of all snails of this type to live after being eaten by a bird will be 0.149 approximately.
Which of the following sets would have a graph with an open circle on 5 and a ray pointing right on the number line?
The open circle means we do not include the endpoint, hence the use of a greater than symbol. If we were to include the endpoint, then we'd have greater than or equal to. We can rule out choice B due to this reasoning.
The ray pointing to the right indicates we are talking about x values larger than 5, so we can rule out choice A and conclude the answer is C.
Side note: The notation [tex]x \in \mathbb{R}[/tex] is saying "x is a real number"
A teacher wrote the equation 3y + 12 = 6x on the board. For what value of b would the additional equation 2y = 4x + b form a system of linear equations with infinitely many solutions?
b = –8
b = –4
b = 2
b = 6
Answer:
-8
Step-by-step explanation:
For a system to have infinitely many solutions the two equations must be the same line. We can simplify the first and second equations by dividing them by 3 and 2 respectively to get:
y + 4 = 2x
y = 2x + b/2 → y -b/2 = 2x
Since the constants must be equal, 4 = -b/2 which means b = -8.
Answer:
b=-8
Step-by-step explanation:
36°
I
80°
w
m
What equation can be used to calculate the measure of angle ? Describe, in words, the
process you would use to find
Answer:
44°
Step-by-step explanation:
A pair of angles formed from the intersection of two lines opposite to each other at the point of intersection (vertex) is called vertically opposite angles. These vertically opposite angles are congruent to each other (that means they are equal).
Since opposite angles are equal, the equation needed to calculate w is given as:
80° = 36° + w
w = 80° - 36°
w = 44°
What’s the correct answer for this question?
Answer:
A.
Step-by-step explanation:
Volume of sphere = (4/3)πr³
= 4/3(3.14)(d/2)³
= 4/3(3.14)(7/2)³
= 4/3(3.14)(3.5)³
= 4/3(3.14)(42.875)
= (1.33)(3.14)(42.875)
= 179.5 cm³
Answer:
The answer is 179.5 cm^2
marcus has a spinner with 3 red sections, 2blue sections, and 1 purple section match the event of landing on each color to the correct probability
Answer:
see below
Step-by-step explanation:
3 red sections, 2blue sections, and 1 purple section = 6 sections
P( red) = red/total = 3/6 =1/2
P( blue) = blue/total = 2/6 =1/3
P( purple) = purple/total = 1/6
Answer:
This is the answer
Step-by-step explanation:
Peter, Gordon and Gavin share £36 in a ratio 2:1:1. How much money does each person get?
Answer:
Peter gets 18£
Gordon and Gavin each get 9£
Answer:
peter = 18 Gordon = 9 Gavin = 9
Step-by-step explanation:
2+1+1 = 4
36 div 4 = 9
2 times 9 = 18
1 times 9 = 9