Answer:
The speed of the river is 2mph.
Step-by-step explanation:
I guess that we want to find the speed of the river.
First, remember the relation: speed*time = distance
If the speed of the river is Sr, when Luvenia moves downstream (in the same direction that the flow of the water) the total speed will be equal to the speed of Luvenia in still water plus the speed of the water:
Sd = 4mph + Sr
and at this speed, in a time T, she can move 21 miles, so we have:
Sd*T = (4mph + Sr)*T = 21 mi
When moving upstream, the speed will be:
Su = (4mph - Sr)
and in the same time T as before, she moves 7 miles, so we have the equation:
Su*T = (4mph - Sr)*T = 7 mi
Then we have two equations:
(4mph + Sr)*T = 21 mi
(4mph - Sr)*T = 7 mi
Now we can take the quotient of those two equations and get:
((4mph + Sr)*T)/((4mph - Sr)*T) = 21/7
The time T vanishes, and we can solve it for Sr.
(4mph + Sr)/(4mph - Sr) = 3
4mph + Sr = 3*(4mph - Sr) = 12mph - 3*Sr
4*Sr = 12mph - 4mph = 8mph
Sr = 8mph/4 = 2mph.
Which of the following is the perimeter of a triangle with side lengths of 18 cm, 26 cm, and 32 cm?
Answer:
76 cm
Step-by-step explanation:
To find the perimeter, add up all of the side lengths.
18 cm + 26 cm + 32 cm = 76 cm
I hope this helps :))
ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.
Answer:
A. -6 ≤ y ≤ 9
Step-by-step explanation:
→Looking at the graphed function, you can see that the line starts at when y = -6. Then the function slowly increases, until it finally stops when y = 9.
→This means that the range (y-values) of the function can be from -6 through 9.
The correct answer should be "A. -6 ≤ y ≤ 9."
What value of x makes 3(x + 4) = 3x + 4 true?
Well lets see.
[tex]3(x+4)=3x+4\implies 12 = 4\implies x\notin\mathbb{C}[/tex].
There are no such x-es that satisfy the equation.
A contractor developed a multiplicative time-series model to forecast the number of contracts in future quarters, using quarterly data on number of contracts during the 3-year period from 2010 to 2012. The following is the resulting regression equation: ln = 3.37 + 0.117 X - 0.083 Q1 + 1.28 Q2 + 0.617 Q3 where is the estimated number of contracts in a quarter X is the coded quarterly value with X = 0 in the first quarter of 2010 Q1 is a dummy variable equal to 1 in the first quarter of a year and 0 otherwise Q2 is a dummy variable equal to 1 in the second quarter of a year and 0 otherwise Q3 is a dummy variable equal to 1 in the third quarter of a year and 0 otherwise Using the regression equation, which of the following values is the best forecast for the number of contracts in the third quarter of 2013?A. The quarterly growth rate in the number of contracts is significantly different from 100% (? = 0.05).
B. The quarterly growth rate in the number of contracts is not significantly different from 0% (? = 0.05).
C. The quarterly growth rate in the number of contracts is significantly different from 0% (? = 0.05).
D. The quarterly growth rate in the number of contracts is not significantly different from 100% (? = 0.05).
There is a missing content in the question.
After the statements and before the the options given; there is an omitted content which says:
Referring to Table 16-5, in testing the coefficient of X in the regression equation (0.117) the results were a t-statistic of 9.08 and an associated p-value of 0.0000. Which of the following is the best interpretation of this result?
Answer:
C. The quarterly growth rate in the number of contracts is significantly different from 0% (? = 0.05).
Step-by-step explanation:
From the given question:
The resulting regression equation can be represented as:
[tex]\hat Y = 3.37 + 0.117 X - 0.083 Q_1 + 1.28 Q_2 + 0.617Q_3[/tex]
where;
the estimated number of contracts in a quarter X is the coded quarterly value with X = 0
the first quarter of 2010 Q1 is a dummy variable equal to 1 in the first quarter of a year and 0 otherwise
Q2 is a dummy variable equal to 1 in the second quarter of a year and 0 otherwise
Q3 is a dummy variable equal to 1 in the third quarter of a year and 0 otherwise
Our null and alternative hypothesis can be stated as;
Null hypothesis :
[tex]H_0 :[/tex] The quarterly growth rate in the number of contracts is not significantly different from 0% (? = 0.05)
[tex]H_a:[/tex] The quarterly growth rate in the number of contracts is significantly different from 0% (? = 0.05)
The decision rule is to reject the null hypothesis if the p-value is less than 0.05.
From the missing omitted part we added above; we can see that the t-statistics value = 9.08 and the p-value = 0.000 .
Conclusion:
Thus; we reject the null hypothesis and accept the alternative hypothesis. i.e
The quarterly growth rate in the number of contracts is significantly different from 0% (? = 0.05)
Laura placed a bucket of water in her garden. Over the course of a week, she watched the water evaporate and recorded the volume of water left in the bucket each day.
Laura found the linear model that best fit the data was V=5.00−0.25n, where n is the number of days since she first placed the bucket and V is the volume of water, in liters, remaining in the bucket.
How many liters of water evaporated from the bucket every day?
How may liters where inside the bucket when Laura first placed it in the garden?
Answer:
1. 0.5 L; 2. 5.00 L
Step-by-step explanation:
V = 5.00 - 0.5n
If you include units, the equation becomes
V(in litres) = 5.00 L - (0.5 L/day) × (n days)
1. Rate of evaporation
When you include the units, it becomes easier to see that the water is evaporating at a rate of 0.5 L/day.
That is, 0.5 L of water evaporates each day.
The negative sign shows that the volume of water is decreasing.
2. Volume at the beginning
At the beginning of the experiment, n = 0. Then
V = 5.00 -0.5×0 = 5.00 - 0 = 5.00 L
The bucket originally contained 5.00 L of water.
Environmental Protection Agency standards require that the amount of lead in drinking water be less than 15 ppb. Twelve samples of water from a particular source have the following concentrations, in ppb. 11.4 13.9 11.2 14.5 15.2 8.1 12.4 8.6 10.5 17.1 9.8 15.9 A hypothesis test will be performed to determine whether the water from this source meets the EPA standard.
Required:
a. State the appropriate null and alternate hypotheses.
b. Compute the P-value.
c. Can you conclude that the water from this source meets the EPA standard? Explain.
Answer:
Step-by-step explanation:
Mean = (11.4 + 13.9 + 11.2 + 14.5 + 15.2 + 8.1 + 12.4 + 8.6 + 10.5 + 17.1 + 9.8 + 15.9)/12 = 12.4
Standard deviation = √(summation(x - mean)²/n
n = 12
Summation(x - mean)² = (11.4 - 12.4)^2 + (13.9 - 12.4)^2 + (11.2 - 12.4)^2+ (14.5 - 12.4)^2 + (15.2 - 12.4)^2 + (8.1 - 12.4)^2 + (12.4 - 12.4)^2 + (8.6 - 12.4)^2 + (10.5 - 12.4)^2 + (17.1 - 12.4)^2 + (9.8 - 12.4)^2 + (15.1 - 12.4)^2 = 89.62
Standard deviation = √(89.62/13) = 2.7
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
a) For the null hypothesis,
µ ≤ 15
For the alternative hypothesis,
µ > 15
This is a right tailed test
b) Since the number of samples is small and no population standard deviation is given, the distribution is a student's t.
Since n = 12,
Degrees of freedom, df = n - 1 = 12 - 1 = 11
t = (x - µ)/(s/√n)
Where
x = sample mean = 12.4
µ = population mean = 15
s = samples standard deviation = 2.7
t = (12.4 - 15)/(2.7/√12) = - 3.34
We would determine the p value using the t test calculator. It becomes
p = 0.0034
c) Assuming level of significance = 0.05.
Since alpha, 0.05 > than the p value, 0.0034, then we would reject the null hypothesis. Therefore, At a 5% level of significance, we can conclude that the water from this source does meets the EPA standard. They are higher than 15ppb
Using the t-distribution, we have that:
a)
The null hypothesis is: [tex]H_0: \mu \geq 15[/tex]
The alternative hypothesis is: [tex]H_1: \mu < 15[/tex]
b) The p-value is of 0.0051.
c) Since the p-value is of 0.0051, which is less than the standard significance level of 0.0051, it can be concluded that the mean is less than 15 ppb, and thus, this source meets the EPA standard.
Item a:
At the null hypothesis, it is tested if the mean is of at least 15 ppb, that is:
[tex]H_0: \mu \geq 15[/tex]
At the alternative hypothesis, it is tested if the mean is of less than 15 ppb, that is:
[tex]H_1: \mu < 15[/tex]
Item b:
We have the standard deviation for the sample, thus, the t-distribution is used. The test statistic is given by:
[tex]t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}[/tex]
The parameters are:
[tex]\overline{x}[/tex] is the sample mean. [tex]\mu[/tex] is the value tested at the null hypothesis. s is the standard deviation of the sample. n is the sample size.In this problem, we have that [tex]\mu = 15, n = 12[/tex]. Additionally, using a calculator, the other parameters are: [tex]\overline{x} = 12.38, s = 2.93[/tex]
Hence, the value of the test statistic is:
[tex]t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}[/tex]
[tex]t = \frac{12.38 - 15}{\frac{2.93}{\sqrt{12}}}[/tex]
[tex]t = -3.1[/tex]
The p-value is found using a left-tailed test, as we are testing if the mean is less than a value, with t = -3.1 and 12 - 1 = 11 df.
Using a calculator, this p-value is of 0.0051.Item c:
Since the p-value is of 0.0051, which is less than the standard significance level of 0.0051, it can be concluded that the mean is less than 15 ppb, and thus, this source meets the EPA standard.
A similar problem is given at https://brainly.com/question/16194574
A card is drawn from a standard deck of 5252 playing cards. What is the probability that the card will be a heart and not a club? Express your answer as a fraction or a decimal number rounded to four decimal places.
Answer:
The probability of choosing a heart and not a club is
P = 0.1875
Step-by-step explanation:
There are 13 hearts in a deck of 52 cards. The probability that the chosen card will be a heart is given by
Probability = favorable outcome/ Total number of outcomes
P= 13/52= 1/4
There are 13 clubs in a deck of 52 cards.
The probability of not choosing a club would be
P = 52-13/52= 39/52= 3/4
So the combined probability of choosing a heart and not a club is
P = 1/4 * 3/4= 0.25 * 0.75= 0.1875
Use the Pythagorean Theorem to find the length of the hypotenuse in the triangle shown below.
60
25
Answer:
65
Step-by-step explanation:
C^2= A^2 + B^2
C^2 = (60)^2 + (25)^2
C^2 = 4225
Take the square root of C
C = 65
Answer:
65
Step-by-step explanation:
Use the Pythagorean Theorem to find the length of the hypotenuse.
[tex]a^2+b^2=c^2[/tex]
I'm assuming that '60' and '25' are measures of the legs, since the question asks to find the hypotenuse.
[tex]60^2+25^2=c^2\\\rightarrow 60^2=3600\\\rightarrow 25^2 = 625\\3600+625=c^2\\4225=c^2\\\sqrt{4225}=\sqrt{c^2}\\\boxed{65=c}[/tex]
The hypotenuse should measure 65 units.
Please everyone help me!
Answer:g=0 is not the solution
Step-byd-step explanation:
-1 1/2 is a negative number and 0 is not negative
Answer:
g=0
Step-by-step explanation:
happy to help ya :)
What is the simplified value of the exponential expression 27 1/3
1/3
1/9
3
9
Answer:
I think its 1/9
Answer:
B
Step-by-step explanation:
What is the probability that a senior Physics major and then a sophomore Physics major are chosen at random? Express your answer as a fraction or a decimal number rounded to four decimal places
Answer:
The probability that a senior Physics major and then a sophomore Physics major are chosen at random is 0.0095.
Step-by-step explanation:
The complete question is:
There are 103 students in a physics class. The instructor must choose two students at random.
Students in a Physics Class
Academic Year Physics majors Non-Physics majors
Freshmen 17 15
Sophomores 20 14
Juniors 11 17
Seniors 5 4
What is the probability that a senior Physics major and then a sophomore Physics major are chosen at random? Express your answer as a fraction or a decimal number rounded to four decimal places.
Solution:
There are a total of N = 103 students present in a Physics class.
Some of the students are Physics Major and some are not.
The instructor has to select two students at random.
The instructor first selects a senior Physics major and then a sophomore Physics major.
Compute the probability of selecting a senior Physics major student as follows:
[tex]P(\text{Senior Physics Major})=\frac{n(\text{Senior Physics Major}) }{N}[/tex]
[tex]=\frac{5}{103}\\\\=0.04854369\\\\\approx 0.0485[/tex]
Now he two students are selected without replacement.
So, after selecting a senior Physics major student there are 102 students remaining in the class.
Compute the probability of selecting a sophomore Physics major student as follows:
[tex]P(\text{Sophomore Physics Major})=\frac{n(\text{Sophomore Physics Major}) }{N}[/tex]
[tex]=\frac{20}{102}\\\\=0.1960784314\\\\\approx 0.1961[/tex]
Compute the probability that a senior Physics major and then a sophomore Physics major are chosen at random as follows:
[tex]P(\text{Senior}\cap \text{Sophomore})=P(\text{Senior})\times P(\text{Sophomore})[/tex]
[tex]=0.0485\times 0.1961\\\\=0.00951085\\\\\approx 0.0095[/tex]
Thus, the probability that a senior Physics major and then a sophomore Physics major are chosen at random is 0.0095.
A system of equations has 1 solution. If 4x - y = 5 is one of the equations, which could be the other equation?
O y=-4x + 5
y = 4x-5
2y = 8x - 10
-2y = -8x - 10
Answer:
[tex]4x -y = 5[/tex]
And if we rewrite this expression we got:
[tex] y= 4x -5[/tex]
If the system have just one solution then we need the slope different and for this reason we can discard the options:
y = 4x-5
-2y = -8x - 10 equivalent to y =4x+5
2y = 8x - 10 equivalent to y = 4x -5
And then the correct answer would be:
y=-4x + 5
Step-by-step explanation:
For this case we have the following equation given:
[tex]4x -y = 5[/tex]
And if we rewrite this expression we got:
[tex] y= 4x -5[/tex]
If the system have just one solution then we need the slope different and for this reason we can discard the options:
y = 4x-5
-2y = -8x - 10 equivalent to y =4x+5
2y = 8x - 10 equivalent to y = 4x -5
And then the correct answer would be:
y=-4x + 5
Answer:
A: y = –4x + 5
Step-by-step explanation:
I got it right on Edge
A machine part consist of a half sphere and a cylinder, as shown in the figure.the total volume of the part is blank pi c
Answer:
Volume of the machine part = 114π inches³
Step-by-step explanation:
Volume of the machine part = Volume of cylinder + Volume of hemisphere
Volume of cylinder = [tex]\pi r^{2}h[/tex]
Where r = radius of the cylinder
h = height of the cylinder
Volume of the cylinder = [tex]\pi(\frac{6}{2})^{2}(12)[/tex]
= 108π inches³
Volume of the hemisphere = [tex]\frac{2}{3}\pi r^{3}[/tex]
= [tex]\frac{2}{3}\pi (3)^{3}[/tex]
= 6π inches³
Total area of the machine part = 108π + 6π
= 114π inches³
which is the domain of f(x) = 4^x
will give brainlist!
Answer:
all real numbers
Step-by-step explanation:
The domain is the input values
All values for x are valid as inputs to the function
Printed circuit cards are placed in a functional test after being populated with semiconductor chips. A lot contains 140 cards. A sample of 20 cards are selected from the lot without replacement for functional testing. (a) If 20 cards are defective, what is the probability that at least one defective card appears in the sample
Answer:
The probability that at least one defective card appears in the sample
P(D) = 0.9644 or 96.44%
Step-by-step explanation:
Given;
Total number of cards t = 140
Number of defective cards = 20
Number of non defective cards x = 140-20 = 120
The probability that at least one defective card = 1 - The probability that none none is defective
P(D) = 1 - P(N) ........1
For 20 selections; r = 20
-- 20 cards are selected from the lot without replacement for functional testing
The probability that none none is defective is;
P(N) = (xPr)/(tPr)
P(N) = (120P20)/(140P20)
P(N) = (120!/(120-20)!)/(140!/(140-20)!)
P(N) = (120!/100!)/(140!/120!) = 0.035618370821
P(N) = 0.0356
The probability that at least one defective card appears in the sample is;
P(D) = 1 - P(N) = 1 - 0.0356 = 0.9644
P(D) = 0.9644 or 96.44%
Note: xPr = x permutation r
To prove a polygon is a rectangle which of the properties listed must be included in the proof
Answer:
if the diagonals of a parallelogram are congruent, then it's a rectangle (neither the reverse of the definition nor the converse of a property). If a parallelogram contains a right angle, then it's a rectangle (neither the reverse of the definition nor the converse of a property).
Step-by-step explanation:
What is the additive inverse of the complex number 9-4i?
Answer:
[tex] \frac{1}{9 - 4i} [/tex]
I'm not sure
Here's a graph of a linear function. Write the
equation that describes that function.
Express it in slope-intercept form.
PLEASE HELP
Answer: [tex]y=\frac{3}{2} x - 3[/tex]
Step-by-step explanation:
Looking at the graph we could locate the y intercept at point (0,-3) and we can locate another point (4,3) which also passes through the line. So using these coordinates we already know the the y-intercept as -3 but we need to find the slope to write it in slope intercept form.
To find the slope, we will need to find the difference in the y values and divide it by the difference in the x values.
(0,-3)
(4,3)
-3 - 3 = -6
0-4 = -4
-6 /-4 = 3/2 so now we know that the slope is 3 over 2
so we could write the equation as y = 3/2x -3
Answer: Thank you (nermay7)
Step-by-step explanation: They are correct!!!!!!!
Hey can anyone help me with this 3 3/5 x (-8 1/3)?
Answer:
[tex]-30[/tex]
Step-by-step explanation:
[tex]3\frac{3}{5} \times (-8 \frac{1}{3} )[/tex]
[tex]\frac{18}{5}\times \left(-\frac{25}{3}\right)[/tex]
[tex]\frac{18}{5}\times -\frac{25}{3}[/tex]
[tex]-\frac{18\times \:25}{5\times \:3}[/tex]
[tex]-\frac{450}{15}[/tex]
[tex]=-30[/tex]
Answer:-30
Step-by-step explanation:
3 3/5 x -8 1/3
18/5 x -25/3
-30
Solve for x. 6−x3=3 x=9 x=−9 x=27 x=−27
Consider the polynomial 9x2 – 16.
Answer: 2
Step-by-step explanation:
9 × 2 - 16
18 - 16
2
please help image attached!
Answer:
The unit circle centered at the origin in the Euclidean plane is defined by the equation:
[tex]x^2+y^2=1\\[/tex]
Given an angle , there is a unique point P on the unit circle at an angle θ from the x-axis, and the x- and y-coordinates of P are:
[tex]x=cos \theta \\y = sin \theta[/tex]
Consequently, from the equation for the unit circle:
[tex]cos^2\theta+sin^2\theta=1[/tex]
the Pythagorean identity.
A garden measuring 12 meters by 6 meters is going to have a walkway constructed all around the perimeter, increasing the total area to 160 square meters. What will be the width of the pathway? (The pathway will be the same width around the entire garden).
Answer:
x=2
Step-by-step explanation:
Original width = 6
New width 6+x+x
Orignal length 12
New length 12+x+x
A = l*w
160 = ( 6+2x) ( 12+2x)
Factor
160 = 2( 3+x) 2(6+x)
Divide each side by 4
40 = (3+x) (6+x)
FOIL
40 = 18+ 6x+3x+ x^2
40 = 18 +9x+x^2
Subtract 40 from each side
0 = x^2 +9x -22
Factor
0 = (x +11) (x-2)
Using the zero product property
x +11 =0 x-2 =0
x= -11 x=2
Since we cannot have a negative sidewalk
x =2
Answer:
2
Step-by-step explanation:
Original width = 6
New width = 6 + x + x = 6 + 2x
Orignal length = 12
New length = 12 + x + x = 12 + 2x
A = l * w
160 = (6 + 2x)(12 + 2x)
160 = 2(3+x) * 2(6+x)
160 = 4 * (3 + x)(6 + x)
160/4 = (3 + x)(6 + x)
40 = 18 + 6x + 3x + x^2
40 = 18 + 9x + x^2
x^2 + 9x - 22 = 0
= x^2 + 11x - 2x - 22 = 0
= x(x + 11) - 2(x + 11) = 0
= (x + 11) (x - 2) = 0
x = - 11, 2
Since we cannot have a negative width because it's a dimension,
x = 2 is right
Which of the following linear equations has the steepest slope?
A. Y = -2x +11
B. y=+x+4
C. y - x +7
D. y - 7+2
Answer:
A --- unless d is supposed to be "y= -7x + 2"
Step-by-step explanation:
The slope is m in y=mx + b
So:
a. y= -2x + 11 slope= -2
b. y= x + 4 slope= 1
c. y= -x + 7 slope= -1
d. y= -7 + 2 (I don's see an x but if there were an x I assume that the slope would equal -7)
The higher the m value, the steeper the slope because it is m/1
So, -2/1 is steeper than 1/1 or -1/1
A U.S.-based Internet company offers an online proficiency course in basic accounting. Completing this online course satisfies the "Fundamentals of Accounting" course requirement in many MBA programs. In the first semester, 315 students have enrolled in the course. The marketing research manager divided the country into seven regions of approximately equal population. The course enrollment values for each of the seven regions are given below. The management wants to know if there is equal interest in the course across all regions. Region Enrollment 1 45 2 60 3 30 4 40 5 50 6 55 7 35 The CEO looked at the data presented and said no they are not equal. It is obvious, since the enrollment in one region is 60 and another 30. However, the CFO said that using a Chi-Square Goodness of Fit Test with a 1% significance level, the frequencies in the regions are not significantly different. Which one is correct? Use statistics to support your answer.
Answer:
[tex]Expected \ mean = \dfrac{sum \ of \ values }{n}[/tex]
[tex]Expected \ mean = \dfrac{315 }{7}[/tex]
Expected mean = 45
The Chi - Square Value = 15.556
Conclusion:
We conclude that there is equal number of average interest in the course across all regions.
Thus, the CFO is correct, the the frequencies in the regions are not significantly different by using a Chi-Square Goodness of Fit Test with a 1% significance level.
Step-by-step explanation:
From the question; Let state our null hypothesis and alternative hypothesis
Null Hypothesis
[tex]\mathbf{H_0:}[/tex]There is equal number of average interest in the course across all regions.
Alternative Hypothesis
[tex]\mathbf{H_a:}[/tex] At least one of the region differs in average number of interest in the course.
The table can be better structured as :
Region Enrollment
1 45
2 60
3 30
4 40
5 50
6 55
7 35
From above; we know the number of sample = 7
Then our expected mean can be calculated as :
[tex]Expected \ mean = \dfrac{sum \ of \ values }{n}[/tex]
[tex]Expected \ mean = \dfrac{315 }{7}[/tex]
Expected mean = 45
SO, let's construct our Chi-Square Statistics Test Table as follows:
Observed Expected Expected (O-E)² [tex]\dfrac{(O-E)^2}{E}[/tex]
(O) (E) proportion
45 45 0.142857 0 0
60 45 0.142857 225 5
30 45 0.142857 225 5
40 45 0.142857 25 0.556
50 45 0.142857 25 0.556
55 45 0.142857 100 2.222
35 45 0.142857 100 2.222
15.556
The Chi - Square Value = 15.556
Degree of freedom = n- 1
Degree of freedom = 7 - 1
Degree of freedom = 6
Level of significance ∝ = 1% = 0.01
The Critical value of Chi Square test statistic at df = 6 and 0.01 significance level is 16.812
The Decision rule is to reject the Null hypothesis if The Chi Square test statistic X² > 16.812
Thus , since the Chi Square test statistic is lesser than the critical value,
i.e 15.556 < 16.812 ,we accept null hypothesis [tex]\mathbf{H_0}[/tex]
Conclusion:
We conclude that there is equal number of average interest in the course across all regions.
Thus, the CFO is correct, the the frequencies in the regions are not significantly different by using a Chi-Square Goodness of Fit Test with a 1% significance level.
Employees at a company produced refrigerators on three shifts. Each shift recorded their quality stats below. A unit was considered defective if it at least one part was assembled wrong or was missing. Management believes that quality depends on the the shift it was produced. Test the claim that shifts are independent of quality using chi-square at alpha = 0.05. SHOW YOUR WORK
Answer:
Step-by-step explanation:
Hello!
So in the refrigerator factory there are three shifts. Each shift records their quality based on the quantity of defective and working parts assembled.
Using a Chi-Square test of independence you have to test the claim that quality and shifts are independent.
The hypotheses are:
H₀: The variables are independent.
H₁: The variables are not independent.
α: 0.05
[tex]X^2= sum\frac{(O_{ij}-E_{ij})^2}{E_{ij}} ~X_{(r-1)(c-1)}[/tex]
r= total number of rows
c= total number of columns
i= 1, 2 (categories in rows)
j=1, 2, 3 (categories in columns)
To calculate the statistic you have to calculate the expected frequencies for each category:
[tex]E_{ij}= \frac{O_{i.}*O_{.j}}{n}[/tex]
[tex]O_{i.}[/tex] Represents the marginal value of the i-row
[tex]O_{.j}[/tex] Represents the marginal value of the j-column
[tex]E_{11}= \frac{O_{1.}*O_{.1}}{n}= \frac{21*40}{120}= 7[/tex]
[tex]E_{12}= \frac{O_{1.}*O_{.2}}{n}= \frac{21*40}{120}= 7[/tex]
[tex]E_{13}= \frac{O_{1.}*O_{.3}}{n}= \frac{21*40}{120}= 7[/tex]
[tex]E_{21}= \frac{O_{2.}*O_{.1}}{n}= \frac{99*40}{120}= 33[/tex]
[tex]E_{22}= \frac{O_{2.}*O_{.2}}{n}= \frac{99*40}{120}= 33[/tex]
[tex]E_{23}= \frac{O_{2.}*O_{.3}}{n}= \frac{99*40}{120}= 33[/tex]
[tex]X^2_{H_0}= \frac{(7-7)^2}{7} + \frac{(5-7)^2}{7} + \frac{(9-7)^2}{7} + \frac{(33-33)^2}{33} + \frac{(35-33)^2}{33} + \frac{(31-33)^2}{33} = 1.385= 1.34[/tex]
Using the critical value approach, the rejection region for this test is one-tailed to the right, the critical value is:
[tex]X^2_{(c-1)(r-1);1-\alpha }= X^2_{2; 0.95}= 5.991[/tex]
Decision rule:
If [tex]X^2_{H_0}[/tex] ≥ 5.991, reject the null hypothesis.
If [tex]X^2_{H_0}[/tex] < 5.991, do not reject the null hypothesis.
The value of the statistic is less than the critical value, the decision is to not reject the null hypothesis.
At 5% significance level, you can conclude that the shift the pieces were assembled and the quality of said pieces are independent.
I hope this helps!
3ab-9ab+7ab and hurry up
Answer:ab
Step-by-step explanation:3-9=-6 +7=1 1ab also equals just ab
Answer:
Since its adding and subtracting just add the coefficients of similar terms (coefficient is the number in front, term is the coefficient. and variables, similar terms are terms that have the same variables)
3ab-9ab+7ab
3-9=-6: -6ab+7ab
-6+7=1: 1ab or ab :)
What is the mode of this set of data?
Answer:
The mode is 15
Step-by-step explanation:
The mode is the number which appears most often in a set of numbers. Example: in {6, 3, 9, 6, 6, 5, 9, 3} the Mode is 6 (it occurs most often).
Answer:
The mode of this set is 15.
Step-by-step explanation:
the mode is 15 bcoz 15 is repeated two times where as other numbers aren't repeated..
Find the slope of the line on the graph.
Write your answer as a fraction or a whole
number, not a mixed number or decimal.
Answer:
1/2
Step-by-step explanation:
Find two points on the line
(2,0) and (4,1)
The slope is given by
m= (y2-y1)/(x2-x1)
=(1-0)/(4-2)
= 1/2
Tamar rides her bike 960 feet in 2 minutes. What is her rate of speed?
Answer:
Rate of speed = 480 feet per minutes
Step-by-step explanation:
Given:
Distance covered by bike = 960 feet
Time taken to covered distance = 2 minutes
Find:
Rate of speed = ?
Computation:
⇒ Speed = Distance / Time
⇒ Rate of speed = Distance covered by bike / Time taken to covered distance
⇒ Rate of speed = 960 / 2
⇒ Rate of speed = 480 feet per minutes