Jose purchased 4/9 pound of peanut and 7/11 pounds of raisins find the total weight of his purchase

Answers

Answer 1

Answer:

The total weight of his purchase is 1.08 pounds

Step-by-step explanation:

To find the total weight of his purchase, we sum the weight of each of his purchases.

He purchased:

4/9 pound of peanut.

7/11 pounds of raisins

Total:

The least common multiple between 9 and 11 is 99.

Then

[tex]\frac{4}{9} + \frac{7}{11} = \frac{11*4 + 9*7}{99} = \frac{107}{99} = 1.08[/tex]

The total weight of his purchase is 1.08 pounds


Related Questions

Use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independent solutions to the corresponding homogeneous equation for t > 0. ty" + (2t - 1 )y' - 2y = 6t^2 e^-2t​; y1 = 22t −​1, y2 = e^-2t

Answers

Answer:

[tex]y_g(t) = c_1*( 2t - 1 ) + c_2*e^(^-^2^t^) - e^(^-^2^t^)* [ t^3 + \frac{3}{4}t^2 + \frac{3}{4}t ][/tex]

Step-by-step explanation:

Solution:-

- Given is the 2nd order linear ODE as follows:

                      [tex]ty'' + ( 2t - 1 )*y' - 2y = 6t^2 . e^(^-^2^t^)[/tex]

- The complementary two independent solution to the homogeneous 2nd order linear ODE are given as follows:

                     [tex]y_1(t) = 2t - 1\\\\y_2 (t ) = e^-^2^t[/tex]

- The particular solution ( yp ) to the non-homogeneous 2nd order linear ODE is expressed as:

                    [tex]y_p(t) = u_1(t)*y_1(t) + u_2(t)*y_2(t)[/tex]

Where,

              [tex]u_1(t) , u_2(t)[/tex] are linearly independent functions of parameter ( t )

- To determine [  [tex]u_1(t) , u_2(t)[/tex] ], we will employ the use of wronskian ( W ).

- The functions [[tex]u_1(t) , u_2(t)[/tex] ] are defined as:

                       [tex]u_1(t) = - \int {\frac{F(t). y_2(t)}{W [ y_1(t) , y_2(t) ]} } \, dt \\\\u_2(t) = \int {\frac{F(t). y_1(t)}{W [ y_1(t) , y_2(t) ]} } \, dt \\[/tex]

Where,

      F(t): Non-homogeneous part of the ODE

      W [ y1(t) , y2(t) ]: the wronskian of independent complementary solutions

- To compute the wronskian W [ y1(t) , y2(t) ] we will follow the procedure to find the determinant of the matrix below:

                      [tex]W [ y_1 ( t ) , y_2(t) ] = | \left[\begin{array}{cc}y_1(t)&y_2(t)\\y'_1(t)&y'_2(t)\end{array}\right] |[/tex]

                      [tex]W [ (2t-1) , (e^-^2^t) ] = | \left[\begin{array}{cc}2t - 1&e^-^2^t\\2&-2e^-^2^t\end{array}\right] |\\\\W [ (2t-1) , (e^-^2^t) ]= [ (2t - 1 ) * (-2e^-^2^t) - ( e^-^2^t ) * (2 ) ]\\\\W [ (2t-1) , (e^-^2^t) ] = [ -4t*e^-^2^t ]\\[/tex]

- Now we will evaluate function. Using the relation given for u1(t) we have:

                     [tex]u_1 (t ) = - \int {\frac{6t^2*e^(^-^2^t^) . ( e^-^2^t)}{-4t*e^(^-^2^t^)} } \, dt\\\\u_1 (t ) = \frac{3}{2} \int [ t*e^(^-^2^t^) ] \, dt\\\\u_1 (t ) = \frac{3}{2}* [ ( -\frac{1}{2} t*e^(^-^2^t^) - \int {( -\frac{1}{2}*e^(^-^2^t^) )} \, dt] \\\\u_1 (t ) = -e^(^-^2^t^)* [ ( \frac{3}{4} t + \frac{3}{8} )] \\\\[/tex]

- Similarly for the function u2(t):

                     [tex]u_2 (t ) = \int {\frac{6t^2*e^(^-^2^t^) . ( 2t-1)}{-4t*e^(^-^2^t^)} } \, dt\\\\u_2 (t ) = -\frac{3}{2} \int [2t^2 -t ] \, dt\\\\u_2 (t ) = -\frac{3}{2}* [\frac{2}{3}t^3 - \frac{1}{2}t^2 ] \\\\u_2 (t ) = t^2 [\frac{3}{4} - t ][/tex]

- We can now express the particular solution ( yp ) in the form expressed initially:

                    [tex]y_p(t) = -e^(^-^2^t^)* [\frac{3}{2}t^2 + \frac{3}{4}t - \frac{3}{8} ] + e^(^-^2^t^)*[\frac{3}{4}t^2 - t^3 ]\\\\y_p(t) = -e^(^-^2^t^)* [t^3 + \frac{3}{4}t^2 + \frac{3}{4}t - \frac{3}{8} ] \\[/tex]

Where the term: 3/8 e^(-2t) is common to both complementary and particular solution; hence, dependent term is excluded from general solution.

- The general solution is the superposition of complementary and particular solution as follows:

                    [tex]y_g(t) = y_c(t) + y_p(t)\\\\y_g(t) = c_1*( 2t - 1 ) + c_2*e^(^-^2^t^) - e^(^-^2^t^)* [ t^3 + \frac{3}{4}t^2 + \frac{3}{4}t ][/tex]

                   

The lifespan (in days) of the common housefly is best modeled using a normal curve having mean 22 days and standard deviation 5. Suppose a sample of 25 common houseflies are selected at random. Would it be unusual for this sample mean to be less than 19 days?

Answers

Answer:

Yes, it would be unusual.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

If [tex]Z \leq -2[/tex] or [tex]Z \geq 2[/tex], the outcome X is considered unusual.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

[tex]\mu = 22, \sigma = 5, n = 25, s = \frac{5}{\sqrt{25}} = 1[/tex]

Would it be unusual for this sample mean to be less than 19 days?

We have to find Z when X = 19. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{19 - 22}{1}[/tex]

[tex]Z = -3[/tex]

[tex]Z = -3 \leq -2[/tex], so yes, the sample mean being less than 19 days would be considered an unusual outcome.

whats the percentage of 56/100

Answers

Answer:

56%

Step-by-step explanation:

Percent means out of 100

56/100

56 out of 100

56%

Answer:

56%

Step-by-step explanation:

How much is 56 out of 100 written as a percentage? Convert fraction (ratio) 56 / 100 Answer: 56%

i need help asap!!!!!

Answers

Answer:

31 degrees

Step-by-step explanation:

Since RPS and QPR make up QPS, the sum of their angle measures must be 47. Therefore:

3x-38+7x-95=47

10x-133=47

10x=180

x=18

QPR=7(18)-95=126-95=31

Hope this helps!

A company manager for a tire manufacturer is in charge of making sure there is the least amount of defective tires. If the tire manufacturing process is working properly, the average weight of a tire for a 4-door sedan is normally distributed with a mean of 22 pounds and a standard deviation of 0.76 pounds. The manager decides to reject a tire as underweight if it falls more than 1.5 interquartile ranges below the lower quartile of the specified shipment of tires. What proportion of tires will be rejected by this process?

Answers

Answer:

0.347% of the total tires will be rejected as underweight.

Step-by-step explanation:

For a standard normal distribution, (with mean 0 and standard deviation 1), the lower and upper quartiles are located at -0.67448 and +0.67448 respectively. Thus the interquartile range (IQR) is 1.34896.

And the manager decides to reject a tire as underweight if it falls more than 1.5 interquartile ranges below the lower quartile of the specified shipment of tires.

1.5 of the Interquartile range = 1.5 × 1.34896 = 2.02344

1.5 of the interquartile range below the lower quartile = (lower quartile) - (1.5 of Interquartile range) = -0.67448 - 2.02344 = -2.69792

The proportion of tires that will fall 1.5 of the interquartile range below the lower quartile = P(x < -2.69792) ≈ P(x < -2.70)

Using data from the normal distribution table

P(x < -2.70) = 0.00347 = 0.347% of the total tires will be rejected as underweight

Hope this Helps!!!

The proportion of the tires that would be denied for being underweight through the given process would be:

[tex]0.347[/tex]% of the total tires will be rejected as underweight.

Given that,

Interquartile Range [tex]= 1.5[/tex]

Standard Deviation [tex]= 0.76[/tex]

Considering Mean = 0

and Standard Deviation = 1

Since lower quartile = -0.67448

Upper quartile  = +0.67448

IQ range =  1.34896

To find,

The proportion of tires would be rejected due to being underweight through the process would be:  

1.5 of Interquartile Range = 1.5 × [tex]1.34896 = 2.02344[/tex]

Now,

1.5 of the IQ range below the lower quartile [tex]= (lower quartile) - (1.5 of Interquartile range)[/tex]

[tex]= -0.67448 - 2.02344[/tex]

[tex]= -2.69792[/tex]

The proportion of tires that would be under 1.5 of the interquartile range below the lower quartile:

[tex]= P(x < -2.69792)[/tex] ≈ [tex]P(x < -2.70)[/tex]

Using data through the Normal Distribution Table,

[tex]P(x < -2.70)[/tex] [tex]= 0.00347[/tex]

[tex]= 0.347[/tex]%

Thus, 0.347% of the total tires would be rejected as underweight.

Learn more about "Proportion" here:

brainly.com/question/2548537

Please help. I’ll mark you as brainliest if correct!

These are 2 math problems .

Answers

Answer:

-4 503/12 ≈ 41.91667

Step-by-step explanation:

To find the average rate of change, find the change in function value, and divide that by the length of the interval.

1. ((g(1) -g(-1))/(1 -(-1)) = ((-4·1³ +4) -(-4(-1)³ +4)/(2) = (-8)/2 = -4

The average rate of change of g(x) on [-1, 1] is -4.

__

2. ((g(3) -g(-2))/(3 -(-2)) = ((6·3³ +3/3²) -(6·(-2)³ +3/(-2)²))/5

  = (6·27 +1/3 -6·(-8) -3/4)/5 = (2515/12)/5

  = 503/12 = 41 11/12

The average rate of change of g(x) on [-2, 3] is 41 11/12.

what is 0.035 as a simplified reduced fraction

Answers

7/200 is the correct answer

Answer:

7/200

Step-by-step explanation:

0.035= 35/1000= 7*5/200*5=7/200

You need a 55% alcohol solution. On hand, you have a 525 mL of a 45% alcohol mixture. You also have 90% alcohol mixture. How much of the 90% mixture will you need to add to obtain the desired solution? You will need _____mL of the 90% solution to obtain _____mL of the desired 55% solution.

Answers

Answer:

Let's call the amount of 90% solution x.

We can write:

45% * 525 + 90%x = 55%(x + 525)

0.45 * 525 + 0.9x = 0.55(x + 525)

Solving for x we get x = 150 so the first blank is 150 and the second blank is 525 + 150 = 675.

What’s the correct answer for this question?

Answers

Answer:

B

Step-by-step explanation:

The triangular prism must have a larger base than the cylinder

Mrs. Brown has 16 children in her first-grade class, and Mr. Lopez has 23 children in his second-grade class. The principal has been asked to select 1 student from one of the classes to appear at a PTA meeting. How many ways can the selection be made?

Answers

Answer: 368 ways

Step-by-step explanation: To find the total number of probabilities, you multiply all the factors together to get total outcome. 16 * 23 = 368

Entrance to a prestigious MBA program in India is determined by a national test where only the top 10% of the examinees are admitted to the program. Suppose it is known that the scores on this test are normally distributed with a mean of 420 and a standard deviation of 80. Parul Monga is trying desperately to get into this program. What is the minimum score that she must earn to get admitted?

Answers

Answer:

The minimum score that she must earn to get admitted is 523.

Step-by-step explanation:

As the scores are normally distributed, we can calculate the probability using the z-score.

The distribution has a mean of 420 and a standard deviation of 80.

We have to calculate the z-score z* that satisfies:

[tex]P(z>z^*)=0.1[/tex]

This happens for z*=1.28155.

Then, we can calculate the score as:

[tex]X=\mu+z\cdot\sigma=420+1.28155\cdot 80=420+102.524=522.524[/tex]

I will mark brainly-ist to who ever helps me

Find the value of the logarithm.
log 110
Round your answer to the nearest thousandth.

Answers

3.45 I have to answer in order to get my answer so...

Answer:

4.700

Step-by-step explanation:

Find the number in the thousandth place  0  and look one place to the right for the rounding digit 4. Round up if this number is greater than or equal to 5 and round down if it is less than 5.

brainliesssss plssssssssssssss

Write a linear function f with f(−2)=6 and f(0)=−4 .

Answers

Answer:

y = -5(x) - 4

Step-by-step explanation:

Use the equation of a line and substitution.

Information given:

point 1: (-2,6)

x1 = -2 and y1 = 6

point 2: (0,4)

x2 = 0 and y2 = 4

Equation of a line: y = m(x) + b

m = slope

To find slope, you do the equation of a linear slope, which is:

m = [tex]\frac{rise}{run}[/tex]         in other words   m = [tex]\frac{Y2 - Y1}{X2-X1}[/tex]

plug in your values

[tex]\frac{6-(-4)}{-2-0}[/tex]

= -5

Great, we've found slope, now to find b

plug in the slope you found: y = -5(x) + b

Plug in and solve for each point given, aka (x,y) into the linear equation for both points.

FIRST POINT:

6 = -5(-2) + b

6 = 10 + b

6 - 10 = b

b = -4

SECOND POINT:

-4 = -5(0) + b

-4 = 0 + b

-4 - 0 = b

b = -4

We got -4 for both, meaning that this equation is correct, so if you add in b, your final equation will be y = -5(x) - 4.

Plug this into desmos.com/calculator, and you'll see this linear equation runs through both points given in the problem.

Answer:

f(x)=-5x-4

Step-by-step explanation:

You are given two points (-2, 6) and (0, -4)

Find the slope: m=(-4-6)/[(0-(-2)]=-5

So you have y=-5x+b

next, find the y intercept b.

the y intercept is when x=0. in this case, the y intercept is -4

so the linear function is f(x)=-5x-4

11+11 = 4 22+22 = 16 33+33 = ?

Answers

Answer:

36

Step-by-step explanation:

11*11=4

(1+1)*(1+1)=4

2 * 2 = 4

22*22=16

(2+2)*(2+2)=16

4 * 4 = 16

33*33=?

(3+3)*(3+3)=?

6 * 6 = 36

So the answer is 36

Series: 4, 16, 36

Answer: The answer is 36 :)

hope that helped

The pressure p(in lbs/in^2) that a 160 pound persons shoe exerts on the ground when walking varies inversely with the area A(in in^2) of the sole of the shoe when the shoes have a sole area of 40 in^2 The pressure is 4 lbs/in^2 find equation that relates these variables


A=

Answers

Answer:

[tex]A = \dfrac{40}{P}[/tex]

Step-by-step explanation:

Pressure [tex]p(in lbs/in^2)[/tex]  varies inversely with the area [tex]A(in$ in^2)[/tex] of the sole of the shoe.

This is written as:

[tex]P \propto \frac{1}{A}\\ $Introducing the constant of variation$\\P = \dfrac{k}{A}[/tex]

When:

[tex]When: A= 40 in^2, P =4 lbs/in^2\\$Substituting into the equation\\P = \dfrac{k}{A}\\4 = \dfrac{k}{40}\\$Cross multiply\\k=4*40\\k=160\\Therefore, the equation that connect these variables is given as:\\P = \dfrac{40}{A}\\$In terms of P\\AP=40\\\\A = \dfrac{40}{P}[/tex]

Determine the area of the shaded region

Answers

Answer:

61.76 ft^2

Step-by-step explanation:

First find the area of the rectangle without the circle

A = l*w = 14*8 =112

Then find the area of the circle

The diameter is 8 so the radius is 8/2 =4

A = pi r^2 = 3.14 * 16 =50.24

The shaded region is the rectangle minus the circle

112-50.24 =61.76 ft^2

what variable will you use to represent the number of brochures

Answers

Answer: always “X”

Step-by-step explanation:

Answer:

i would use the variable b because b = brochures.

Step-by-step explanation:

i hope this helped heh

A laptop has a listed price of $875.98 before tax. If the sales tax rate is 6.5%, find the total cost of the laptop with sales tax included.
Round your answer to the nearest cent, as necessary.
please!

Answers

Answer:

$932.92

Step-by-step explanation:

6.5% = 0.065

(875.98) + (875.98)(0065)

(875.98) + (56.9387)

932.9187

$932.92

Answer:

$[tex]932.92[/tex]

Step-by-step explanation:

[tex]6.5/100=0.65[/tex]

Next, multiply the price by the sales tax.

[tex]875.98*0.65=56.94[/tex]

Then, add.

[tex]875.98+ 56.94=932.92[/tex]

$[tex]932.92[/tex] is the total cost of the laptop.

The combined SAT scores for the students at a local high school are normally distributed with a mean of 1527 and a standard deviation of 291. The local college includes a minimum score of 1207 in its admission requirements. What percentage of students from this school earn scores that satisfy the admission requirement? P(X > 1207) =

Answers

Answer:

Step-by-step explanation:

Let x be the random variable representing the SAT scores for the students at a local high school. Since it is normally distributed and the population mean and population standard deviation are known, we would apply the formula,

z = (x - µ)/σ

Where

x = sample mean

µ = population mean

σ = standard deviation

From the information given,

µ = 1527

σ = 291

the probability to be determined is expressed as P(x > 1207)

P(x > 1207) = 1 - P(x ≤ 1207)

For x < 1208

z = (1207 - 1527)/291 = - 1.1

Looking at the normal distribution table, the probability corresponding to the z score is 0.16

P(x > 1207) = 1 - 0.16 = 0.84

Therefore, the percentage of students from this school earn scores that satisfy the admission requirement is

0.84 × 100 = 84%

To test for the significance of a regression model involving 3 independent variables and 47 observations, the numerator and denominator degrees of freedom (respectively) for the critical value of F are _____.

Answers

Answer:

The degrees of freedom for the numerator on this case is given by [tex]df_{num}=df_{within}=k=3[/tex] where k =3 represent the number of independent variables.

The degrees of freedom for the denominator on this case is given by [tex]df_{den}=df_{between}=N-p-1=47-3-1 =43[/tex].

And the total degrees of freedom would be [tex]df=N-1=47 -1 =46[/tex]

And then the degrees of freedom for the numerator are 3 and for the denominator are 43 in order to find the critical value [tex]F_{3,43}[/tex]

Step-by-step explanation:

We need to take in count that we are conducting a regression model with just one dependent variable and 3 independent variables

The degrees of freedom for the numerator on this case is given by [tex]df_{num}=df_{within}=k=3[/tex] where k =3 represent the number of independent variables.

The degrees of freedom for the denominator on this case is given by [tex]df_{den}=df_{between}=N-p-1=47-3-1 =43[/tex].

And the total degrees of freedom would be [tex]df=N-1=47 -1 =46[/tex]

And then the degrees of freedom for the numerator are 3 and for the denominator are 43 in order to find the critical value [tex]F_{3,43}[/tex]

Activity trackers are electronic devices that people wear to record physical activity. Researchers wanted to estimate the mean number of steps taken on a typical workday for people working in New York City who wear such trackers. A random sample of 61 people working in New York City who wear an activity tracker was selected. The number of steps taken on a typical workday for each person in the sample was recorded. The mean was 9,797 steps and the standard deviation was 2,313 steps.

a. Construct and interpret a 99 percent confidence interval for the mean number of steps taken on a typical workday for all people working in New York City who wear an activity tracker.
b. A wellness director at a company in New York City wants to investigate whether it is unusual for one person working in the city who wears an activity tracker to record approximately 8,500 steps on a typical workday. Is it appropriate to use the confidence interval found in part (a) to conduct the investigation.

Answers

Answer:

a) The 99% confidence interval for the mean number of steps taken on a typical workday for all people working in New York City who wear an activity tracker is (9,009, 10,585).

We are 95% confident that the mean number of steps taken on a typical workday for all people working in New York City who wear an activity tracker is within 9,009 and 10,585 steps.

b) No, we can not use the confidence interval to estimate the probability of individual values. It can onlybe used to make inference about the population mean.

Step-by-step explanation:

a) We have to calculate a 99% confidence interval for the mean.

The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.

The sample mean is M=9,797.

Ths sample standard deviation is s=2,313.

The sample size is N=61.

When σ is not known, s divided by the square root of N is used as an estimate of σM:

[tex]s_M=\dfrac{s}{\sqrt{N}}=\dfrac{2313}{\sqrt{61}}=\dfrac{2313}{7.81}=296.15[/tex]

The degrees of freedom for this sample size are:

[tex]df=n-1=61-1=60[/tex]

The t-value for a 99% confidence interval and 61 degrees of freedom is t=2.66.

The margin of error (MOE) can be calculated as:

[tex]MOE=t\cdot s_M=2.66 \cdot 296.15=787.84[/tex]

Then, the lower and upper bounds of the confidence interval are:

[tex]LL=M-t \cdot s_M = 9797-787.84=9009\\\\UL=M+t \cdot s_M = 9797+787.84=10585[/tex]

The 99% confidence interval for the mean number of steps taken on a typical workday for all people working in New York City who wear an activity tracker is (9,009, 10,585).

b) The value of 8,500 steps is outside the confidence interval, but this means that it is an unusual value for the mean number of steps for all people in New York City who wear an activity tracker.

We can not use the confidence interval to estimate the probability of individual values.

The activity tracking devices.

The activity tracker re those devices such as watches and a bands that tells you about your physical activity such as skipping, running, and walking. They simply count the steps and tell you about the daily goals and targets. They are quite effective for monitoring blood pressure and more.

Thus answer is 9,009, 10,585 workers,  9,009, and 10,585 steps and population mean.

As per the question, the smart trackers are used by the new york people on a daily basis and they measure the footsteps of the people. A sample of random 61 people was taken and selected on the basis of the tracers. It was found that with these statistical tests a 99% confidence interval was taken for the mean on a typical workday for all people working in City that is 9,009, 10,585. The 95% confidence that the mean number of steps taken by workers of the City was within 9,009 and 10,585 steps.The confidence interval can be used to estimate the probability of the individual values. It can be used for drawing inferences for the population mean.

Learn more about the trackers are electronic.

brainly.com/question/17434350.

round 3, 942,588 to the nearest thousand

Answers

Answer:

3, 943,000

Step-by-step explanation:

3, 942,588

The 2 is in the thousands place

We look at the hundreds place

There is a 5, that means we round up

2 becomes a 3

3, 943,000

Analyze the function for domain, range, continuity, symmetry, boundedness, extrema, and asymptotes. f(x)=-2cot x

Answers

Answer:

(See explanation below for further details)

Step-by-step explanation:

The domain of the function is:

[tex]x \in \mathbb{R} - \{ \pm \pi \cdot i \}[/tex] for [tex]i \in \mathbb{N}_{O}[/tex]

The range of the function is:

[tex]f(x) \in \{-\infty, +\infty \}[/tex]

There are no absolute extrema and such function is not bounded.

Function is symmetric, whose period is π.

Lastly, the set of asymptotes is:

[tex]x = \pm \pi \cdot i[/tex], for [tex]i \in \mathbb{N}_{O}[/tex]

Answer:

Step-by-step explanation:

edge

What is the equation of the line perpendicular to y = 2/3 x +1 that passes through the point (12, – 6)?

Answers

Answer:

y= -3/2x+12

Step-by-step explanation:

the slope of perpendicular lines multiplied together would be -1, so the slope of the perpendicular line is -3/2. y=-3/2x+b, so -6=-18+b, so b= 12. the equation of the line is y=-3/2x+12.

(5m+100) (2m+10) what’s the value of m

Answers

Answer:

m=-30

Step-by-step explanation:

5m+100=2m+10

We want to get the variable on one side of the equation. First we subtract 100 from both sides.

5m=2m-90

Subtract 2m from both sides.

3m=-90

Divide both sides by 3.

m=-30

2y + 5x – z = 4y + 6x solve for y

(show work)

Answers

Answer:

y = -z/2 - x/2

Step-by-step explanation:

2y + 5x – z = 4y + 6x

-5x. -5x

2y - z = 4y + x

+z. +z

2y = 4y + z + x

-4y -4y

-2y = z + x

÷-2. ÷-2

y = -z/2 - x/2

What’s the correct answer for this question?

Answers

Answer: Choice C

Step-by-step explanation:

Events A and B are independent if the equation P(A∩B) = P(A) · P(B) holds true.

3/10≠3/5*1/4

so event A and B are not independent.

8. Mr. Azu invested an amount at rate of 12% per annum and invested another amount, GH¢
580.00 more than the first at 14%. If Mr. Azu had total accumulated amount of
GH¢2,358.60, how much was his total investment?

Answers

Answer:

GH¢. 18098.46

Step-by-step explanation:

Let the first investment giving 12% interest per annum be Bank A

Let the 2nd investment giving 10% per annum be bank B

Let the first amount invested be

GH¢. X and let the second amount invested be GH¢. X + 580

Thus; In bank A;

Principal amount in first = GH¢. x

rate = 12 %

time = 1 year

Formula for simple interest = PRT/100

Where P is principal, R is rate and T is time.

So, interest in his investment = 12X/100 = 0.12X

while in bank B;

principal amount = GH¢. X + 580

rate = 14%

time = 1 yr

So, interest in his investment = [(X + 580) × 14]/100

= 0.14(X + 580)

So, total accumulated interest is;

0.12X + 0.14(X + 580) = 0.12X + 0.14X + 81.2 = 0.26X + 81.2

Now, we are given accumulated interest = GH¢. 2,358.60

Thus;

2358.60 = (0.26X + 81.2)

2358.6 - 81.2 = 0.26X

X = 2277.4/0.26

X = 8759.23

So,

first amount invested = GH¢. 8759.23

Second amount invested = GH¢. 8759.23 + GH¢. 580 = GH¢. 9339.23

Total amount invested = GH¢. 8759.23 + GH¢. 9339.23 = GH¢. 18098.46

What is the value of n in the equation: 8n+9= -n+5?

Answers

Answer:

n = -1

Step-by-step explanation:

So first subtract 9 to both sides

8n = -n - 9

Now you want the n on one side and the constant on the other

so add the single n to the n side

9n = -9

Divide 9 to both sides to solve for n

n = -1

Plz help me ASAP it’s important

Answers

Answer:

D. 6.3

Step-by-step explanation:

Well you can make a triangle with the line PQ with it's height as 2 and base as 6.

Then you can use the Pythagorean Theorem to find the length of PQ.

a²+b²=c²

2²+6²=c²

4+36=c²

40=c²

c²=40

Square root both sides

c=[tex]\sqrt{40}[/tex]

c≈6.3

Our answer is D. 6.3

Other Questions
how do you Solve. 21r Convert each of the following for loops into an equivalent while loop. (You might need to rename some variables for the code to compile, since all four parts a-d are in the same scope.)// a.System.out.println("a.");int max = 5;for (int n = 1; n What might be the authors purpose for writing in first person point of view What are commercial bank? Identify the diameter if given the radius and the radius if given the diameter of given circles: 7 cm 25 cm 28 cm 35 cm 100 cm 140 cm Radius = 70 cm Radius = 14 cm Diameter = 14 cm Diameter = 50 cm Radius = 70 cm Radius = 14 cm Diameter = 14 cm Diameter = 50 cm 4/5x(-3/7)-3/8+6/5x(-3/7Find using suitable property What is the vertex of f(x) = |x+ 8| 3?(-8, -3)(-8,3)(8, -3)(8,3) [tex]18-\sqrt{} -25[/tex] What are your perceptions of Joseph Stalin as a leader? For the PSoC chip what is the minimum voltage level in volts that can be considered to logic one? Trey is out shopping and sees that striped shirts are on sale for $25.00 each, and plaid pants are on sale for $22.50 each. He buys 2 shirts and 4 pairs of pants. What is the total of hispurchase?The total was $______ The fruit fly Drosophila melanogaster is an important model system for studying inheritance in animals and genetic control of animal development, including humans. Evaluate Drosophila as a model system for human biology. What are their strengths and weaknesses as a model system? g Many traits (phenotypes), like eye color, are controlled by multiple genes. If eye color were controlled by the number of genes indicated below, how many possible genotype combinations would there be in the following scenarios?a. 5 Genes:b. 10 Genes:c. 20 Genes: The sum of two numbers is 58. Their difference is 12. Find the numbers. Exercise1. The data shows the marks given to a class of Nursing students in a test.34, 12, 45, 23, 12, 18, 26, 41, 48, 23, 47, 11, 7, 15, 31, 28, 6, 43, 27, 38, 32, 21, 29,45, 15, 9, 20, 37, 43, 27, 30, 17, 14, 26, 34, 24, 18, 16, 35, 32, 27, 14, 30, 22, 31, 40,17, 24, 37, 13A. Construct grouped frequency distributionB. Find the rang, width , unit of measurement, class bounders,class mark or mid point If PQRS is a rhombus, which statements must be true? Check all that apply. The picture is up there (thank you!) que es la trigonometria? Thomas has two kittens. He records themass of one kitten as 2.2 kilograms andthe mass of the other kitten as 1,890 grams.What is the total mass of the two kittensin kilograms? (1 kilogram 1,000 grams) Let x = 8.99999 . (a) Is x < 9 or is x = 9? x < 9 It is neither; x > 9 x = 9 x < 9 and x = 9 It cannot be determined. (b) Sum a geometric series to find the value of x. x = (c) How many decimal representations does the number 9 have? decimal representations (d) Which numbers have more than one decimal representation? the integers the rational numbers except for 0 all rational numbers that have a terminating decimal representation except for 0 all integers except for 0 all real numbers