Answer:
4z + 2 - 5/2z
Step-by-step explanation:
8z^2 + 4z -5
divided by 2z
8z^2 /2z = 4z
4z/2z =2
5/2z = 5/2z
Putting them back together
4z + 2 - 5/2z
Answer:
A 4z + 2 - 5/2z
Step-by-step explanation:
Suppose that a random number generator randomly generates a number from 1 to 65. Once a specific number is generated, the generator will not select that number again until it is reset. If a person uses the random number generator 65 times in a row without resetting, how many different ways can the numbers be generated?
Answer:
65!
65! = 8. 2547650592 * 10^ 90 approximately
Step-by-step explanation:
A random number generator randomly generates a number from 1 to 65.
Once a specific number is generated, the generator will not select that number again until it is reset.
The number of ways it can be used is = 65!
65! = 8. 25476505* 10^ 90 approximately
Tony rode his bicycle 3 7/10 miles to school. What is this distance written as a decimal?
Answer:
7/10=0.7
3+0.7=3.7
3.7
Hope this helps
Step-by-step explanation:
A tank contains 24 gallons of water when all of a sudden the water begins draining at a constant rate of 2 gallons per hour. Let t represent the number of hours since the water began draining and let v represent the volume of water in the tank.
Required:
a. Write a formula that expresses v in terms of t.
b. As t increases from 3 to 6, v varies from _________ to _________
Answer:
a) [tex]V(t) = 24 - 2t[/tex]
b) As t increases from 3 to 6, v varies from 18 gallons to 12 gallons.
Step-by-step explanation:
The volume of the tank in terms of the time can be described by the following equation:
[tex]V(t) = V(0) - at[/tex]
In which V(0) is the initial volume and a is the hourly decrease rate.
a. Write a formula that expresses v in terms of t.
The tank initially contains 24 gallons of water, which means that [tex]V(0) = 24[/tex]
Drains at a constant rate of 2 gallons per hour, so [tex]a = 2[/tex]
Then
[tex]V(t) = V(0) - at[/tex]
[tex]V(t) = 24 - 2t[/tex]
b. As t increases from 3 to 6, v varies from _________ to _________
[tex]V(t) = 24 - 2t[/tex]
[tex]V(3) = 24 - 2*3 = 18[/tex]
[tex]V(6) = 24 - 2*6 = 12[/tex]
So as t increases from 3 to 6, v varies from 18 gallons to 12 gallons.
The chess clubs of two schools consist of, respectively, 8 and 9 players. Four members from each club are randomly chosen to participate in a contest between the two schools. The chosen players from one team are then randomly paired with those from the other team, and each pairing plays a game of chess. Suppose that Rebecca and her sister Elise are on the chess clubs at different schools. What is the probability that
Answer:
A)1/18
B)1/6
C)13/18
Step-by-step explanation:
THIS IS THE COMPLETE QUESTION BELOW,
The chess clubs of two schools consist of, respectively, 8 and 9 players. Four members from each club are randomly chosen to participate in a contest between the two schools. The chosen players from one team are then randomly paired with those from the other team, and each pairing plays a game of chess. Suppose that Rebecca and her sister Elise are on the chess clubs at different schools. What is the probability that (a) Rebecca and Elise will be paired? (b) Rebecca and Elise will be chosen to represent their schools but will not play each other? (c) either Rebecca or Elise will be chosen to represent her school?
CHECK THE ATTACHMENT'S FOR STEP BY STEP EXPLANATION
Can a Math expert please solve this and explain their answers. Thanks
Answer:
B152°BAStep-by-step explanation:
The measure of an arc is twice the measure of the inscribed angle that subtends that arc. A tangent is a special case where the chord that is one leg of the inscribed angle has a length of zero.
1. Short arc LJ is 2a°. Short arc LK is 2b°. Then arc JLK is 2(a+b)°, and short arc JK is ...
arc JK = 360° -2(a +b)° . . . . . matches choice B
__
2. Long arc WY is twice the measure of "inscribed" angle WYZ, so is ...
long ard WY = 2(104°) = 208°
Then short arc WY is ...
arc WXY = 360° -208° = 152°
__
3. The arc measures are double those of the corresponding inscribed angles. We can add up the arcs around the circle:
(arc AB +arc BC) = 2×70° = 140° . . . inscribed angle relation
(arc BC +arc CD) = 2×98° = 196° . . . inscribed angle relation
arc AB + arc BC +arc CD +arc DA = 360° . . . . sum around the circle
Adding the first two equations with arc DA, we have ...
(arc AB + arc BC) +(arc BC +arc CD) +arc DA = 360° +arc BC
140° +196° +80° = 360° +arc BC
416° -360° = arc BC = 56° . . . . . matches choice B
__
4. Angle C and angle A are supplementary in this inscribed quadrilateral.
angle C = 180° -98° = 82° . . . . . matches choice A
The Sunshine Droogs are unhappy as they have not yet been paid for their concert. It was agreed they would be paid eleven thousand, four hundred and fifty three pounds for the concert. What is this amount in numbers?
Answer:
11453
Step-by-step explanation:
−2.73(m+4)=−6m−4.38.
Answer:
m=2
Step-by-step explanation:
-2.73m-10.92=-6m-4.38
3.27m=6.54
m=2
Solve the equation. 3= x/3.3 what is x=
Answer:
9.9
Step-by-step explanation:
remember your distribution rules.
x/3.3=3 make sure x is by itself. so take 3*3.3
When you have x divided by a number equaling a number take the number it equals to and multiply by the number that x is being divided by.
3=x/3.3
move 3.3 by multiplying it by 3 which gives you 9.9.
The solution of x in equation 3 = x / 3.3 is,
⇒ x = 9.9
We have to given that;
Expression is,
⇒3 = x / 3.3
Now, We can simplify the equation for x as;
⇒ 3 = x / 3.3
Multiply by 3.3 both side,
⇒ 3 × 3.3 = x
⇒ 9.9 = x
⇒ x = 9.9
Thus, Solution is,
⇒ x = 9.9
Learn more about the equation visit:
brainly.com/question/28871326
#SPJ6
A bag contains 7 red and 10 white balls. In how many ways 4 balls are selected if there are more than 2 red balls? (Please solve it using counting rule; combination rule.)
Answer:
385 ways
Step-by-step explanation:
Given;
7 red balls
10 white balls
In how many ways can 4 balls be selected if there are more than 2 red balls.
Selecting 4 balls which must contain more than 2 red balls, will be 3 red balls and 1 white ball to make it 4 in total, or all the 4 balls selected will red balls.
= 3 red balls and 1 white ball OR 4 red balls
= 7C₃ x 10C₁ + 7C₄
[tex]= \frac{7!}{4!3!} *\frac{10!}{9!1!} \ \ + \ \frac{7!}{3!4!} \\\\= (35*10) \ + \ 35\\\\= 350 \ + 35\\\\= 385 \ ways[/tex]
Therefore, there are 385 ways of selecting 4 balls, if there are more than 2 red balls.
Solve for w: 2w<9+5w
Answer:
w > -3
Step-by-step explanation:
2w<9+5w
Subtract 5w from each side
2w-5w<9+5w-5w
-3w <9
Divide each side by -3 remembering to flip the inequality
-3w/-3 > 9/-3
w > -3
Answer:
w>-3
Step-by-step explanation:
When writing expressions for complex numbers, what does i represent?
Answer: See below
Step-by-step explanation:
[tex]i[/tex] is an imaginary number.
[tex]i=\sqrt{-1}[/tex]
[tex]i^2=-1[/tex]
Please help. I’ll mark you as brainliest if correct!
Answer:
g(x)= 1/4 |x-2| + 1
Step-by-step explanation:
line:
g(x)points on same line:
(2, 1) and (6, 2)slope based on the points
m= (2-1)/(6-2)= 1/4And the line is moved to the right by 2 units:
So the function becomes:
g(x)= 1/4|x-2|Considering movement up by 1 unit as well:
g(x)= 1/4 |x-2| + 1This is the final of equation for the line.
TWO PLANES INTERSECT IN A
A. point
B. Ray
C. Line
D. Line segments
Answer:
c. line
Step-by-step explanation:
the intersection of two planes is called a line
Answer:
Hello dear,
two planes intersect and forms line
so yaa your answer is C)
Hope I helped you ;)
please thank me !!!
satsriakal ji
A gun mass of 5 kg fired a bullet of mass 10 g with the velocity of 360 km/h. What
is gun’s velocity of pushing behind?
answer fast please
Answer:
The recoil velocity of the gun is [tex]0.72\,\,\frac{km}{h}[/tex] and is pointing in opposite direction to the velocity of the bullet.
Step-by-step explanation:
Use conservation of linear momentum, which states that the momentum of the bullet (product of the bullet's mass times its speed) should equal in absolute value the momentum of the recoiling gun (its mass times its recoil velocity).
We also write the mass of the bullet in the same units as the mass of the gun (for example kilograms). Mass of the bullet = 0.010 kg
In mathematical terms, we have:
[tex]5\, kg * v= 0.01 \,kg\,* 360\,\frac{km}{h} \\v=\frac{0.01\,*360}{5} \,\,\frac{km}{h}\\v=0.72\,\,\frac{km}{h}[/tex]
What is the slope of line p?
ty
4
DONE
===========================================================
Explanation:
Start at the point (0,0) which is the origin. Move up 2 units then to the right 3 units to arrive at the next blue point (3,2). We see that
rise = 2
run = 3
slope = rise/run = 2/3
----------
If you want to use the slope formula, then you would say
m = (y2 - y1)/(x2 - x1)
m = (2 - 0)/(3 - 0)
m = 2/3
I used the two points (0,0) and (3,2). You could use any two points you like on this line.
Side note: The slope is positive because we are moving uphill as you move from left to right along this orange line.
The slope of the line p is given by 2/3.
What is Slope of a Straight line?The tangent value of the angle which the straight line makes with the positive X axis is called the slope of that particular straight line.
If s line passes through two points (a,b) and (c,d) then the slope of the line (m) is given by,
m = (d-b)/(c-a)
Here in the given figure we can see that the given line p passes through (3,2), (-3,-2) and the origin (0,0)
then taking any two points out of that three (3,2), (0,0) we get, the slope of p is given by,
m = (2-0)/(3-0) = 2/3
Hence slope of line p is given by 2/3.
Learn more about Slope here -
https://brainly.com/question/3493733
#SPJ2
ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.
Answer:
B. 4x² - 20x + 26
Step-by-step explanation:
→Set it up, like so:
(2x - 5)² + 1
4x² - 20x + 25 + 1
→Add like terms (25 and 1):
4x² - 20x + 26
Y is directly proportional to 1/x. Write this in proportion notation.
2 points
d is proportional to e. When d is 10, e is 16. What is an equation connecting d and e
.
2.
.
I hope it helps you
The number of seconds, t it takes for an object to fall a distance of d meters can be found using the formula t=2dg−−√, where g is the constant acceleration due to gravity, 9.8msec2. How many meters does an object fall in 5 seconds? Round your answer to the nearest whole number.
Answer:
d = 61.25 m
Step-by-step explanation:
The number of seconds, t it takes for an object to fall a distance of d meters can be found using the formula :
[tex]t=2\sqrt{\dfrac{d}{g}}[/tex] .....(1)
It is required to find the distance covered by ab object in 5 seconds
Solving equation (1) for d. So,
[tex]d=\dfrac{t^2g}{4}[/tex]
Putting all the values we get :
[tex]d=\dfrac{(5)^2\times 9.8}{4}\\\\d=61.25\ m[/tex]
So, the distance covered by the object is 61.25 m.
The object will fall at a distance of 122.5 meters.
What is acceleration?Acceleration is the rate of change of velocity with time, both in terms of speed and direction.
Given that, t = √(2d/g).
t = √(2d/g
t√(g/2) = √d
t²(g/2) = d
Or, d = t²(g/2)
Substitute g = 9.8 and t = 5:
d = 5²(9.8/2)
d = 122.5 meters
Hence, the object will fall at a distance of 122.5 meters.
Learn more on acceleration here:
https://brainly.com/question/12550364
#SPJ2
Angelina read 30% of her book containing 360 pages. How many pages has she read so far
Answer:
360 x 30% = answer
30% = 30/100 = 0.3
360 x 0.3 = 108
108 is the answer
Hope this helps
Step-by-step explanation:
Answer:
108 pages
Step-by-step explanation:
30% of 360=108
360*.30=108
A random two digit number (10-99) is drawn. Find P(odd number)
Answer:
P(odd number) = 0.5
Step-by-step explanation:
There are 90 members in the set (10, 11, 12, .. , 97, 98, 99)
When we have an even number of consecutive numbers, the number of even numbers equals the number of odd numbers. This means that half of the numbers in this set are even and half of them are odd.
So the probability of P(odd number) = 0.5
Captain Gabriela has a ship, the H.M.S. Khan. The ship is two furlongs from dead pirate Daniel and his merciless band of thieves.
The captain has the probability of 1/2 of hitting the pirate ship. the pirate only has one good eye, so he hits the captains ship with probability 1/5 .
If both fire cannons at the same time, what is the probability that both the pirate and the captain hit each other's chip
Answer:
[tex]\dfrac{1}{10}[/tex]
Step-by-step explanation:
Probability of the captain hitting the pirate ship [tex]=\dfrac{1}{2}[/tex]
Probability of the pirate hitting the captain's ship [tex]=\dfrac{1}{5}[/tex]
If both fire cannons at the same time, the probability that both the pirate and the captain hit each other's ship
=P(Captain Hits AND Pirate Hits)
=P(Captain Hits) X P(Pirate Hits)
[tex]=\dfrac{1}{2} X \dfrac{1}{5}\\\\=\dfrac{1}{10}[/tex]
the distance between the earth and the moon is about 238,900 miles, round this number to the nearest ten thousand
Answer:
230,000
Step-by-step explanation:
You have round in the ten thousands space which is the 3, knowing that the next number is 8 and it is greater than 5 the 3 will round up to a 4
There are 15 marbles in a bag; 10 are blue, 4 are red and 1 is green. Marbles are drawn and NOT replaced 8 times, with the number of red marbles being recorded. What is the probability of getting exactly 3 red marbles? (Write as a percentage, correct to two decimals. eg: 12.34%)
Answer: There is a 0.88% chance of pulling three red marbles in a row.
Step-by-step explanation:
First pull = 4/15 (26.67%)
second pull = 3/14 (21.43%)
Third pull = 2/13 (15.38%)
You need to multiply these three fractions to get the probability of pulling three reds in a row, doing that will get you 4/455 or 0.88%
Help asap giving branlist!!!
Answer:
Option A.
The heartbeat has a pattern of 60 + (5 x minutes) and linear graphs are straight. The only way the linear graph is straight if there is a pattern.
Step-by-step explanation:
Write down the 1st term in the sequence given by: T(n) = n² + 3
Answer:
4
Step-by-step explanation:
T(n) = n² + 3
T(1) = 1² + 3 = 1 + 3 = 4
Use Newton's method with initial approximation x1 = 1 to find x2, the second approximation to the root of the equation x4 − x − 3 = 0. (Round your answer to four decimal places.) x2 =?
Answer:
[tex]x_{2} = 0.0000[/tex]
Step-by-step explanation:
The formula for the Newton's method is:
[tex]x_{i+1} = x_{i} + \frac{f(x_{i})}{f'(x_{i})}[/tex]
Where [tex]f' (x_{i})[/tex] is the first derivative of the function evaluated in [tex]x_{i}[/tex].
[tex]x_{i+1} = x_{i} + \frac{x_{i}^{4}-x_{i}-3}{4\cdot x_{i}^{3}-1}[/tex]
Lastly, the value of [tex]x_{2}[/tex] is determined by replacing [tex]x_{1}[/tex] with its numerical value:
[tex]x_{2} = x_{1} + \frac{x_{1}^{4}-x_{1}-3}{4\cdot x_{1}^{3}-1}[/tex]
[tex]x_{2} = 1.0000 + \frac{1.0000^{4}-1.0000-3}{4\cdot (1.0000)^{3}-1}[/tex]
[tex]x_{2} = 0.0000[/tex]
Records on a fleet of trucks reveal that the average life of a set of spark plugs is normally distributed with a mean of 22,100 miles. The fleet owner purchased 18 sets and found that the sample average life was 23,400 miles; the sample standard deviation was 1,412 miles.
a) To decide if the sample data support the company records that the spark plugs average 22,100 miles, state your decision in terms of the null hypothesis. Use a 0.05 level of significance.
b) What is the critical value for the test using a 0.05 level of significance?
c) What is the test statistic?
d) What is your decision?
Answer:
a) We want to conduct a hypothesis in order to see if the true mean is 22100 or not, the system of hypothesis would be:
Null hypothesis:[tex]\mu = 22100[/tex]
Alternative hypothesis:[tex]\mu \neq 22100[/tex]
b) We need to find the degrees of freedom given by:
[tex] df =n-1 = 18-1=17[/tex]
And the critical values for this case are:
[tex] t_{\alpha/2}= 2.110[/tex]
c) [tex]t=\frac{23400-22100}{\frac{1412}{\sqrt{18}}}=3.906[/tex]
d) Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true mean is significantly different from 221100 mi
Step-by-step explanation:
Information provided
[tex]\bar X=23400[/tex] represent the sample mean
[tex]s=1412[/tex] represent the sample standard deviation
[tex]n=18[/tex] sample size
[tex]\mu_o =22100[/tex] represent the value to verify
[tex]\alpha=0.05[/tex] represent the significance level
t would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value
Part a
We want to conduct a hypothesis in order to see if the true mean is 22100 or not, the system of hypothesis would be:
Null hypothesis:[tex]\mu = 22100[/tex]
Alternative hypothesis:[tex]\mu \neq 22100[/tex]
Part b
We need to find the degrees of freedom given by:
[tex] df =n-1 = 18-1=17[/tex]
And the critical values for this case are:
[tex] t_{\alpha/2}= 2.110[/tex]
Part c
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
Replacing the info we got:
[tex]t=\frac{23400-22100}{\frac{1412}{\sqrt{18}}}=3.906[/tex]
Part d
Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true mean is significantly different from 221100 mi
f(x)=x^3-3x^2-9x+4 find the intervals on which f is increasing or decreasing b. find the local maximum and minimum values of f. c. find the intervals of concavity and inflection points
Answer:
Please read the complete answer below!
Step-by-step explanation:
You have the following function:
[tex]f(x)=x^3-3x^2-9x+4[/tex] (1)
a) To find the interval on which f is increasing or decreasing, you first calculate the critical points of f(x).
You calculate the derivative f(x) respect to x:
[tex]\frac{df}{dx}=3x^2-6x-9[/tex] (2)
Next, you equal the derivative to zero, and then you find the roots of the polynomial by using the quadratic formula:
[tex]3x^2-6x-9=0\\\\x_{1,2}=\frac{-(-6)\pm\sqrt{(-6)^2-4(3)(-9)}}{2(3)}\\\\x_{1,2}=\frac{6\pm12}{6}\\\\x_1=-1\\\\x_2=3[/tex]
Then, the critical points are x=-1 and x=3
Next, you calculate df/dx for a values of x to the left and to the right of the critical points x1 and x2. If df/dx < 0 the function is decreasing, if df/dx > 0 the function is increasing.
for x = -1.01
[tex]\frac{df(-1.01)}{dx}=3(-1.01)^2-6(-1.01)-9=0.12[/tex]
Then, in the interval (-∞,-1), the function is increasing
for x = -0.99
[tex]\frac{df(-0.99)}{dx}=3(-0.99)^2-6(-0.99)-9=-0.11[/tex]
In the interval (-1,3) the function is decreasing
for x = 3.01
[tex]\frac{df(3.01)}{dx}=3(3.01)^2-6(3.01)-9=0.12[/tex]
In the interval (3,+∞) the function is increasing
b) To find the local minimum and maximum you use the second derivative of the function:
[tex]\frac{d^2f}{dx^2}=6x-6[/tex] (3)
you evaluate the second derivative for the critical points x1 and x2, if the second derivative is positive, you have a local minimum. If the second derivative is negative, you have a local maximum:
for x1 = -1
[tex]6(-1)-6=-12<0[/tex]
x=-1 is a local maximum
for x2 = 3
[tex]6(3)-6=12>0[/tex]
x=3 is a local minimum
c) upward concavity: (-1,3)
downward concavity: (-∞,-1)U(3,+∞)
The inflection points are calculated with the second derivative equal to zero:
[tex]6x-6=0\\\\x=1[/tex]
For x = 1 you have an inflection point
334% of what number is 33,400
Answer:
10000
Step-by-step explanation:
3.34x=33400
x=10000
The number is x=10000.
What is percentage?A percentage is a number or ratio that can be expressed as a fraction of 100. A percentage is a number or ratio expressed as a fraction of 100. It is often denoted using the percent sign, "%", although the abbreviations "pct.", "pct" and sometimes "pc" are also used. A percentage is a dimensionless number; it has no unit of measurement.
here, we have,
let, the number = x
now, we get,
3.34x=33400
x=10000
Hence, The number is x=10000.
To learn more on percentage click:
brainly.com/question/13450942
#SPJ2
2.24 Exit poll: Edison Research gathered exit poll results from several sources for the Wisconsin recall election of Scott Walker. They found that 57% of the respondents voted in favor of Scott Walker. Additionally, they estimated that of those who did vote in favor for Scott Walker, 33% had a college degree, while 45% of those who voted against Scott Walker had a college degree. Suppose we randomly sampled a person who participated in the exit poll and found that he had a college degree. What is the probability that he voted in favor of Scott Walker? (please round to 4 decimal places)
Answer:
0.4929 = 49.29% probability that he voted in favor of Scott Walker
Step-by-step explanation:
Bayes Theorem:
Two events, A and B.
[tex]P(B|A) = \frac{P(B)*P(A|B)}{P(A)}[/tex]
In which P(B|A) is the probability of B happening when A has happened and P(A|B) is the probability of A happening when B has happened.
In this question:
Event A: Having a college degree.
Event B: Voting for Scott Walker.
They found that 57% of the respondents voted in favor of Scott Walker.
This means that [tex]P(B) = 0.57[/tex]
Additionally, they estimated that of those who did vote in favor for Scott Walker, 33% had a college degree
This means that [tex]P(A|B) = 0.33[/tex]
Probability of having a college degree.
33% of those who voted for Scott Walker(57%).
45% of those who voted against Scott Walker(100 - 57 = 43%). So
[tex]P(A) = 0.33*0.57 + 0.45*0.43 = 0.3816[/tex]
What is the probability that he voted in favor of Scott Walker?
[tex]P(B|A) = \frac{0.57*0.33}{0.3816} = 0.4929[/tex]
0.4929 = 49.29% probability that he voted in favor of Scott Walker