In the screenshot need help with this can't find any calculator for it so yea need help.

In The Screenshot Need Help With This Can't Find Any Calculator For It So Yea Need Help.

Answers

Answer 1

The length of BC is approximately 20.99 cm.

What are trigonometric ratios?

The values of all trigonometric functions based on the ratio of the sides of a right-angled triangle are referred to as trigonometric ratios.

We are aware that the triangle ABC is a right-angled triangle because the angle C = 90 degrees.

Hence, we can utilize the mathematical proportion of the sine capability to address for the length of BC.

Using the sine function, we have:

sin(A) = BC/AC

where A is the angle opposite to side BC.

Substituting the values we have:

sin(44 degree) = BC/27.3

Multiplying both sides by 27.3, we get:

BC = 27.3 x sin(44 degree)

Using a calculator, we get:

BC = 20.99 cm (rounded to two decimal places)

Therefore, the length of BC is approximately 20.99 cm.

Know more about trigonometry visit :

https://brainly.com/question/13971311

#SPJ1


Related Questions

Solve the following quadratic equation for all values of x in simplest form.

Answers

Answer:

x = - 9, x = - 5

Step-by-step explanation:

4(x + 7)² + 17 = 33 ( subtract 17 from both sides )

4(x + 7)² = 16 ( divide both sides by 4 )

(x + 7)² = 4 ( take square root of both sides )

x + 7 = ± [tex]\sqrt{4}[/tex] = ± 2 ( subtract 7 from both sides )

x = - 7 ± 2

then

x = - 7 - 2 = - 9

x = - 7 + 2 = - 5

Answer:

The answer is -9,-5

Step-by-step explanation:

4(x+7)²+17=33

4(x+7)(x+7)+17=33

4[x²+7x+7x+49]+17=33

4(x²+14x+49)+17=33

4x²+56x+196+17-33=0

4x²+56x+180=0

divide althrough by 4

x²+14x+45=0

factorising

x²+9x+5x+45=0

x(x+9)+5(x+9)=0

(x+9)(x+5)=0

(x+9)=0,(x+5)=0

x= -9,x= -5

. Approximate the area under the curve f on (1,5) by first setting up the 1) Upper sum and the 2) Lower sum Let the number of rectangles n=4. Your answer must be an integer or a fractional form.

Answers

1) The upper sum for the function f =1/x is 2.083

2) The lower  sum for the function f = 1/x is 0.9708

To approximate the area under the curve f = 1/x on the interval (1, 5), we will use a Riemann sum with n = 4 rectangles.

The width of each rectangle will be Δx = (5 - 1) / 4 = 1.

The height of each rectangle will be the maximum value of f in its interval, which occurs at the left endpoint of each interval

f(1) = 1/1 = 1

f(2) = 1/2

f(3) = 1/3

f(4) = 1/4

Therefore, the area of each rectangle will be:

A = Δx × f(left endpoint) = 1 × f(left endpoint)

The upper sum is the sum of the areas of the rectangles whose heights are greater than or equal to the function values over the interval:

Upper sum = A(1) + A(2) + A(3) + A(4)

= 1 + 1/2 + 1/3 + 1/4

= 2.083

The height of each rectangle will be the minimum value of f in its interval, which occurs at the right endpoint of each interval

f(2) = 1/2

f(3) = 1/3

f(4) = 1/4

f(5) = 1/5

Therefore, the area of each rectangle will be:

A = Δx × f(right endpoint) = 1 × f(right endpoint)

The lower sum is the sum of the areas of the rectangles whose heights are less than or equal to the function values over the interval

Lower sum = A(1) + A(2) + A(3) + A(4)

= 1/2 + 1/3 + 1/4 + 1/5

= 0.9708

Learn more about area here

brainly.com/question/15122151

#SPJ4

The given question is incomplete, the complete question is:

Approximate the area under the curve f = 1/x on (1,5) by first setting up the 1) Upper sum and the 2) Lower sum Let the number of rectangles n=4. Your answer must be an integer or a fractional form.

In circle with m EFG = 58 and EF = 6 units, find the length of arc EG. Round to the nearest hundredth.

Answers

The length of arc EG is approximately 7.35 units.

To find the length of arc EG, we need to use the formula:

length of arc = (central angle/360°) × 2πr

where r is the radius of the circle and the central angle is in degrees.

We are given that m∠EFG = 58°, and EF = 6 units. Since EF is a chord of the circle, we can use the chord-chord angle theorem to find that m∠EGF = ½(180° - 58°) = 61°.

Now, we can use the Law of Cosines to find the length of GE:

GE² = EF² + FG² - 2(EF)(FG)cos(∠EGF)

GE² = 6² + FG² - 2(6)(FG)cos(61°)

Since FG = 2r (because it is the diameter of the circle),

GE² = 36 + (2r)² - 12r cos(61°)

We can simplify this to:

GE² = 4r² - 12r cos(61°) + 36

GE² = 4(r² - 3r cos(61°) + 9)

Now, we can use the formula for the length of the arc:

length of arc EG = (m∠EGF/360°) × 2πr

length of arc EG = (61/360) × 2πr

length of arc EG = (61/180) × πr

Substituting the expression for GE² in terms of r, we get:

length of arc EG = (61/180) × π √[4(r² - 3r cos(61°) + 9)]

We can now use a calculator to find the approximate value of the length of arc EG.

Rounded to the nearest hundredth, the length of arc EG is approximately 7.35 units.

To know more about properties of circle visit:

brainly.com/question/30066312

#SPJ1

3 attempts left Check my work Round intermediate calculations and final answer to four decimal places. Hint Find the point on the parabola y = 16-r closest to the point (8, 21). Closest point is with

Answers

The point on the parabola closest to P ( 8 , 21 ) is Q ( 8 , 7 )

Given the parabola y = 16 - r² and the point (8, 21), we want to find the point on the parabola that is closest to the given point.

To find the point on the parabola closest to (8, 21), we can use the distance formula to calculate the distance between any point on the parabola and (8, 21), and then minimize that distance.

Let's denote the x-coordinate of the point on the parabola as x and the corresponding y-coordinate as y, so we have the point (x, y) on the parabola y = 16 - r²

The distance between this point and the given point (8, 21) is given by the distance formula:

d = √((x - 8)² + (y - 21)²)

Substituting y = 16 - r², we get:

d = √((x - 8)² + (16 - r² - 21)²)

To minimize the distance, we can minimize the square of the distance, which is equivalent to minimizing:

f(x, r) = (x - 8)² + (16 - r - 21)²

Now, let's take partial derivatives of f(x, r) with respect to x and r, and set them to zero to find the critical points:

∂f/∂x = 2(x - 8) = 0.

∂f/∂r = 2(r² + 5r - 37)(-2r) = 0.

Solving the first equation for x, we get:

x - 8 = 0,

x = 8

Substituting this value of x back into the equation for y on the parabola, we get:

y = 16 - r²

So, the critical point on the parabola is (8, 16 - r²)

Now, let's solve the second equation for r:

2(r² + 5r - 37)(-2r) = 0.

Setting each factor to zero separately:

r² + 5r - 37 = 0,

(r + 8)(r - 3) = 0.

So, r = -8 or r = 3.

Since r represents the distance from the x-axis to the point on the parabola, it must be non-negative. Therefore, we discard the solution r = -8.

Finally, substituting r = 3 into the coordinates of the critical point, we get:

(x, y) = (8, 16 - r²) = (8, 16 - 3²) = (8, 7).

Hence , the point on the parabola y = 16 - r² closest to the point (8, 21) is (8, 7)

To learn more about parabola click :

https://brainly.com/question/24042022

#SPJ4

We sample a photo from the data set and learn the ML algorithm predicted this photo was not about fashion. What is the probability that it was incorrect and the photo is about fashion? If the ML classifier suggests a photo is not about fashion, then it comes from the second row in the data set. Of these 1603 photos, 112 were actually about fashion

Answers

The probability that the ML algorithm was incorrect and the photo is about fashion is approximately 6.99%.

Based on the information provided, the ML algorithm classified a photo as not about fashion. In the dataset, there are 1603 photos in the second row, which includes photos classified as not about fashion. Among these, 112 photos are actually about fashion. To find the probability that the ML algorithm's prediction was incorrect and the photo is about fashion, we can use the following formula:

Probability = (Number of incorrect classifications) / (Total number of photos in the second row)

Probability = 112 / 1603 ≈ 0.0699

So, the probability that the ML algorithm was incorrect and the photo is about fashion is approximately 6.99%.

To learn more about probability here:

brainly.com/question/30034780#

#SPJ11

A random sample of likely voters showed that 62​% planned to vote for Candidate​ X, with a margin of error of 4 percentage points and with​ 95% confidence.
b. Is there evidence that Candidate X could​ lose?

Answers

While the confidence Interval indicates a strong likelihood of Candidate X winning, there is still a small chance that they could lose, considering the 5% level of uncertainty.

We have a random sample of likely voters where 62% plan to vote for Candidate X. The margin of error is 4 percentage points, and the confidence level is 95%.

To determine if there is evidence that Candidate X could lose, we need to analyze the confidence interval.

Step 1: Find the lower and upper bounds of the confidence interval.
Lower Bound: 62% - 4% = 58%
Upper Bound: 62% + 4% = 66%

Step 2: Interpret the confidence interval.
The 95% confidence interval indicates that we can be 95% confident that the true proportion of likely voters who plan to vote for Candidate X lies between 58% and 66%.

Since the lower bound of the confidence interval is above 50%, it suggests that Candidate X has a strong chance of winning. However, there is still a 5% chance that the true proportion of likely voters who plan to vote for Candidate X falls outside of this interval. This 5% uncertainty leaves room for the possibility that Candidate X could lose, albeit a small chance.

In conclusion, while the confidence interval indicates a strong likelihood of Candidate X winning, there is still a small chance that they could lose, considering the 5% level of uncertainty.

To Learn More About Interval

https://brainly.com/question/30460486

#SPJ11

In the screenshot need help with this can't find any calculator for it so yea need help.

Answers

The size of ∠R in the non-right-angled triangle PQR is ∠R = 54.38° and rounded to the nearest degree, is ∠R ≈ 54°

What do you mean by trigonometry identities?

Equations with trigonometric functions that hold true for all of the variables in the equation are known as trigonometric identities.

The Law of Cosines states that for a triangle with sides a, b, and c, and opposite angles A, B, and C, we have:

⇒ c² = a² + b² - 2ab cos(C)

In this case, we are given the lengths of sides p, q, and r, and we want to find the size of angle R. So we can use the Law of Cosines with side r and angles P and Q, as follows:

⇒ r² = p² + q² - 2pq cos(R)

Substituting the given values, we get:

⇒ (47.6)² = (52.9)² + (10.4)² - 2(52.9)(10.4) cos(R)

Simplifying and solving for cos(R), we get:

⇒ cos(R) = (52.9² + 10.4² - 47.6²) / (2(52.9)(10.4))

⇒ cos(R) ≈ 0.58238

To find the size of angle R, we can use the inverse cosine function (also called the arccosine function), which is denoted as cos⁻¹

Using a calculator, we get:

⇒ R = 54.38 degrees

Therefore, the size of angle R in the non-right-angled triangle PQR, rounded to the nearest degree, is R ≈ 54 degrees.

To know more about trigonometric functions, visit:
brainly.com/question/25618616

#SPJ1

Given f(x)=-2x² +5x , and that f'(3) = -7, find the equation of the tangent line at x=3.

Answers

The equation of the tangent line at x=3 is y = -7x + 18.

To find the equation of the tangent line at x=3, we first need to find the slope of the tangent line at that point.

The slope of the tangent line at a point on a curve is equal to the derivative of the curve at that point.

So, we need to find the derivative of f(x) and evaluate it at x=3.

f(x) = -2x² + 5x

f'(x) = -4x + 5

f'(3) = -4(3) + 5 = -7

Therefore, the slope of the tangent line at x = 3 is -7.

To find the equation of the tangent line, we can use the point-slope form of a line, which is:

y - y1 = m(x - x1)

where m is the slope of the line, and (x1, y1) is a point on the line.

We know the slope (m=-7) and the point (3, f(3)) on the tangent line, so we can plug these values into the equation and simplify:

y - f(3) = -7(x - 3)

y - (-2(3)² + 5(3)) = -7(x - 3)

y + 3 = -7x + 21

y = -7x + 18.

For similar question on tangent.

https://brainly.com/question/30053795

#SPJ11

Which of the following are solutions to the inequality below? Select all that apply.
2 < p + 1

Answers

The value of the inequality is p< 1. Option C

What are inequalities?

Inequalities are described as non-equal comparison between numbers, variables, or expressions.

The different signs used for inequalities are;

> represents greater than< represents less than≥ represents greater than or equal to≤ represents less than or equal to

From the information given, we have that;

2 < p + 1

To solve the inequality,

collect the like terms

p< 2-1

subtract the values

p< 1

Learn about inequalities at: https://brainly.com/question/25275758

#SPJ1

Complete question:

Which of the following are solutions to the inequality below? Select all that apply.

2 < p + 1

p< 3

p< 2

p< 1

p< 0

Solve the following triangle: a = 5, B = 60°, c=10

Answers

The solved triangle has A ≈ 25.84°, B = 60°, C ≈ 94.16°, a = 5, b ≈ 4.33, and c = 10.

To solve the triangle with given information a = 5, B = 60°, and c = 10, we can use the Law of Sines.

Step 1: Write the formula.
sin(A) / a = sin(B) / b = sin(C) / c

Step 2: Plug in the given values.
sin(A) / 5 = sin(60°) / 10

Step 3: Solve for sin(A).
sin(A) = (5 * sin(60°)) / 10

Step 4: Calculate sin(A).
sin(A) ≈ 0.433

Step 5: Find angle A.
A ≈ arcsin(0.433) ≈ 25.84°

Step 6: Calculate angle C.
C = 180° - (A + B) = 180° - (25.84° + 60°) ≈ 94.16°

Step 7: Use the Law of Sines to find side b.
b / sin(B) = a / sin(A)
b = (10 * sin(25.84°)) / sin(60°)

Step 8: Calculate side b.
b ≈ 4.33

To know more about Law of Sines click on below link:

https://brainly.com/question/30248261#

#SPJ11

Coefficients: (Intercept) insulation.rating Estimate 0.97599 0.35310 Std. Error 0.07060 0.08922 t value 13.823 3.958 Pr(>It 8.92e-06 *** 0.00747 ** Signif. codes: 0'*** 0.001 '**' 0.01 * 0.05 0.1"'1. 8. What is the correct interpretation of the maximum likelihood estimate of B, in the context of this question? A) It represents the predicted fuel consumption when x = 0. B) It represents the predicted fuel loss for a home with an insulation rating of 1.0. C) It represents the predicted change in fuel consumption as attic insulation rating changes by 1 unit D) It represents the predicted difference in fuel consumption for two homes with the same attic insulation rating. E) More than one of these statements is correct.

Answers

The correct interpretation of the maximum likelihood estimate of B, in the context of this question, is C) It represents the predicted change in fuel consumption as attic insulation rating changes by 1 unit. This is because of the coefficient of the insulation. rating is 0.35310, which indicates that for every 1 unit increase in the insulation rating, the predicted fuel consumption will increase by 0.35310.

Learn more about Insulator here: brainly.in/question/7373475

#SPJ11

Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. X = sin(9t) + cos(t), y = cos(9t) – sin(t); t = 1 y = =

Answers

The equation of the tangent to the curve at the point is

[tex]y - (cos(9) - sin(1)) = \frac{(-9sin(1) - cos(1))}{(cos(9) + sin(1)) * (x - (sin(9) + cos(1)))}[/tex]

Given data ,

To find the equation of the tangent line to the curve at the point corresponding to the value of the parameter t = 1, we need to follow these steps:

Step 1:

Find the coordinates of the point on the curve that corresponds to t = 1.

Substitute t = 1 into the given parametric equations for x and y:

[tex]x = sin(9t) + cos(t)[/tex]

[tex]y = cos(9t) - sin(t)[/tex]

[tex]x = sin(9 * 1) + cos(1) = sin(9) + cos(1)[/tex]

[tex]y = cos(9 * 1) - sin(1) = cos(9) - sin(1)[/tex]

So, the point on the curve that corresponds to t = 1 is [tex](x, y) = [sin(9) + cos(1), cos(9) - sin(1)][/tex]

Step 2:

Find the derivative of y with respect to x.

Differentiate the parametric equation for y with respect to t using the chain rule:

[tex]\frac{dy}{dt} = -9sin(t) - cos(t)[/tex]

[tex]\frac{dy}{dx}= \frac{\frac{dy}{dt} }{\frac{dx}{dt}}[/tex]   [by chain rule]

[tex]\frac{dy}{dx} = \frac{(-9sin(t) - cos(t))}{(cos(9t) + sin(t))}[/tex]

Step 3:

Evaluate the derivative at t = 1.

Substitute t = 1 into the derivative of y with respect to x:

[tex]\frac{dy}{dx} _{t=1} = \frac{(-9sin(1) - cos(1))}{(cos(9 * 1) + sin(1))}[/tex]

Step 4:

Write the equation of the tangent line.

Using the point-slope form of a linear equation, with the slope given by the derivative of y with respect to x at t = 1, and the point on the curve corresponding to t = 1, we can write the equation of the tangent line:

[tex]y - (cos(9) - sin(1)) = \frac{(-9sin(1) - cos(1))}{(cos(9) + sin(1)) * (x - (sin(9) + cos(1)))}[/tex]

This is the equation of the tangent line to the curve at the point corresponding to t = 1.

Hence , the equation is [tex]y - (cos(9) - sin(1)) = \frac{(-9sin(1) - cos(1))}{(cos(9) + sin(1)) * (x - (sin(9) + cos(1)))}[/tex]

To learn more about equation of the tangent to the curve at the point click :

https://brainly.com/question/29185805

#SPJ4

Cory mowed lawns for $35 per lawn. Which representation shows the amount of money Cory earned at this rate?

A. Cory earned $175 to mow 5 lawns.
B. First picture
C. y = 35 + x, where x represents the number of lawns mowed and y represents the amount of money earned in dollars
D. Second Picture

Answers

A is the correct representation, i.e Cory earned $175 to mow 5 lawns

What is the arithmetic operation?

The four fundamental operations of arithmetic are addition, subtraction, multiplication, and division of two or more quantities. Included in them is the study of numbers, especially the order of operations, which is important for all other areas of mathematics, including algebra, data management, and geometry. The rules of arithmetic operations are required in order to answer the problem.

A. Cory earned $175 to mow 5 lawns is the correct representation that shows the amount of money Cory earned at the rate of $35 per lawn.

To find the amount of money earned by Cory, we can multiply the number of lawns mowed by the rate per lawn. So, in this case, the amount of money Cory earned for mowing 5 lawns would be:

Amount earned = rate per lawn x number of lawns

Amount earned = $35 x 5

Amount earned = $175

Therefore, A is the correct representation, i.e Cory earned $175 to mow 5 lawns

Learn more about arithmetic, by the following link.

https://brainly.com/question/13181427

#SPJ1

sherise jogs three days each week. the table below shows how far she jogs each day.

Part A what is the total distance, in miles, that Sherise jogs each week?



Part B each week, reggie jogs 3 4/10 fewer miles than Sherise. What is the total distance, in miles, that reggie jogs each week?

Answers

Part A: Sherise jogs for 157/10 miles each week.

Part B: Reggie jogs for 123/10 miles each week.

What is meant by week?

A period of seven days, typically starting on Monday and ending on Sunday, is commonly used as a unit of time in calendars and schedules.

What is meant by miles?

A unit of distance used in the United States and some other countries is equal to 5,280 feet or 1.609 kilometres.

According to the given information

Part A: Sherise jogs 53/10 + 41/10 + 63/10 = 157/10 miles each week.

Part B: Reggie jogs 157/10 - 34/10 = 123/10 miles each week.

To know more about week visit

brainly.com/question/14515714

#SPJ1

Instructor Created 50% (50.00/100.00) Determine the critical value of the test statistic for the following large sample tests for the population mean: Two-tailed test, a = 0.05 Answer Incorrect Answer 0 out of 10 Points 2.33 and -2.33 1.96 and -1.96 None of the above 1.645 and -1.645 1.28 and -1.28

Answers

The critical value of the test statistic for a two-tailed test with a significance level of 0.05 is +/- 1.96. Therefore, the correct answer is 1.96 and -1.96.

The critical value of the test statistic for a two-tailed test with a significance level of 0.05 and a large sample size can be found using the standard normal distribution table.

The area of rejection is split between the two tails of the distribution, each with an area of 0.025. The corresponding z-score for a cumulative area of 0.025 in each tail is 1.96.

Therefore, the critical values of the test statistic for a two-tailed test with a significance level of 0.05 and a large sample size are 1.96 and -1.96.

Learn more about standard normal distribution here:

https://brainly.com/question/31379967

#SPJ11

[tex]x * 7/3 = 1[/tex]

Answers

The solution is: x = 3/7

What is algebra?

Algebra is a branch of mathematics that deals with mathematical operations and symbols used to represent numbers and quantities in equations and formulas. It involves the study of variables, expressions, equations, and functions.

To solve for x in the equation:

x * 7/3 = 1

We can isolate x by multiplying both sides by the reciprocal of 7/3, which is 3/7:

x * 7/3 * 3/7 = 1 * 3/7

Simplifying the left side:

x * (7/3 * 3/7) = 3/7

x * 1 = 3/7

Therefore, the solution is:

x = 3/7

So, x is equal to 3/7.

To learn more about algebra from the given link:

https://brainly.com/question/24875240

#SPJ1

A student randomly selects 22 CDs at a store. The mean is $8.5 with a standard deviation of $1.25. Construct a 95% confidence interval for the population standard deviation, Assume the data are normally distributed.

Answers

The 95% confidence interval for the population standard deviation is approximately between $1.006 and $1.611.

To construct a 95% confidence interval for the population standard deviation, we'll use the Chi-Square distribution and the following formula:

CI = √((n - 1) × s² / χ²)

Where:
CI = Confidence interval
n = Sample size (22 CDs)
s² = Sample variance (standard deviation squared, $1.25²)
χ² = Chi-Square values for given confidence level and degrees of freedom (df = n - 1)

For a 95% confidence interval and 21 degrees of freedom (22 - 1), the Chi-Square values are:
Lower χ² = 10.283
Upper χ² = 33.924

Now, we'll calculate the confidence interval:

Lower limit = √((21 × 1.25²) / 33.924) ≈ 1.006
Upper limit = √((21 × 1.25²) / 10.283) ≈ 1.611

So, the 95% confidence interval for the population standard deviation is approximately between $1.006 and $1.611.

To learn more about standard deviation here:

brainly.com/question/23907081#

#SPJ11

Deborah is flying from Boston to Denver with a connection in Chicago. The probability her first flight leaves on time is 0.15. If the flight is on time, the probability that her luggage will make the connecting flight is 0.9, but if the flight is delayed, the probability that the luggage will make it is only 0.55.Suppose you pick her up at the denver airport and her luggage is not there. What is the probability that Deborah's first flight was delayed?

Answers

The probability that Deborah's first flight was delayed given that her luggage did not make the connecting flight is 0.253, or about 25.3%.

We can use Bayes' theorem to calculate the probability that Deborah's first flight was delayed given that her luggage did not make the connecting flight. Let D denote the event that the first flight is delayed, and L denote the event that the luggage does not make the connecting flight. Then we want to find P(D | L).
By the law of total probability, we have:
P(L) = P(L | D) * P(D) + P(L | D') * P(D')
where D' denotes the event that the first flight is on time. Using the given probabilities, we can plug in the values:
P(L) = 0.55 * 0.85 + (1 - 0.15) * (1 - 0.9) = 0.3245
Next, we can use Bayes' theorem:
P(D | L) = P(L | D) * P(D) / P(L)
Plugging in the values, we get:
P(D | L) = 0.55 * 0.15 / 0.3245 = 0.253
Therefore, the probability that Deborah's first flight was delayed given that her luggage did not make the connecting flight is 0.253, or about 25.3%.

Learn more about probability here: brainly.com/question/11234923

#SPJ11

please i need help so badly

Answers

Answer:

9 units

Concept Used:

Pythagorean Theorem: a²+b²=c²

(a: Perpendicular, b: Base and c: Hypotenuse of the right-angled triangle)

Surds Operations

Step-by-step explanation:

It is evident that the Hypotenuse is the missing side.

Using Pythagorean Theorem:

[tex]c=\sqrt{(7)^2+(4\sqrt{2})^2}\\c=\sqrt{49+32}\\c=\sqrt{81}\\[/tex]

c = +9 units (distance is a scalar quantity and cannot be -ve)

for a rectangle with a perimeter 60 to have the largest area, what dimensions should it have? (enter the smaller value first.)

Answers

Answer:

This gives us a square with an area of 225 square units.

Step-by-step explanation:

To find the dimensions of the rectangle with the largest area for a given perimeter of 60, we need to use the formula for the perimeter of a rectangle, which is P = 2l + 2w, where P is the perimeter, l is the length, and w is the width.

In this case, we know that P = 60, so we can write:

60 = 2l + 2w

Simplifying this equation, we get:

30 = l + w

To find the largest area of the rectangle, we need to maximize the product of the length and the width, which is the formula for the area of a rectangle, A = lw.

We can solve for one variable in terms of the other using the equation above. For example, we can write:

w = 30 - l

Substituting this expression for w into the formula for the area, we get:

A = l(30 - l)

Expanding and simplifying this expression, we get:

A = 30l - l^2

This is a quadratic equation in l, which has a maximum value when l is halfway between the roots. We can find the roots using the quadratic formula:

l = (-b ± sqrt(b^2 - 4ac)) / 2a

In this case, a = -1, b = 30, and c = 0, so we get:

l = (-30 ± sqrt(30^2 - 4(-1)(0))) / 2(-1)

Simplifying, we get:

l = (-30 ± sqrt(900)) / -2

l = (-30 ± 30) / -2

So the roots are l = 0 and l = 30. We want the smaller value first, so we take l = 0 and find w = 30. This would give us a rectangle with zero area, so it is not a valid solution.

The other root is l = 30, which gives us w = 0. Again, this is not a valid solution because we need both dimensions to be positive.

Therefore, the dimensions of the rectangle with the largest area for a perimeter of 60 are:

l = 15 and w = 15

This gives us a square with an area of 225 square units.

learn more about "Square area":-https://brainly.com/question/24487155

#SPJ11

HURRY! CLICKK
What expression shows 3 less than a number?
A. n + 3
B. n - 3
C. 3 - n
D. 3n

Answers

Answer:

The answer is n + 3

Find the general indefinite integral: S(√x³+³√x²)dx

Answers

The general indefinite integral of ∫(√x³+³√x²)dx is [tex]2(x^{5/2} )/5 + 3(x^{5/3} )/5[/tex] + c , where c is an arbitrary constant.

Integral calculus is the branch of calculus that deals with integrals and its properties. Integration is also known as anti derivative.

An indefinite integral does not consist of any upper or lower limit and hence is indefinite in nature.

We can calculate the general indefinite integral,

∫(√x³+³√x²)dx

Rewriting the integral using power rule we get,

∫(√x³+³√x²)dx = ∫ { [tex](x^{3})^{1/2} + (x^{2})^{1/3}[/tex] dx

= ∫[tex](x^{3/2} )+ (x^{2/3} )[/tex] dx

We can split the above indefinite integral as,

= ∫[tex](x^{3/2} )[/tex] dx + ∫[tex](x^{2/3} )[/tex] dx

= [tex](x^{5/2} )/(5/2) + (x^{5/3} )/(5/3)[/tex] + c

where c is an arbitrary constant

= [tex]2(x^{5/2} )/5 + 3(x^{5/3} )/5[/tex] + c

To know more about indefinite integrals here

https://brainly.com/question/29133144

#SPJ4

Suppose X is a discrete random variable which only takes on positive integer values. For the cumulative distribution function associated to X the following values are known:F(13)=0.45F(21)=0.49F(28)=0.55F(34)=0.6F(41)=kF(47)=0.67F(54)=0.7Assuming that Pr[28

Answers

The value of CDF Pr[28 < X ≤ 41] = F(41) - F(28) = 0.6 - 0.55 = 0.05.

Given that X is a discrete random variable that takes only positive integer values, we know the cumulative distribution function (CDF) values for certain values of X. We can use this information to find the value of k, which is missing.

First, we note that the CDF is a non-decreasing function, meaning that as X increases, F(X) cannot decrease. Therefore, we know that 0.55 ≤ k ≤ 0.6.

Next, we use the fact that the CDF is a step function, meaning that it increases by a finite amount at each integer value of X. Using this, we can find the difference in CDF values between adjacent values of X. For example, F(21) - F(13) = 0.49 - 0.45 = 0.04.

Using this method, we can find that F(47) - F(28) = 0.67 - 0.55 = 0.12 and F(54) - F(41) = 0.7 - k. We can then set these two expressions equal to each other and solve for k:

0.7 - k = 0.12
k = 0.58

To know more about cumulative distribution function click on below link:

https://brainly.com/question/30402457#

#SPJ11

The sales S (in millions of dollars) for a coffee shop from 1996 through 2005 can be modeled by the exponential functionS(t) = 188.38(1.284)t,where t is the time in years, with t = 6 corresponding to 1996. Use the model to estimate the sales in the years 2007 and 2016. (Round your answers to one decimal place.)

Answers

The estimated sales for the coffee shop in 2007 is approximately $13,202.02 million, and for 2016, it's approximately $ 125,234.91 million.

Exponential Function

A function that contains the variable inside of the exponent is called an exponential function. We can evaluate such a function by substituting in a value for a variable, just like any other function.

To estimate the sales for the coffee shop in 2007 and 2016, we first need to find the values of t for those years. Since t = 6 corresponds to 1996, we can calculate the values for 2007 and 2016 as follows:

2007: t = 6 + (2007 - 1996) = 6 + 11 = 17

2016: t = 6 + (2016 - 1996) = 6 + 20 = 26

Now, we can plug these values of t into the exponential function

[tex]S(t) = 188.38(1.284)^t[/tex] to estimate the sales.

For 2007:

[tex]S(17) = 188.38(1.284)^1^7[/tex]≈ 13,202.02

For 2016:

[tex]S(26) = 188.38(1.284)^2^6[/tex] ≈ 125,234.91

So, the estimated sales for the coffee shop in 2007 is approximately $13,202.02 million, and for 2016, it's approximately $ 125,234.91 million.

Learn more about Exponential function at:

https://brainly.com/question/14355665

#SPJ4

Compute the following definite integrations: ∫4 1/3x-7 dx 3, ∫1 (x+1)(x^2 + 2x) dx 0, ∫1 |x|dx -1 Please specify your computations.

Answers

The Intergrations are 0.30543..., 9/4, 1.

Given are definite integrations, we need to integrate,

1) [tex]\int\limits^4_3 {\frac{1}{3x-7} } \, dx[/tex]

Applying u substitution,

[tex]=\int _2^5\frac{1}{3u}du[/tex]

[tex]=\frac{1}{3}\cdot \int _2^5\frac{1}{u}du[/tex]

[tex]=\frac{1}{3}\left[\ln \left|u\right|\right]_2^5[/tex]

[tex]=\frac{1}{3}\left(\ln \left(5\right)-\ln \left(2\right)\right)[/tex]

[tex]= 0.30543\dots[/tex]

2) [tex]\int _0^1\left(x+1\right)\left(x^2+2x\right)dx[/tex]

Applying u substitution,

[tex]=\int _0^3\frac{u}{2}du[/tex]

[tex]=\frac{1}{2}\left[\frac{u^2}{2}\right]_0^3[/tex]

[tex]=\frac{1}{2}\cdot \frac{9}{2}\\\\\=\frac{9}{4}[/tex]

3) [tex]\int _{-1}^1\left|x\right|dx[/tex]

[tex]=\int _{-1}^0-xdx+\int _0^1xdx[/tex]

[tex]=\frac{1}{2}+\frac{1}{2}\\\\=1[/tex]

Hence, the Intergrations are 0.30543..., 9/4, 1.

Learn more about integration, click;

https://brainly.com/question/18125359

#SPJ4

The monthly demand function for a product sold by a monopoly is p = 2012 - 1x2 dollars, and the average cost is + = 1000 + 24x + x2 dollars. Production is limited to 1000 units and x is in hundreds of units. (a) Find the quantity (in hundreds of units) that will give maximum profit. hundred units (6) Find the maximum profit. (Round your answer to the nearest cent.)

Answers

The quantity that will give maximum profit is 8.04 hundred units and the maximum profit is  $15964.9

To find the quantity that will give maximum profit, we need to first write down the profit function.

The profit function is given by the difference between the revenue function and the cost function:

P(x) = R(x) - C(x)

where R(x) is the revenue function and C(x) is the cost function.

The revenue function is given by the product of the price and quantity:

R(x) = p(x) × x

= (2012 - (1/3)x²) × x

Substituting the given expressions for p(x) and C(x), we get:

P(x) = (2012 - (1/3)x²) × x - (1000 + 24x + x^2)

Expanding and simplifying, we get:

P(x) = (671x - (1/3)x³) - 1000 - 24x - x²

P(x) = -(1/3)x³ + 647x - 1000

P'(x) = -x² + 647 = 0

Solving for x, we get:

x² = 647

x = ± √647

Since x is in hundreds of units, we need to divide the value of x by 100 to get the answer in units.

x = √647/ 100

x = 8.04 hundred units.

To find the maximum profit, we substitute the value of x into the profit function P(x):

P(x) = -(1/3)x³ + 647x - 1000

P( √647/ 100) = -(1/3)(√647/ 100)³ + 647√647/ 100 - 1000

P( √647/ 100) = $15964.99

Therefore, the quantity that will give maximum profit is 8.04 hundred units and the maximum profit is  $15964.9

To learn more on Functions click:

https://brainly.com/question/30721594

#SPJ4

The monthly demand function for a product sold by a monopoly is p = 2012 - 1/3 x^2 dollars, and the average cost is C = 1000 + 24x + x^2 dollars. Production is limited to 1000 units and x is in hundreds of units.

(a) Find the quantity (in hundreds of units) that will give maximum profit ___hundred units

(b) Find the maximum profit. (Round your answer to the nearest cent.)

Question 18 (3 points) Saved Suppose 1,364 of 2,200 registered voters sampled said they planned to vote for the Republican candidate for president. Using the 0.95 degree of confidence, what is the interval estimate for the population proportion (to the nearest 10th of a percent)? A) 60.0% to 64.0% B) 51.0% to 68.6% C) 58.3% to 65.7% D) 59.5% to 64.5%

Answers

1,364 of 2,200 registered voters sampled said they planned to vote for the Republican candidate for president. Using the 0.95 degree of confidence, the interval estimate for the population proportion is D) 59.5% to 64.5%.

To find the interval estimate for the population proportion, we can use the formula:

(sample proportion) ± (critical value) x (standard error)

The sample proportion is 1,364/2,200 = 0.6209.

The critical value can be found using a table or calculator, with a degree of confidence of 0.95 and a sample size of 2,200-1 = 2,199. The closest value is 1.96.

The standard error is calculated as:

sqrt[(sample proportion x (1 - sample proportion)) / sample size]

= sqrt[(0.6209 x 0.3791) / 2,200]

= 0.0162

So the interval estimate is:

0.6209 ± 1.96 x 0.0162

= 0.5888 to 0.6530

Rounding to the nearest 10th of a percent, the interval estimate is:

59.0% to 65.3%

Therefore, the answer is D) 59.5% to 64.5%.

Using the given data, we can calculate the interval estimate for the population proportion with a 0.95 degree of confidence. The sample proportion (p-hat) is 1,364 / 2,200 = 0.62. The sample size (n) is 2,200.

To calculate the margin of error, first find the standard error: SE = sqrt((p-hat * (1 - p-hat)) / n) = sqrt((0.62 * 0.38) / 2,200) ≈ 0.0105.

Next, find the critical value (z-score) for a 0.95 degree of confidence: 1.96.

Then, calculate the margin of error: ME = z-score * SE = 1.96 * 0.0105 ≈ 0.0206.

Finally, determine the interval estimate by adding and subtracting the margin of error from the sample proportion: (0.62 - 0.0206) to (0.62 + 0.0206) = 0.5994 to 0.6406.

Converting to percentages and rounding to the nearest 10th, we get: 59.9% to 64.1%. None of the provided options exactly match this result, but option A) 60.0% to 64.0% is the closest one.

To learn more about degree of confidence, click here:

brainly.com/question/13651242

#SPJ11

Q? Quartiles- Consider a sample of ages of 100 executives.

Answers

The interquartile range is 21.

Quartiles describe the division of given observations into four intervals. each section represents 25 % of the observation. The interquartile range is a measure of variability around the median and it is calculated using Quartiles.

1. We will arrange the data in increasing or decreasing order.

2. We will divide the given data into two halves.

3. Find the median of both halves(bottom half and top half).

4. Find the interquartile range.

Now, performing these steps on the data given.

Data: 11  28  5  50  30  27  21  24  52  42

Step 1:  Arranging in increasing order, we get

05  11  21  24  27  28  30  42  50  52

Step 2: Dividing into two halves.

Bottom half: 05  11  21  24  27

Top half:  28  30  42  50  52

Step 3: Find the median of both halves.

Median of the bottom half(Q1) = 21

Median of the top half(Q3) = 42

Step 4: Find the interquartile range

Range = Q3 - Q1 =  42-21

                           = 21

To learn more about interquartile range;

https://brainly.com/question/1210750

#SPJ4

The complete question is -

"Consider a sample of ages of 10 executives -  

11  28  5  50  30  27  21  24  52  42. Find interquartile range."

T/F. The normal curve is symmetric about its​ mean, u.The statement is true. The normal curve is a symmetric distribution with one​ peak, which means the​ mean, median, and mode are all equal.​ Therefore, the normal curve is symmetric about the​ mean, u.

Answers

The given statement " The normal curve is symmetric about its​ mean, u" is true because it is equally distributed on both the sides of the mean.

The normal curve is always symmetric about the line representing its mean, u.

This means that the curve is equally distributed on both sides of the line representing the mean.

And the area under the curve to the left of the mean is equal to the area under the curve to the right of the mean.

This is a defining characteristic of the normal distribution.

Which is widely used in statistics due to its many useful properties.

Therefore, the normal curve is symmetric which is about its mean is a true statement.

Learn more about normal curve here

brainly.com/question/12961995

#SPJ4

The above question is incomplete, the complete, question is:

The normal curve is symmetric about its​ mean, u. T/F.

3. (10 points) Find the first four non-zero terms of the Taylor series of cos(30) centered at a = m/ 1

Answers

The first four non-zero terms of the Taylor series of cos(30) centered at a = m/1 are 1, -225/2!, 0, and 0.

To find the Taylor series of cos(30) centered at a = m/1, we need to find the derivatives of cos(x) at x = a, evaluate them at a = m/1, and then use those values to construct the Taylor series.

First, we find the derivatives of cos(x):

cos(x) → -sin(x) → -cos(x) → sin(x) → cos(x) → -sin(x) → -cos(x) → sin(x) → ...

The pattern of derivatives repeats every fourth derivative.

Next, we evaluate the derivatives at a = m/1, where m is some constant:

cos(m/1) → -sin(m/1) → -cos(m/1) → sin(m/1) → cos(m/1) → -sin(m/1) → -cos(m/1) → sin(m/1) → ...

Now we can construct the Taylor series:

[tex]cos(x) = cos(m/1) - (x - m/1)sin(m/1) - (x - m/1)^2cos(m/1)/2! + (x - m/1)^3sin(m/1)/3! + ...[/tex]

To find the first four non-zero terms, we plug in x = 30 degrees and m = 0 (which centers the series at x = 0):

[tex]cos(30) = cos(0) - (30 - 0)sin(0) - (30 - 0)^2cos(0)/2! + (30 - 0)^3sin(0)/3! + ...[/tex]

Simplifying, we get:

cos(30) = [tex]1 - 0 - (30)^2/2! + 0 + ...[/tex]

cos(30) = 1 - 450/2 + 0 + ...

cos(30) = 1 - 225

for such more question on Taylor series

https://brainly.com/question/30329627

#SPJ11

Other Questions
A patient is scheduled for a left pneumonectomy. Crystalloid administration should be less than:- 3 Liters in 12 hours- 3 Liters in 24 hours- 5 Liters in 12 hour- 5 Liters in 24 hours how do organs of equilibrium help us maintain our balance? how do organs of equilibrium help us maintain our balance? the macula sends information on head position and the crista ampullaris sends information on rotation movements to the cerebellum for integration. the crista ampullaris sends information on head position and the macula the sends information on rotation movements to the cerebellum for integration. the cerebellum stimulates the organs of equilibrium to help maintain balance. organs of equilibrium stimulate postural muscle to maintain balance. What US Government agency is HOSA working with for Emergency Preparedness? CAN SOMEONE HELP ANSWER AT LEAST ONE PLEASEEEDiscuss Articles VIII and IX. Can Mexicans become U.S. citizens? What do they stipulate about Mexican property rights? Why did the U.S. Congress strike out Article X?2. Discuss Article XI. What can you infer about the use of the term savage tribes? What responsibilities does the U.S. government adopt? What is the U.S. government obligated to do when removing Native Americans from any territory? the nurse is caring for a client in the emergency department with a diagnosis of head trauma secondary to a motorcycle accident. the nurse aide is assigned to clean the client's face and torso. which action by the nurse aide would prompt the nurse to provide further instruction? What is the running time to perform the following operations: (a) minimum (b) maximum (c) median (d) average (e) search/look-up (f) predecessor (g) successor, for a dynamic set with n keys implemented using the following data structures: (a) binary search tree (b) hash table based dictionary (c) direct address based dictionary (d) red-back tree (e) van-emde boas tree. T/F. If HJ Heinz loses its dominance in the ketchup market and eventually becomes bankrupt, its preferred shareholders carry senior positions as claimants in bankruptcy vis--vis common shareholders. Define Marginal ValueDefine Marginal ProductDefine Marginal CostHow is the market price determined when there is perfectcompetition? most common ovarian mass in patient thats preggo? the black population is about group of answer choices 30% of the u.s. population 13% of the u.s. population 8.5% of the u.s. population 25% of the u.s. population 20.5% of the u.s. population The consumer trades until he / she reaches the point of maximum attainable satisfaction. This is the point at which Bridging necrosis of the liver = If a sunflower has 34 chromosomes, how many chromosomes would be found in a sunflowers pollen sperm? Data collection and data analysis occur simultaneously in qualitative research. One technique that is used to help the research to not misinterpret the phenomenon as the subject experiences it is to set aside what is known about the experiences. This technique is called _________ of seismic waves remains _______________ as they travel through rocks with ____________ (low) density at shallow depth What is the mosaic pattern of bone in Paget's disease? If a collision is impossible to avoid, you can lessen the impact by: The Parks and Recreation manager for the city of Detroit recently submitted a report to the city council in which he indicated that a random sample of 500 park users indicated that the average number of visits per month was 4.56. This value should be viewed as a statistic by the city council. (True or false) Though they haven't yet achieved an e-commerce-based business status, in the future, StayWell would like to be able to use their database in conjunction with _____.a. an overseas call centerb. live administrators taking phone callsc. advertisements in student-facing publicationsd. mobile apps and online booking systems What is another way to use the phrase 'along the beach' to create a better flow in the sentence? Winston strolled with his new friend, a great Dane puppy named Hank, along the beach. A.) Winston strolled along the beach with his new friend, a great Dane puppy named Hank. B.) Along the beach, Winston strolled with his new friend, a great Dane puppy named Hank. C.) Winston strolled with his new friend along the beach, a great Dane puppy named Hank.