Imagine that you roll a pair of six-sided dice 5000 times.
(a) Find the expected number of times that you will roll a
‘7’.
(b) Find the approximate probability that you will roll a ‘7’ no
more than 850 times. Give your answer to the nearest percent!

(c) Find an integer x such that: the probability that you will roll a ‘7’ more than x times is about 1 in 100.

Answers

Answer 1

a) The expected number of times that you will roll a ‘7’ is 833.33.

b) The approximate probability that you will roll a ‘7’ no more than 850 times is 70%.

c) The value of the integer is 907.

(a) The number of ways to get a sum of 7 when rolling two dice is 6 (1+6, 2+5, 3+4, 4+3, 5+2, 6+1). Since there are 36 possible outcomes when rolling two dice, the probability of getting a sum of 7 on any given roll is 6/36 = 1/6. Therefore, the expected number of times that you will roll a 7 in 5000 rolls is (1/6)*5000 = 833.33 (rounded to two decimal places).

(b) We can approximate the number of times that you will roll a 7 using a normal distribution with mean 833.33 and standard deviation sqrt(5000*(1/6)*(5/6)) ≈ 31.49 (using the formula for the standard deviation of the binomial distribution). Then, we want to find the probability that the number of 7s rolled is less than or equal to 850, which is equivalent to finding the probability that a standard normal distribution is less than or equal to (850 - 833.33)/31.49 ≈ 0.53. Using a standard normal distribution table or calculator, we find that this probability is about 70%. Therefore, the approximate probability that you will roll a 7 no more than 850 times is 70% (rounded to the nearest percent).

(c) We want to find the x such that P(number of 7s > x) ≈ 1/100. Using the same normal approximation as in part (b), we can find the z-score corresponding to a probability of 0.99 (since we want the area to the right of the z-score to be 0.01): z ≈ 2.33. Then, we solve for x in the equation (x - 833.33)/31.49 = 2.33, which gives x ≈ 907 (rounded to the nearest integer). Therefore, the integer x such that the probability of rolling a 7 more than x times is about 1 in 100 is 907.

To learn more about probability here:

https://brainly.com/question/30034780

#SPJ4


Related Questions

in _______ studies, the researcher manipulates the exposure, that is he or she allocates subjects to the intervention or exposure group. (2 pts)
a. Cohort
b. Experimental
c. Case-control
d. Cross sectional

Answers

In experimental studies, the researcher manipulates the exposure, that is he or she allocates subjects to the intervention or exposure group.

In experimental studies, the researcher manipulates the exposure or intervention by allocating subjects to the intervention or exposure group. This allows for the comparison of outcomes between the intervention/exposure group and the control group, which did not receive the intervention/exposure.

Learn more about intervention here:

https://brainly.com/question/30737281

#SPJ11

Look at the stem and leaf plot. What is the mode of the numbers?

Answers

Answer:

Step-by-step explanation:

Mode is the one that occurs the most.

Stem is first number repeated for leaf

so your list of numbers is

10,12,12,22,23,24,30

The one that occurs the most is 12.  So your mode is 12.

If there are multiple numbers that are "most" then there is no mode.

What are the prime factors of 18? A. (2²) * (3²) B.(2²) * 3 C. 2 * 9 D. 2 * (3²)

Answers

The Prime factors of 18 are (2²) * 3 or 2 * 2 * 3. Thus, option B is the correct answer.

Prime numbers are numbers that are not divisible by any other number other than 1 and the number itself.

Composite numbers are numbers that have more than 2 factors that are except 1 and the number itself.

Prime factors are the prime numbers that when multiplied get the original number.

To calculate the prime factor, we use the division method.

In this method, firstly we divide the number by the smallest prime number it is when divided it leaves no remainder. In this case, we divide 18 by 2 and get 9.

Again, divide the number we get that, in this case, is 9, in the previous step by the prime number it is divisible by. So, 9 is again divided by 3 and we get 3.

We have to perform the previous step until we get 1. And 3 ÷ 3 = 3. Since we get 1, we stop here.

Finally, Prime factorization of 18 is expressed as 2 × 2 × 3  or we can write it as (2²) * 3

Learn more about Prime Factors:

brainly.com/question/30308004

#SPJ4

Use the given data to find the 95% confidence interval estimate of the population mean u. Assume that the population has a normal distribution. IQ scores of professional athletes: Sample size n = 18 Mean x = 105 Standard deviation s = 15 _____ <μ<_____Note: Round your answer to 2 decimal places.

Answers

The 95% confidence interval estimate of the population mean μ is 97.53 < μ < 112.47.

We are required to find the 95% confidence interval estimate of the population mean μ, given the sample size n=18, mean x =105, and standard deviation s=15.

In order to calculate the confidence interval, you can follow these steps:

1. Determine the t-score for a 95% confidence interval with n-1 degrees of freedom. For a sample size of 18, you have 17 degrees of freedom.

Using a t-table or calculator, you find the t-score to be approximately 2.11.

2. Calculate the margin of error (E) using the formula:

E = t-score × (s / √n)

E = 2.11 × (15 / √18)

E ≈ 7.47

3. Calculate the lower and upper bounds of the confidence interval using the sample mean (x) and margin of error (E):

Lower bound: x - E = 105 - 7.47 = 97.53

Upper bound: x + E = 105 + 7.47 = 112.47

So, the 95% confidence interval estimate is 97.53 < μ < 112.47. Please note that these values are rounded to two decimal places.

Learn more about Confidence interval:

https://brainly.com/question/20309162

#SPJ11

Suppose glucose is infused into the bloodstream at a constant rate of C g/min and, at the same time, the glucose is converted and removed from the bloodstream at a rate proportional to the amount of glucose present. Show that the amount of glucose A(t) present in the bloodstream at any time t is governed by the differential equation
A′= C −kA,
where k is a constant.

Answers

To show that the amount of glucose A(t) in the bloodstream at any time t is governed by the given differential equation, we need to consider the rates of glucose infusion and removal.

1. Glucose is infused into the bloodstream at a constant rate of C g/min. This means the rate of glucose infusion is simply C.

2. The glucose is converted and removed from the bloodstream at a rate proportional to the amount of glucose present. We can represent this by the equation: removal rate = kA, where k is a constant and A is the amount of glucose at time t.

Now, we can write the differential equation for A(t) by considering the net rate of change of glucose in the bloodstream. The net rate is the difference between the infusion rate and the removal rate:

A'(t) = infusion rate - removal rate

Substitute the values for the infusion rate and removal rate from the steps above:

A'(t) = C - kA

The amount of glucose A(t) in the bloodstream at any time t is governed by the differential equation A'(t) = C - kA, where C is the constant rate of glucose infusion, and k is the constant proportionality factor for glucose removal. This equation represents the net rate of change of glucose in the bloodstream, considering both infusion and removal rates.

Learn more about Glucose Differential Equations here: https://brainly.com/question/15172590

#SJ11

A manufacturing manager has developed a table that shows the
average production volume each day for the past three weeks. The
average production level is an example of a numerical measure.
Select one:
True
False

Answers

The given statement "A manufacturing manager has developed a table that shows the average production volume which is an example of a numerical measure." is true because it represents central tendency.

The average production level is a numerical measure that represents the central tendency of the production volume for a given period of time. In this case, the manufacturing manager has calculated the average production volume for each day over the past three weeks.

Numerical measures are quantitative values that summarize or describe the data. They are used to provide insights into the characteristics of a dataset, such as the distribution, variability, and central tendency.

Common numerical measures include measures of central tendency, such as the mean, median, and mode, as well as measures of dispersion, such as variance and standard deviation.

The average production level, also known as the mean, is a commonly used measure of central tendency. It is calculated by adding up all the production volumes and dividing by the number of days. The resulting value represents the typical or average production level for the period of time in question.

Therefore, the statement that the average production level is an example of a numerical measure is true.

To learn more about production click on,

https://brainly.com/question/30697353

#SPJ4

Part 2 Part of (t walmthetjevenue. If Walmart is excluded from the list, which measure of center would be more affected? I Walmal suded from the list, the measure of center that would be more affected is the [chooose one] - mean -median

Answers

If Walmart is excluded from the list, the measure of center that would be more affected is the mean. The median, on the other hand, is less affected by extreme values, as it represents the middle value in the dataset.

If Walmart is excluded from the list, the measure of center that would be more affected is the mean. This is because Walmart is a large retailer and has a significant impact on the overall average of the data. Removing Walmart from the list would decrease the total sales and therefore decrease the mean. The median, on the other hand, would be less affected by the exclusion of Walmart as it only looks at the middle value of the data and is less sensitive to extreme values. The measure of center that would be more affected is the mean. Value like Walmart's revenue would significantly change the average. The median is less affected by extreme values, as it represents the middle value in the dataset.

To learn more about mean, click here:

brainly.com/question/31101410

#SPJ11

The plant Mercury is about 57,900,000 kilometers from the sun. Pluto is about 1. 02 x 10^2 times farther away from the sn than Mercury. About how many kilometers is Pluto from the sun?

Answers

The distance between the Pluto and the sun is about 5,905,800,000 kilometers.

Distance between Mercury  and the sun is = 57,900,000 kilometers.

The distance of Pluto from the sun

=  Pluto is about 1.02 x 10^2 times farther away from the sun than Mercury.

⇒Distance of Pluto from the sun

= Distance of Mercury from the sun x 1.02 x 10^2

⇒Distance of Pluto from the sun = 57,900,000 km x 1.02 x 10^2

⇒Distance of Pluto from the sun = 57,900,000 km x 102

⇒ Distance of Pluto from the sun = 5,905,800,000 kilometers

Therefore, the distance of Pluto is about 5,905,800,000 kilometers away from the sun.

learn more about distance here

brainly.com/question/31530277

#SPJ4

Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the correct position in the answer box. Release your mouse button when the item is place. If you change your mind, drag the item to the trashcan. Click the trashcan to clear all your answers.

Answers

The algebraic expression with fractional exponents that is equivalent to the given radical expression is [tex]x^{\frac{3}{5} }[/tex].

An algebraic expression is what?

Variables, constants, and mathematical operations (such as addition, subtraction, multiplication, division, and exponentiation) can all be found in an algebraic equation.

In algebra and other areas of mathematics, algebraic expressions are used to depict connections between quantities and to resolve equations and issues. A radical expression is any mathematical formula that uses the radical (also known as the square root symbol) sign.

To convert the radical expression [tex]\sqrt[5]{x^{3} }[/tex] into an algebraic expression with fractional exponents, we use the following rule:

[tex]a^{1/n}[/tex] = (n-th root of a)

In this case, we have:

[tex]\sqrt[5]{x^{3} }[/tex] = [tex](x^{3})^{\frac{1}{5} }[/tex]

= [tex]x^{\frac{3}{5}}[/tex]

To know more about radical expression, visit:

brainly.com/question/30277930

#SPJ1

How do you calculate the required sample size for a desired ME (margin of error)?

Answers

Answer: Calculate

Step-by-step explanation: How to calculate the margin of error?

1. Get the population standard deviation (σ) and sample size (n).

2. Take the square root of your sample size and divide it into your population standard deviation.

3. Multiply the result by the z-score consistent with your desired confidence interval according to the following table:

It is believed that using a solid state drive (SSD) in a computer results in faster boot times when compared to a computer with a traditional hard disk (HDD). You sample a group of computers and use the sample statistics to calculate a 90% confidence interval of (4.2, 13). This interval estimates the difference of (average boot time (HDD) - average boot time (SSD)). What can we conclude from this interval?

Question 7 options:

1) We are 90% confident that the average boot time of all computers with an SSD is greater than the average of all computers with an HDD.
2) We do not have enough information to make a conclusion.
3) We are 90% confident that the average boot time of all computers with an HDD is greater than the average of all computers with an SSD.
4) There is no significant difference between the average boot time for a computer with an SSD drive and one with an HDD drive at 90% confidence.
5) We are 90% confident that the difference between the two sample means falls within the interval.

Answers

1) We are 90% confident that the average boot time of all computers with an SSD is greater than the average of all computers with an HDD.

Option 5) We are 90% confident that the difference between the two sample means falls within the interval. This means that we can say with 90% confidence that the true difference in average boot times between computers with SSDs and HDDs is somewhere between 4.2 and 13 seconds. We cannot make any conclusions about which type of drive has a faster boot time or whether there is a significant difference between them without further analysis or information.
1) We are 90% confident that the average boot time of all computers with an SSD is greater than the average of all computers with an HDD.

To learn more about average, click here:

brainly.com/question/24057012

#SPJ11

Listen Suppose sin(x) = 3/4, Compute Cos(2x)

Answers

We can use the double angle formula for cosine, which is: cos(2x) = 1 - 2*sin^2(x) First, we square sin(x): sin^2(x) = (3/4)^2 = 9/16 Now, substitute this value into the double angle formula: cos(2x) = 1 - 2*(9/16) = 1 - 18/16 = -2/16 So, cos(2x) = -1/8.

To compute Cos(2x), we can use the double angle formula which states that Cos(2x) = 2Cos^2(x) - 1.

Now, we are given that sin(x) = 3/4. Using the Pythagorean identity sin^2(x) + Cos^2(x) = 1, we can solve for Cos(x):

sin^2(x) + Cos^2(x) = 1

3/4^2 + Cos^2(x) = 1

9/16 + Cos^2(x) = 1

Cos^2(x) = 7/16

Cos(x) = ±√(7/16)

Since we know that x is in the first quadrant (sin is positive and Cos is positive), we can take the positive square root:

Cos(x) = √(7/16) = √7/4

Now we can plug this value of Cos(x) into the double angle formula:

Cos(2x) = 2Cos^2(x) - 1

Cos(2x) = 2(√7/4)^2 - 1

Cos(2x) = 2(7/16) - 1

Cos(2x) = 7/8 - 1

Cos(2x) = -1/8

Therefore, Cos(2x) = -1/8.

Learn more about Pythagorean identities here: brainly.com/question/10285501

#SPJ11

Expressing the regression equation in terms of the x variable instead of the y variable will cause the y intercept and ____ to change.

Answers

Expressing the regression equation in terms of the x variable instead of the y variable will cause the y-intercept and slope to change.

When the regression equation is expressed in terms of the y variable, it takes the form of: [tex]u=ax+b[/tex]                                where a is the y-intercept (the value of y when x = 0) and b is the slope (the rate at which y changes with respect to x).

If we express the same regression equation in terms of the x variable, it becomes:

[tex]x=\frac{y-a}{b}[/tex]

In this form, the y-intercept becomes [tex](0,\frac{a}{b} )[/tex], which is a point on the x-axis, and the slope becomes [tex]\frac{1}{b}[/tex] , which is the reciprocal of the slope in the original equation.

Therefore, expressing the regression equation in terms of the x variable instead of the y variable will cause the y-intercept and slope to change

To know more about "Slope" refer here:

https://brainly.com/question/28455788#

#SPJ11

Which expression is equivalent to -18 - 64x?

Answers

So, an equivalent expression to [tex]-18 - 64x[/tex] is[tex]-2(9+32x)[/tex].

How to expression is equivalent?

Expressions are considered equivalent when they have the same value, regardless of their form. There are different methods to determine whether expressions are equivalent depending on the type of expressions involved. Here are some examples:

Numeric expressions:

To determine whether two numeric expressions are equivalent, we can evaluate them and compare their results. For example, the expressions 3 + 4 and 7 have the same value, so they are equivalent.

Algebraic expressions:

To determine whether two algebraic expressions are equivalent, we can simplify both expressions using algebraic rules and compare the results. For example, the expressions 2x + 4 - x and x + 4 have the same value for any value of x, so they are equivalent.

Logical expressions:

To determine whether two logical expressions are equivalent, we can use truth tables to evaluate the expressions and compare the results. For example, the expressions (A ∧ B) ∨ C and (A ∨ C) ∧ (B ∨ C) have the same truth values for any values of A, B, and C, so they are equivalent.

The expression -18 - 64x can be simplified by factoring out a common factor of -2 from both terms. This gives:

[tex]-18 - 64x = -2(9 + 32x)[/tex]

So, an equivalent expression to -18 - 64x is -2(9 + 32x).

To learn more about algebraic, visit

https://brainly.com/question/24875240

#SPJ1

v = 2i + 4j
w = -2i + 6j
Find the vector projection of v onto w

Answers

the vector projection of v onto w is -1i + 3j.To get the vector projection of v onto w, you'll need to use the following formula:



proj_w(v) = (v • w / ||w||^2) * w
Where v = 2i + 4j, w = -2i + 6j, "•" represents the dot product, and ||w|| is the magnitude of w.
Step 1: Find the dot product (v • w)
v • w = (2 * -2) + (4 * 6) = -4 + 24 = 20
Step 2: Find the magnitude of w (||w||)
||w|| = √((-2)^2 + (6)^2) = √(4 + 36) = √40
Step 3: Square the magnitude of w (||w||^2)
||w||^2 = (40)
Step 4: Calculate the scalar value (v • w / ||w||^2)
Scalar value = (20) / (40) = 0.5
Step 5: Multiply the scalar value by w to get the vector projection of v onto w
proj_w(v) = 0.5 * (-2i + 6j) = -1i + 3j

Learn more about vector projection here, https://brainly.com/question/29013085

#SPJ11

The solution to the difference equation Yt+1 + 3y = 16; Yo = 100,t 20 is Select one: a. Yt = 96(-3)^t + 4b. y = 100(-3)^tс. y = 100(3)^td. y = 96(3)^t + 4

Answers

The solution to the difference equation Yt+1 + 3y = 16; Yo = 100,t 20.

Hence, the correct option is A.

To solve the difference equation Yt+1 + 3Yt = 16, with initial condition Y0 = 100 and t ≥ 0, we can first find the homogeneous solution, which is

Yh(t) = [tex]A(-1/3)^t[/tex]

Where A is a constant determined by the initial condition. Put in the initial condition Y0 = 100, we get

Yh(0) = A = 100

Therefore, the homogeneous solution is

Yh(t) = [tex]100(-1/3)^t[/tex]

Next, we find the particular solution by assuming a constant value for Yt+1 and Yt, which gives us

Yp(t) = 4

This is because we have

Yt+1 + 3Yt = 16

Yp(t+1) + 3Yp(t) = 16

4 + 3Yp(t) = 16

Yp(t) = 4

So the particular solution is

Yp(t) = 4

Finally, the general solution is the sum of the homogeneous and particular solution

Y(t) = Yh(t) + Yp(t) = [tex]100(-1/3)^t[/tex] + 4

Using the initial condition Y20 = 100, we can solve for the constant A

Y20 = [tex]100(-1/3)^20 + 4 = A(-1/3)^20 + 4[/tex]

100 = [tex]A(-1/3)^20 + 4[/tex]

A = 96

Therefore, the solution to the difference equation Yt+1 + 3Yt = 16 with initial condition Y0 = 100 and t ≥ 0 is

Y(t) = [tex]96(-1/3)^t + 4[/tex]

Yt = [tex]96(-3)^t + 4[/tex]

Hence, the correct option is A.

To know more about difference equation here

https://brainly.com/question/30714192

#SPJ4

OF Find the particular antiderivative of the following derivative that satisfies the given condition. * = 6et-6; X(0) = 1 dx dt X(t)

Answers

The particular antiderivative of X(t) that satisfies the given condition X(0) = 1 is:

[tex]X(t) = 6e^t - 6t + 1[/tex].

The given derivative is X(t) = 6e^t.

To find the particular antiderivative of X'(t), we need to integrate X'(t) with respect to t:

[tex]\int6e^t)dt = 6e^t + C[/tex]

where C is the constant of integration.

Now, we use the given condition X(0) = 1 to find the value of C:

X(0) = 6(1) - 6 + C = 1

Simplifying, we get:

C = 1 + 6 - 6 = 1

Therefore, the particular antiderivative of X(t) that satisfies the given condition X(0) = 1 is:

[tex]X(t) = 6e^t - 6t + 1[/tex].

To learn more about the anti-derivative;

https://brainly.com/question/31385327

#SPJ1

Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it.
lim (x â 3)/ (x² â 9)
xâ3

Answers

By using the L'Hospital's Rule, we have shown that the limit of x^(3/x) as x approaches infinity is equal to 1.

To find the limit of the function [tex]x^{3/x}[/tex] as x approaches infinity, we can use L'Hopital's Rule, which states that if we have an indeterminate form of a fraction such as 0/0 or infinity/infinity, we can take the derivative of the numerator and the denominator separately until we no longer have an indeterminate form.

First, we can rewrite the function as e^(ln([tex]x^{3/x}[/tex])). Then, we can use the properties of logarithms to simplify it further as e^((3ln(x))/x). Now, we have an indeterminate form of infinity/infinity, and we can apply L'Hopital's Rule.

Taking the derivative of the numerator and denominator, we get:

lim x→∞ [tex]x^{3/x}[/tex] = lim x→∞ e^((3ln(x))/x)

= e^(lim x→∞ (3ln(x))/x)

Using L'Hopital's Rule on the exponent, we get:

= e^(lim x→∞ (3/x²))

Since the denominator is approaching infinity faster than the numerator, the limit of 3/x² as x approaches infinity is zero, and we are left with:

= e^(0)

= 1

Therefore, the limit of [tex]x^{3/x}[/tex] as x approaches infinity is 1.

Alternatively, we can use some algebraic manipulation and the squeeze theorem to find the limit without using L'Hopital's Rule. We can rewrite the function as [tex]x^{3/x}[/tex] = (x^(1/x))³, and notice that as x approaches infinity, 1/x approaches zero, and so x^(1/x) approaches 1 (as the exponential function with base e^(1/x) approaches 1). Therefore, we have:

lim x→∞ [tex]x^{3/x}[/tex]= lim x→∞ (x^(1/x))³

= 1³

= 1

To know more about L'Hospital's Rule here

https://brainly.com/question/14105620

#SPJ4

Complete Question:

Find the limit. Use L'Hospital's Rule if appropriate. If there is a more elementary method, consider using it.

lim x→∞ [tex]x^{3/x}[/tex]

A baseball player hit 59 home runs in a season. Of the 59 home runs, 24 went to right field, 15 went to right center field, 8 went to center field, 10 went to left center field, and 2 went to left field. (a) What is the probability that a randomly selected home run was hit to right field?

Answers

A baseball player hit 59 home runs in a season. Of the 59 home runs, 24 went to right field, 15 went to right centre field, 8 went to centre field, 10 went to left-centre field, and 2 went to left field.

(a) The probability that a randomly selected home run was hit to the right field is 0.407.

To find the probability that a randomly selected home run was hit to right field, you can follow these steps:
Step 1: Identify the total number of home runs and the number of home runs hit to the right field.
Total home runs = 59
Home runs to right field = 24
Step 2: Calculate the probability by dividing the number of home runs hit to the right field by the total number of home runs.
Probability = (Home runs to right field) / (Total home runs) = 24/59
The probability that a randomly selected home run was hit to the right field is 24/59, or approximately 0.407.

To learn more about probability, refer:-

https://brainly.com/question/11234923

#SPJ11

suppose that 60% of the students who take the ap statistics exam score 4 or 5, 25% score 3, and the rest score 1 or 2. suppose further that 95% of those scoring 4 or 5 receive college credit, 50% of those scoring 3 receive such credit, and 4% of those scoring 1 or 2 receive credit. if a student who is chosen at random from among those taking the exam receives college credit, what is the probability that she received a 3 on the exam? group of answer choices

Answers

The probability that a student who received college credit scored a 3 on the exam is 0.034 or about 3.4%.

Let A be the event that the student scored 4 or 5, B be the event that the student scored 3, and C be the event that the student scored 1 or 2. We are given that P(A) = 0.60, P(B) = 0.25, and P(C) = 1 - P(A) - P(B) = 0.15.

We are also given the conditional probabilities P(Credit|A) = 0.95, P(Credit|B) = 0.50, and P(Credit|C) = 0.04, where Credit is the event that the student received college credit.

Using Bayes' theorem, we can calculate the probability that a student who received college credit scored a 3:

P(B|Credit) = P(Credit|B) * P(B) / [P(Credit|A) * P(A) + P(Credit|B) * P(B) + P(Credit|C) * P(C)]

= 0.50 * 0.25 / [0.95 * 0.60 + 0.50 * 0.25 + 0.04 * 0.15]

= 0.034

This result shows that even though 25% of the students scored 3 on the exam, they have a much lower probability of receiving college credit compared to those who scored 4 or 5.

To learn more about probability click on,

https://brainly.com/question/30061296

#SPJ4

Complete question is:

Suppose that 60% of the students who take the ap statistics exam score 4 or 5, 25% score 3, and the rest score 1 or 2. suppose further that 95% of those scoring 4 or 5 receive college credit, 50% of those scoring 3 receive such credit, and 4% of those scoring 1 or 2 receive credit. if a student who is chosen at random from among those taking the exam receives college credit, what is the probability that she received a 3 on the exam?

Find the absolute maximum and minimum values of f(x) =(x^2-x)2/3 as exponent over the interval [-3,2]Absolute Maximum is and it occurs at x =Absolute Minimum is and it occurs at x =

Answers

The absolute maximum value of f(x) over the interval [-3, 2] is approximately 5.24 and it occurs at x = 2, and the absolute minimum value is 1/8 and it occurs at x = 1/2.

To find the absolute maximum and minimum values of the function:

[tex]f(x) = (x^2-x)^{(2/3)}[/tex] over the interval [-3, 2], we need to follow these steps:

Find the critical points of the function by solving f'(x) = 0:

[tex]f'(x) = (2x - 1)\times{2/3}\times (x^2 - x)^{(-1/3)} = 0[/tex]

Solving for 2x - 1 = 0, we get x = 1/2. This is the only critical point in the interval [-3, 2].

Evaluate the function at the endpoints and the critical point:

f(-3) = ∛36 ≈ 3.301

f(2) = ∛12² ≈ 5.24

f(1/2) = 1/8

Determine which value is the absolute maximum and which is the absolute minimum:

The absolute maximum value is f(2) ≈ 5.24, and it occurs at x = 2.

The absolute minimum value is f(1/2) = 1/8, and it occurs at x = 1/2.

To learn more about the absolute maximum;

https://brainly.com/question/29030328

#SPJ1

Find the Maclaurin series and find the interval on which the expansion is valid.

f(x)=x2/1−x3

Answers

The Maclaurin series are:

f(x) = x^2/(1-x^3) = x^2 + x^4 + x^6 + x^8 + ...

The interval of convergence can be found by testing the endpoint values of the series.

We can use the geometric series formula to find the Maclaurin series of f(x):

1/(1-x) = 1 + x + [tex]x^{2} +x^{3}[/tex]...

Differentiating both sides with respect to x gives:

[1/(1-x)]' = 1 + 2x + [tex]3x^{2} +4x^{3}[/tex]+ ...

Multiplying both sides by [tex]x^{2}[/tex] gives:

[tex]x^{2}[/tex]/(1-[tex]x^{3}[/tex]) = [tex]x^{2}[/tex] + [tex]x^{4}[/tex] + [tex]x^{6}[/tex] + [tex]x^{8}[/tex] + ...

Therefore, we have:

f(x) = [tex]x^{2}[/tex]/(1-[tex]x^{3}[/tex]) = [tex]x^{2} +x^{4} +x^{6} +x^{8} +...[/tex]

The interval of convergence can be found by testing the endpoint values of the series. When x = ±1, the series becomes:

1 - 1 + 1 - 1 + ...

This series does not converge, so the interval of convergence is -1 < x < 1.

To learn more about Maclaurin series here:

https://brainly.com/question/31383907#

#SPJ11

A cereal company claims that the mean weight of the cereal in its packets is at least 14 oz. Assume that a hypothesis test of the given claim will be conducted. Identify the type I error for the test.

Answers

The given claim by the company that a cereal packet   weighs around 14 oz is considered as a Type I error because it rejects an accurate null hypothesis. Type I error refers to a statistical concept that describes  the incorrect rejection of an accurate null hypothesis.

In short, it is a false positive observation. For the given case, the cereal company positively projects that the mean weight of cereal present in  packets is at least 14 oz and gets rejected, this claim even though it is accurate and should not be rejected, but it wents and is labelled as a Type I error.

To learn more about null hypothesis,
https://brainly.com/question/13776238

#SPJ4


2. Determine if each of the following sequences converges or diverges. If it converges, state its limit. (a) an= 3 + 5n2 1 tn 3/n V/+ 2 (b) bn NT n (c) An = cos n +1 (d) b) =e2n/(n+2) (e) an = tan-?(I

Answers

The limit of the given sequence is infinity. (e) an = tan(n). This sequence oscillates between -infinity and infinity, so it diverges.

(a) To determine if the sequence converges or diverges, we can use the limit comparison test. We compare the given sequence to a known sequence whose convergence/divergence we know. Let bn = 5n^2/n^3 = 5/n. Then, taking the limit as n approaches infinity of (an/bn), we get:

lim (an/bn) = lim [(3 + (5n^2)/tn^(3/n) + 2)/(5/n)]
= lim [(3n^(3/n) + 5n^2)/5]
= ∞

Since the limit is infinity, the sequence diverges.

(b) bn = 1/n. This is a p-series with p = 1, which diverges. Therefore, the given sequence also diverges.

(c) An = cos(n) + 1. The cosine function oscillates between -1 and 1, so the sequence oscillates between 0 and 2. However, since there is no limit to the oscillation, the sequence diverges.

(d) b) bn = e^(2n)/(n+2). To determine if this sequence converges or diverges, we can use the ratio test. Taking the limit as n approaches infinity of (bn+1/bn), we get:

lim (bn+1/bn) = lim (e^(2(n+1))/(n+3)) * (n+2)/e^(2n)
= lim (e^2/(n+3)) * (n+2)
= 0

Since the limit is less than 1, the sequence converges. To find the limit, we can use L'Hopital's rule to evaluate the limit of (e^(2n)/(n+2)) as n approaches infinity:

lim (e^(2n)/(n+2)) = lim (2e^(2n)/(1))
= ∞

Know more about limit here:

https://brainly.com/question/8533149

#SPJ11

Given a₁ = 4, d = 3.5, n = 14, what is the value of A(14)? A. A(14) = 97.5 B. A(14) = 53 C. A(14) = 49.5 D. A(14) = 55.5

Answers

When a₁ = 4, d = 3.5, and n = 14 are given.The value of A(14) is 49.5, the correct answer is option C. The issue appears to be related to number juggling arrangements, where A(n) speaks to the nth term of the arrangement and a₁ speaks to the primary term of the sequence.

Ready to utilize the equation for the nth term of a math grouping:

A(n) = a₁ + (n-1)d

where d is the common contrast between sequential terms.

A(14) = 4 + (14-1)3.5

Streamlining this condition, we get:

A(14) = 4 + 13*3.5

A(14) = 4 + 45.5

A(14) = 49.5

Hence, the esteem of A(14) is 49.5, which is choice C. 

To learn about sequential terms visit:

https://brainly.com/question/30927272

#SPJ4

(Based on 4-F04:37] For a portfolio of motorcycle insurance policyholders, you are given:
(i) The number of claims for each policyholder has a conditional negative binomial distribution with β=0.5.
(ii) For Year 1, the following data are observed:
Number of Claims Number of Policyholders
0 2200
1 400
2 300
3 80
4 20
Total 3000
Determine the credibility factor, Z, for Year 2.\

Answers

The credibility factor, Z, for Year 2 is 1.2875.

To determine the credibility factor, Z, for Year 2, we can use the

Buhlmann-Straub model, which assumes that the number of claims for

each policyholder follows a negative binomial distribution with mean θ

and dispersion parameter β. The credibility formula is given by:

Z = (k + nβ)/(n + β),

where k is the number of claims observed in Year 1, n is the number of

policyholders in Year 1, and β is the dispersion parameter.

From the data provided, we can calculate the values of k and n for Year 1

as follows:

k = 1400 + 2300 + 380 + 420 = 820

n = 2200 + 400 + 300 + 80 + 20 = 3000

To determine the dispersion parameter β, we can use the method of

moments. For a negative binomial distribution, the mean and variance

are given by:

mean = θ

variance = θ(1 + βθ)

Solving for θ and β, we get:

θ = variance/mean

β = (variance/mean) - 1

Using the data from Year 1, we can estimate the mean and variance of the number of claims as follows:

mean = k/n = 820/3000 = 0.2733

[tex]variance = \sum (x - mean)^2 / n = 02200 + 1400 + 2300 + 380 + 4\times 20 / 3000 = 0.6313[/tex]

Substituting these values into the equations above, we get:

θ = 0.6313/0.2733 = 2.3104

β = (0.6313/0.2733) - 1 = 1.3088

Finally, we can use the credibility formula to calculate the credibility factor, Z, for Year 2:

Z = (k + nβ)/(n + β) = (0 + 3000*1.3088)/(3000 + 1.3088) = 1.2875

Therefore, the credibility factor, Z, for Year 2 is 1.2875. This means that we should give more weight to the expected number of claims for Year 2 based on the data from Year 1, rather than the expected number of claims based on the conditional negative binomial distribution with β=0.5.

The higher the credibility factor, the more weight we should give to the observed data from Year 1, and the less weight we should give to the prior distribution.

for such more question on credibility factor

https://brainly.com/question/25829061

#SPJ11

Assume that each sequence converges and find its limit. 1 1 6, 6+ = , 6+ 6' 1 6 + 6 1 6 + 1 6 + 1 6 + 6 The limit is (Type an exact answer, using radicals as needed.)

Answers

The limit of the given sequence is 7.

From the first three terms, we can see that the sequence is alternating between adding 5 and dividing by 6.

As we continue down the sequence, we can see that the terms approach 7.

To prove this, we can use the formula for the sum of an infinite geometric series, which is:
S = a / (1 - r)
Where S is the sum of the series, a is the first term, and r is the common ratio. In this case, a = 1 and r = 5/6. Plugging in these values, we get:
S = 1 / (1 - 5/6)
S = 1 / (1/6)
S = 6

Hence, we need to add the last term, which is 6, to get the actual sum of the sequence. Therefore, the limit of the sequence is 7.

learn more about sequence click here:

https://brainly.com/question/6561461

#SPJ11

3. Square ABCD is reflected across the x-axis and then dilated by a scale factor of 2 centered at the origin to form its image square A'B'C'D'. Part A: What are the new coordinates of each vertex? Part B: Explain why Square ABCD is either similar or congruent to Square A'B'C'D.​

Answers

The new coordinates are A'=(2, -10), B'=(12, -10), C'=(12, -2), D'=(2, -2), and Square ABCD and Square A'B'C'D' are similar, with a scale factor of 2.

What is the scale factor?

A scale factor is a number that represents the amount of magnification or reduction applied to an object, image, or geometrical shape.

Part A:

When Square ABCD is reflected across the x-axis, the y-coordinates of each vertex will change sign while the x-coordinates remain the same. Therefore, the new coordinates of the reflected square will be:

A=(1,-5), B=(6,-5), C=(6,-1), D=(1,-1)

When this reflected square is dilated by a scale factor of 2, each vertex is multiplied by a scalar value of 2, centered at the origin. This means that the new coordinates will be:

A'=(2, -10), B'=(12, -10), C'=(12, -2), D'=(2, -2)

Part B:

To determine whether Square ABCD is similar or congruent to Square A'B'C'D', we need to compare their corresponding side lengths and angles.

First, let's compare the side lengths:

AB = BC = CD = DA = 5 units

A'B' = B'C' = C'D' = D'A' = 10 units

We can see that the side lengths of Square A'B'C'D' are exactly twice as long as the corresponding side lengths of Square ABCD. This tells us that the two squares are similar, with a scale factor of 2.

Next, let's compare the angles:

Square ABCD has four right angles (90 degrees) at each vertex.

Square A'B'C'D' also has four right angles (90 degrees) at each vertex.

Since the corresponding angles of the two squares are congruent, this confirms that the two squares are similar.

Therefore, we can conclude that Square ABCD and Square A'B'C'D' are similar, with a scale factor of 2.

To know more about scale factors visit:

brainly.com/question/30314658

#SPJ1

Let the random variable X have a discrete uniform distribution on the integers Determine P(X < 6).

Answers

Answer: integers 0 <= x <= 60. Determine the mean and variance of X. This problem has been solved!

1 answer

·

Top answer:

Theory : If random variable Y fol

Doesn’t include: < ‎6).

Step-by-step explanation:

Doesn’t include: < ‎6).

Select the expression that can be used to find the volume of this rectangular prism.

A.
(
6
×
3
)
+
15
=
33

i
n
.
3
B.
(
3
×
15
)
+
6
=
51

i
n
.
3
C.
(
3
×
6
)
+
(
3
×
15
)
=
810

i
n
.
3
D.
(
3
×
6
)
×
15
=
270

i
n
.
3

Answers

The correct expression to find the volume of a rectangular prism is D. (3 × 6) × 15 = 270 in.3.

What is expression?

Expression is a word, phrase, or gesture that conveys an idea, thought, or feeling. It is an outward representation of an emotion, attitude, or opinion. Expressions can be verbal, physical, or written. They can also take the form of art, music, or dance. Expression is used to communicate and express emotions, thoughts, and ideas. It can be a powerful tool to create a connection with others and build relationships.

The correct expression to find the volume of a rectangular prism is D. (3 × 6) × 15 = 270 in.3. This expression involves multiplying the length, width, and height of the rectangular prism in order to calculate the total volume. In this case, the length is 3, the width is 6, and the height is 15. If these values are multiplied together, the result is 270 in.3, which is the total volume of the rectangular prism.

To know more about expression click-
http://brainly.com/question/1859113
#SPJ1

Other Questions
URGENT!!! Will give brainliest :)Which statement correctly compares the shapes of the distributions?A. East Hills HS is negatively skewed, and Southview HS is symmetric.B. East Hills HS is positively skewed, and Southview HS is symmetric.C. East Hills HS is positively skewed, and Southview HS is negatively skewed.D. East Hills HS is negatively skewed, and Southview HS is positively skewed. the decomposition of dinitrogen pentoxide is described by the chemical equation 2 n2o5(g) 4 no2(g) o2(g) if the rate of appearance of no2 is equal to 0.560 mol/min at a particular moment, what is the rate of appearance of o2 at that moment? _____, CAM plants have their stomata open, allowing carbon dioxide to enter the leaf The measure of an angle is 80. What is the measure of its supplementary angle? Paris Reformation Europe to match the following places with predominant religion practiced there in 1560. Where is an anti-codon located?A. tRNA B. mRNAC. DNA D. Ribosomes Getting to Work According to the U.S. Census Bureau, the probability that a randomly selected worker primarily drives a car to work is 0.867. The probability that a randomly selected worker primarily takes public transportation to work is 0.048. (a) What is the probability that a randomly selected worker primarily drives a car or takes public transportation to work? (b) What is the probability that a randomly selected worker neither drives a car nor takes public transportation to work? (e) What is the probability that a randomly selected worker does not drive a car to work? if a company reluctantly admits responsibility for a mistake but claims that its actions were the most appropriate and did not violate any laws, what strategy is the company adopting Kelp ________.A) suffers intense herbivory from zebra musselsB) suffers intense herbivory from sea urchinsC) is an invasive exotic speciesD) is eaten by sea ottersE) is pollinated by sea urchins If a California driver's license is suspended for a specific period while he or she holds a ____________________and is under the age of eighteen, the suspension period will continue for its full term, even if it exceeds the driver's eighteenth birthday. You walk into the room and upon general appearance you see patient has central cyanosis, digital clubbing, and the trachea is off to the side. What is going on? which of the following types of crimes is most likely to produce the longest prison sentence? select an answer and submit. for keyboard navigation, use the up/down arrow keys to select an answer. a misdemeanor b civil offense c felony d contempt of court A gardener buys a package of seeds. Seventy-nine percent of seeds of this type germinate. The gardener plants 110 seeds. Approximate the probability that 84 or more seeds germinate. Convert the given polar equation into a Cartesian equation T= 3sin 0 + 5cos e The function g(x)=8x-24 has a domain of [-5,5], Find g^-1(x). I NEED HELP ON THIS ASAP! I WILL GIVE BRAINLIEST!!! What is the most common cardiac arrythmia in a pt with mitral stenosis You are making a choice between four different alternatives. The opportunity cost of your choice is _______________ . Afebrile + new onset blood tinged sputum + clear x-ray = the kdc component of kerberos knows the secret keys of all clients and servers on the network. question 1 options: true false