Answer:
Unsaturated
Explanation:
A solution is unsaturated when it contains less than the maximum amount of solute that is capable of being dissolved.
Answer the following questions in complete sentences, and justify your responses.
After how many time intervals (shakes) did one-half of your atoms (candies) decay?
What is the half-life of your substance?
If the half-life model decayed perfectly, how many atoms would be remaining (not decayed) after 12 seconds?
If you increased the initial number of atoms (candies) to 300, would the overall shape of the graph be altered? Explain your answer.
Go back to your data table and for each three-second interval, divide the number of candies decayed by the number previously remaining and multiply by 100. Show your work.
The above percentage calculation will help you compare the decay modeled in this experiment to the half-life decay of a radioactive element. Did this activity perfectly model the concept of half-life? If not, was it close?
Compare how well this activity modeled the half-life of a radioactive element. Did the activity model half-life better over the first 12 seconds (four decays) or during the last 12 seconds of the experiment? If you see any difference in the effectiveness of this half-life model over time, what do you think is the reason for it?
To answer these questions, we need to know what substance you are referring to, as well as the data from the experiment.
1. After a certain number of time intervals (shakes), one-half of your atoms (candies) would decay. This number would depend on the specific substance and its half-life.
2. The half-life of a substance is the time it takes for half of its atoms to decay.
3. If the half-life model decayed perfectly, the number of remaining atoms after 12 seconds would depend on the initial number of atoms and the half-life of the substance.
4. If you increased the initial number of atoms (candies) to 300, the overall shape of the graph would not be altered. This is because the half-life decay is a percentage-based process, meaning it would still follow an exponential decay pattern.
5. To calculate the percentage of decay for each three-second interval, you would divide the number of candies decayed by the number previously remaining and multiply by 100. This would show the percentage of decay for each interval.
6. This activity may not perfectly model the concept of half-life, but it can provide a close approximation. Any discrepancies may be due to experimental errors or limitations.
7. To compare how well this activity modeled the half-life of a radioactive element, you would need to analyze the decay percentages over time. If there are differences in the effectiveness of the half-life model, it could be due to the limitations of the experimental setup, such as using candies as a representation of atoms.
For more question on substance
https://brainly.com/question/24647756
#SPJ11
7 Suppose you weighed a different sample, of 2.500-g, which consisted of a mixture of CuO and potassium chloride and dissolved it in 25.00 mL of 0.437 M H₂SO4 solution. Some acid remains after treatment of the sample. Determine: a) If 35.4-mL of 0.108 M NaOH were required to titrate the excess sulfuric acid, how (6) many moles of CuO were present in the original sample?
The initial sample had 0.010925 mol of Copper(II) oxide, or one mole.
What exactly is kinetic-molecular theory?The kinetic-molecular theory, which describes the states of matter, is based on the presumption that matter is composed of minuscule particles that are constantly in motion. This theory explains the observable properties and behaviours of solids, liquids, and gases. The container's walls and the quickly moving particles' collisions with one another are constant.
Copper(II) oxide + Sulfuric acid → Cupric sulfate + Water
One mole of Copper(II) oxide interacts with one mole of Sulfuric acid, as shown by the equation. The amount of Sulfuric acid that reacted with the Copper(II) oxide in the sample is therefore equal to the amount of Copper(II) oxide in the sample.
We must first determine how many moles of Sulfuric acid interacted with the sample:
moles Sulfuric acid = concentration × volume
moles Sulfuric acid = 0.437 mol/L × 0.025 L
moles Sulfuric acid = 0.010925 mol
Since the acid is in excess, the moles of Sulfuric acid remaining after treatment of the sample is:
moles Sulfuric acid remaining = moles Sulfuric acid added – moles Sulfuric acid reacted
moles Sulfuric acid remaining = 0.437 mol/L × 0.0354 L – 0.010925 mol
moles Sulfuric acid remaining = 0.007571 mol
To determine the number of moles of Copper(II) oxide in the original sample, we can use the following equation:
moles Copper(II) oxide = moles Sulfuric acid reacted = 0.010925 mol
To know more about Copper visit:-
https://brainly.com/question/13677872
#SPJ1
3. In a lab, students mixed HCI acid with a Mg strip. The Mg started to bubble and dissolved within a few seconds. The rate at which the reaction occurs is determined by the A. number of effective collisions B. large AH C. the stabilization of the reactants D. mass of the products after the reaction
Answer:It might exposed
Explanation: or a spayed H2O might change because different water change over time
How many hydrogen molecules (h2) are needed to convert the triacylglycerol shown to saturated fat
The triacylglycerol depicted may be converted to a saturated fat by adding two hydrogen atoms (H2) to each carbon-carbon double bond. Six hydrogen atoms (H2) are required to convert the three carbon-carbon double bonds in triacylglycerol into saturated fat.
This is so that the triacylglycerol may be converted to a saturated fat by using hydrogen molecules (H2) to saturate the double bonds.
Triacylglycerol's physical characteristics, such as its melting point, will similarly be altered by the addition of hydrogen molecules (H2), making it more solid at normal temperature.
Learn more about hydrogen at:
https://brainly.com/question/31018544
#SPJ1
Which statement BEST describes the three enzymes? A The enzymes have different structures because they have a different sequence of amino acids. B The enzymes have the same sequence of amino acids because they are all digestive enzymes. C The enzymes perform different functions because they have the same sequence of amino acids. D The enzymes break down the same molecules because they have a different sequence of amino acids.
The best statement that describes the three enzymes is: The enzymes have different structures because they have a different sequence of amino acids. Opton A is correct.
Enzymes are biological catalysts that facilitate chemical reactions in living organisms. Enzymes are proteins, and their function is determined by their three-dimensional structure, which is determined by the sequence of amino acids that make up the protein.
In this scenario, the three enzymes have different structures, which suggests that they have a different sequence of amino acids. This difference in amino acid sequence results in different folding patterns and ultimately different shapes of the enzymes. The specific shape of an enzyme determines its ability to catalyze a particular chemical reaction. Hence, the different structures of these enzymes indicate that they may perform different functions or catalyze different chemical reactions.
Option A, "The enzymes have different structures because they have a different sequence of amino acids," is the correct answer as it aligns with the fundamental principle of protein structure and function.
Option B, "The enzymes have the same sequence of amino acids because they are all digestive enzymes," is incorrect because enzymes can have different sequences of amino acids even if they perform the same function.
Option C, "The enzymes perform different functions because they have the same sequence of amino acids," is incorrect because the sequence of amino acids determines the enzyme's structure and thus its function.
Option D, "The enzymes break down the same molecules because they have a different sequence of amino acids," is also incorrect because different amino acid sequences can result in different substrate specificity, which means that the enzymes can break down different molecules. Therefore option A is correct.
For more such question on enzymes visit:
https://brainly.com/question/19816513
#SPJ11
a student mixed 20 grams of salt into a beaker with 200 milliliters of warm water. then, the student set the cup of saltwater on a windowsill undisturbed for one week. what changes did the student observe? include what happened when salt was mixed with warm water and what most likely happened to the saltwater after one week.
Answer:
Water molecules pull the sodium and chloride ions apart, breaking the ionic bond that held them together. After the salt compounds are pulled apart, the sodium and chloride atoms are surrounded by water molecules, as this diagram shows. Once this happens, the salt is dissolved, resulting in a homogeneous solution.
Explanation:
CHEMISTRY chemistry Table balance A+B→C Table2
Answer:
zn + Hcl cual es su rreaccion
Propane, C3H8 (approximate molar mass = 44 g/mol) is used in gas barbeques and burns according to the thermochemical equation: C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g) ΔH = –2046 kJ. If it takes 1.7 x 103 kJ to fully cook a pork roast on a gas barbeque, how many grams of propane will be required, assuming all the heat from the combustion reaction is absorbed by the pork?
The mass (in grams) of propane that will be required, assuming all the heat from the combustion reaction is absorbed by the pork is 36.56 grams
How do i determine the mass propane required?The mass of propane that will be required can be obtain as illustrated below:
C₃H₈(g) + 5O₂(g) → 3CO₂(g) + 4H₂O(g) ΔH = –2046 KJ
Molar mass of C₃H₈ = 44 g/molMass of C₃H₈ from the balanced equation = 1 × 44 = 44 gFrom the balanced equation above,
2046 KJ of heat energy required 44 g of propane, C₃H₈
Therefore,
1.7×10³ KJ of heat energy will require = (1.7×10³ KJ × 44 g) / 2046 KJ = 36.56 g of propane, C₃H₈
Thus, we can conclude that the mass of propane, C₃H₈ required is 36.56 grams
Learn more about mass:
https://brainly.com/question/21940152
#SPJ1
Pleas help anyone!!!!!!!!!!!!!!!
The correct number of molecules of ammonium acetate used, given that the student uses 0.100 mole of ammonium acetate in the reaction is 6.022×10²² molecules
How do i determine the number of molecules of ammonium acetate?The following data were obtained from the reaction:
Number of mole ammonium acetate used = 0.100 moleNumber of molecules of ammonium acetate used =?The correct number of molecules of ammonium acetate used can be obtained as shown below:
From Avogadro's hypothesis,
1 mole of ammonium acetate = 6.022×10²³ molecules
Therefore,
0.1 mole of ammonium acetate = 0.1 × 6.022×10²³
0.1 mole of ammonium acetate = 6.022×10²² molecules
Thus, the number of molecules of ammonium acetate used is 6.022×10²² molecules
Learn more about number of molecules:
https://brainly.com/question/29046368
#SPJ1
An unknown alkene is ozonolyzed and worked up under oxidizing conditions. The H NMR spectrum of the only product obtained is shown. Identify the alkene.
To identify the unknown alkene based on its H NMR spectrum, a qualified organic chemist would need to analyze the chemical shifts, integration values, and splitting patterns of the peaks in the spectrum, and compare them with known reference data and other spectroscopic techniques (such as C NMR, IR, and mass spectrometry) to make an accurate determination.
The alkene is likely to be a symmetrical alkene with two equivalent methyl groups attached to the double bond. This can be seen from the singlet at 1.7 ppm, which is characteristic of a methyl group, appearing twice in the spectrum. The ozonolysis of the alkene would lead to the formation of two carbonyl compounds, which are then oxidized to carboxylic acids under the given oxidizing conditions. Therefore, the alkene in question is likely to be cis-2-butene.
For more questions on: organic
https://brainly.com/question/704297
#SPJ11
diffrences in water temperature in the ocean create movement because-
Diffrences in water temperature in the ocean create movement because bodies of water at different temperatures have different densities.
How can the differences be explained?Water that is colder is generally denser than water that is warmer, so when a body of water with colder, denser water is next to a body of water with warmer, less dense water, a density gradient is established. This gradient creates a difference in pressure between the two bodies of water, with the colder, denser water being at a higher pressure than the warmer, less dense water.
This difference in pressure creates a force that drives the movement of water from the denser, colder region to the less dense, warmer region. This movement of water is known as convection, and it can occur both vertically and horizontally in the ocean. Vertical convection occurs when differences in temperature cause water to rise or sink, while horizontal convection occurs when water moves laterally due to differences in temperature.
Learn more about temperature at:
https://brainly.com/question/25677592
#SPJ1
missing options:
1. as water heats up, the atoms of water more faster.
2. warm water is pulled more by gravity than cold water.
3. warm and cold water mix and reach the same temperature.
4. bodies of water at different temperatures have different densities.
Can someone please explain?
The pressure of N₂ gas produced when 42.57 g of NH₃ is reacted with excess NO in a sealed container is 4.95 atm
How do i determine the pressure of N₂ gas produced?First, we shall determine the mole of 42.57 g of NH₃ that reacted. Details below:
Mass of NH₃ = 42.57 g Molar mass of NH₃ = 17 g/mol Mole of NH₃ =?Mole = mass / molar mass
Mole of NH₃ = 42.57 / 1 7
Mole of NH₃ = 2.50 moles
Next, we shall determine the mole of N₂ gas produced. Details below:
4NH₃ + 6NO -> 5N₂ + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted to produced 5 moles of N₂
Therefore,
2.50 moles of NH₃ will react to produce = (2.5 × 5) / 4 = 3.125 moles of N₂
Finally, we shall determine the pressure of N₂ gas produced. This is shown below:
Volume of container (V) = 28 LTemperature (T) = 540 KNumber of mole of N₂ gas (n) = 3.125 molesGas constant (R) = 0.0821 atm.L/mol KPressure of N₂ gas (P) =?PV = nRT
P × 28 = 3.125 × 0.0821 × 540
Divide both sides by 28
P = (3.125 × 0.0821 × 540) / 28
P = 4.95 atm
Thus, we can conclude that the pressure of N₂ gas produced is 4.95 atm
Learn more about pressure:
https://brainly.com/question/15343985
#SPJ1
Five types begging the question
Five types of begging the question include: Circular reasoning, Loaded question, False analogy, Suppressed evidence and Appeal to authority.
Begging the question is a logical fallacy that occurs when someone assumes the truth of a premise in their argument, without providing evidence or proof. There are several types of begging the question:
1. Circular reasoning: This occurs when someone uses their conclusion as one of their premises, essentially assuming what they are trying to prove.
Example: "God exists because the Bible says so, and the Bible is the word of God."
2. Loaded question: This occurs when someone asks a question that assumes a particular answer or perspective.
Example: "Have you stopped beating your spouse yet?" This question assumes that the person being asked was previously beating their spouse.
3. False analogy: This occurs when someone uses an analogy that is not relevant or applicable to the argument at hand.
Example: "Banning guns is like banning cars because both can be used to kill people." This analogy is false because cars have a primary function of transportation, whereas guns have a primary function of killing.
4. Suppressed evidence: This occurs when someone ignores or dismisses evidence that contradicts their argument.
Example: "I don't believe in climate change because it's cold outside today." This argument suppresses evidence that shows long-term trends of warming temperatures.
5. Appeal to authority: This occurs when someone uses an authority figure or expert as evidence, without providing any other support for their argument.
Example: "Dr. Smith says that this diet is the best for losing weight, so it must be true." This argument appeals to Dr. Smith's authority without providing any evidence or research to support the claim.
For more question on fallacy
https://brainly.com/question/27331990
#SPJ11
oxygen at 1mole and 0°c has a density of 14,290g/k ,find the root mean squared velocity of molecules??
The root mean squared velocity of molecules is 461.15 m/s
The root-mean square (RMS) velocity is the value of the square root of the sum of the squares of the stacking velocity values divided by the number of values.
The root-mean-square speed addresses both molecular weight and temperature, two parameters that have a direct influence on a material’s kinetic energy. The Maxwell-Boltzmann equation, which is the foundation of gas kinetic theory, defines the speed distribution for gas at a specific temperature.
Given,
Pressure = 1 atm = 101300 Pa
Density = 1.4290 kg/m³
c = [tex]\sqrt{\frac{3P}{d} }[/tex]
c = [tex]\sqrt{\frac{303900}{1.4290} }[/tex]
c = 461.15 m/s
Learn more about Root mean square velocity, here:
https://brainly.com/question/13751940
#SPJ1
Solutions of Pb(NO3)2 and NaCl are combined, resulting in concentration of 0.0050 M Pb(NO3)2 and 0.0025 M NaCl immediately upon mixing. Select the correct description of the final solution, given that the Ksp of PbCl2 is 1.70×10^-5.
A. All solutes remain soluble
B. NaNO3 precipitates
C. Pb(NO3)2 precipitates
D. PbCl2 precipitates
Solutions of [tex]Pb(NO_3)^2[/tex] and [tex]NaCl[/tex] are combined, resulting in concentration of 0.0050 M [tex]Pb(NO_3)^2[/tex] and 0.0025 M [tex]NaCl[/tex] immediately upon mixing. The correct description of the final solution, given that the Ksp of [tex]PbCl_2[/tex] is 1.70×10^-5 is All solutes remain soluble. The correct answer is option A
Upon mixing [tex]Pb(NO_3)^2[/tex] and [tex]NaCl[/tex] , the following reaction occurs:
[tex]Pb(NO_3)^2[/tex] + [tex]2NaCl[/tex] → [tex]PbCl_2[/tex] +[tex]2NaNO_3[/tex]
Using the given concentrations of the reactants, the reaction quotient Qc can be calculated as:
Qc =[tex][Pb^2^+][Cl^-]^2[/tex] = [tex](0.0050 M)(0.0025 M)^2[/tex]
Qc [tex]= 3.13[/tex] × [tex]10^{-3}[/tex]
Comparing Qc to the solubility product constant (Ksp) of [tex]PbCl_2[/tex] , we see that Qc < Ksp. This indicates that the system is not at equilibrium and more [tex]PbCl_2[/tex] can dissolve before the product reaches saturation.
Therefore, no precipitation of [tex]PbCl_2[/tex] will occur, and option A is the correct answer: all solutes remain soluble.
For more such questions on concentration, click on:
https://brainly.com/question/28564792
#SPJ11
1. Which is an example of heat being transferred through conduction?
2. 6 C (s) + 3 H2 → C6H12 (l)
ΔH = -903
Therefore, this reaction (loses/gains) heat/energy.
Answer:
9. B
10. Loses
Explanation:
9. Conduction is The procedure by which thermal energy or electricity is directly transported through a substance without the material moving when there is a variance in temperature between adjacent parts. Only choice B shows this process.
10. In exothermic reactions, energy/heat is lost. Exothermic reactions are characterized by a negative delta H, such as the delta H for the reaction show.
What is the S-P difference (sec)?
What is the amplitude (mm)?
What is the distance (km)?
What is the magnitude (M)?
The S-P difference (sec) is used to calculate the distance (km) between an earthquake epicenter and a seismic station, while the magnitude (M) is a measure of the energy released during the earthquake.
These parameters are important for understanding the severity and impact of an earthquake, as well as for predicting future seismic activity.
The S-P difference (sec) refers to the time difference between the arrival of the primary (P) waves and the secondary (S) waves at a seismic station. This time difference is used to calculate the distance (km) between the earthquake epicenter and the seismic station, using the equation: distance (km) = S-P difference (sec) x 8 km/sec. This calculation assumes that the waves travel at a constant speed through the Earth's interior.
The magnitude (M) of an earthquake is a measure of the energy released during the earthquake, and is usually determined using a seismometer. The magnitude scale is logarithmic, meaning that each increase of one unit represents a tenfold increase in seismic energy. For example, an earthquake with a magnitude of 5.0 is ten times more powerful than one with a magnitude of 4.0, and 100 times more powerful than one with a magnitude of 3.0.
For more such questions on earthquake
https://brainly.com/question/30668487
#SPJ11
One way to cool down your cup of coffee is to plunge an ice-cold piece of aluminum into it. Suppose you store an 18 g piece of aluminum in the refrigerator at 4.4°C, and drop it into your coffee. The coffee temperature drops from 90.0°C to 55.0°C. How much kJ of heat energy did the aluminum block absorb?
Note: The specific heat of aluminum is 0.89 J/g °C.
Do not round your answer in the middle of the problem, round at the very end.
Round your answer to the proper number of sig figs. Don't forget your units.
The aluminum block absorbed 0.875 kJ of heat energy when it was dropped into the coffee.
let's calculate the heat lost by the coffee when it is cooled from its initial temperature of 90.0°C to its final temperature of 55.0°C:
Q1 = m1 * C1 * (90.0°C - 55.0°C)
Q1 = 850 g * 4.184 J/g °C * (90.0°C - 55.0°C)
Q1 = 125660 J
where m1 is the mass of the coffee, C1 is the specific heat of water.
Next, let's calculate the heat gained by the aluminum block when it is heated from 4.4°C to the final temperature of the mixture, which is 55.0°C:
Q2 = m2 * C2 * (55.0°C - 4.4°C)
Q2 = 18 g * 0.89 J/g °C * (55.0°C - 4.4°C)
Q2 = 875.16 J
where m2 is the mass of the aluminum block, and C2 is the specific heat of aluminum.
Since the energy lost by the coffee is gained by the aluminum block, we can set Q1 equal to Q2:
Q1 = Q2
125660 J = 875.16 J + m2 * C2 * (55.0°C - 4.4°C)
Solving for m2, we get:
m2 = (125660 J - 875.16 J) / (0.89 J/g °C * (55.0°C - 4.4°C))
m2 = 152.2 g
Therefore, the mass of the aluminum block that was dropped into the coffee is 152.2 g. To calculate the heat energy absorbed by the aluminum block, we can use the heat gained by the aluminum block that we calculated earlier:
Q2 = 875.16 J
Converting this to kJ, we get:
Q2 = 0.875 kJ
Therefore, the aluminum block absorbed 0.875 kJ of heat energy when it was dropped into the coffee.
learn more about heat energy here
https://brainly.com/question/934320
#SPJ1
What volume will 5.00 mol of an ideal gas occupy at 25 C and 153 kPa of pressure?
79.8L is the volume for 5.00 mol of an ideal gas occupy at 25 C and 153 kPa of pressure.
A measurement of three-dimensional space is volume. It is frequently expressed quantitatively using SI-derived units, like the cubic metre or litre, or different imperial or US-standard units, including the gallon, quart and cubic inch. Volume and length (cubed) have a symbiotic relationship. A container's capacity is typically thought of as being represented by its volume.
P×V = n×R×T
153000×V = 5×0.082×298
V= 79.8L
To know more about volume, here:
https://brainly.com/question/1578538
#SPJ1
1. Explain the difference in
Variation of molar conductivity
with dillusion for strong___
electrolyte and weak electrolyte
-
Explain molar Conductivity at
infinite dillusion...
Derive the expression for
dillusion law
For strong electrolytes, molar conductivity decreases as the solution is diluted because the concentration of ions decreases.
For weak electrolytes, molar conductivity increases as the solution is diluted because as the solution is diluted, the concentration of ions increases.
The expression for the dilution law is A = εcb
What is molar conductivity?The conductivity of a solution containing one mole of an electrolyte when placed between two electrodes spaced one centimeter apart is known as the molar conductivity of the electrolyte. The strength of the electrolyte affects how molar conductivity changes with dilution.
At infinite dilution, the molar conductivity of an electrolyte reaches its maximum value because the electrolyte's ions are so far apart that they no longer interact with one another.
The dilution law or Beer-Lambert law states that the absorbance of a solution is directly proportional to the concentration of the solution and the path length of the light through the solution.
A ∝ cb
Adding a proportionality constant gives:
A = εcb
where;
A is absorbanceε is a constant known as the molar absorptivityc is concentrationb is the path lengthLearn more about molar conductivity at: https://brainly.com/question/26097545
#SPJ1
1. While doing a calorimetry experiment, you notice the temperature of 50.0 g of water changes by 7ºC. What is the energy of the chemical reaction? (Cwater= 4.18 J/g*°C)
2. Which of the following is an example of a kinetic energy change?
How much heat, in joules, would be required to raise the temperature of 450 g of
Aluminum (c Al = 0.21 cal/g o C) from 19.5 o C to 31.2 o C?
Answer:
[tex]\huge\boxed{\sf Q = 1105.65\ cal}[/tex]
Explanation:
Given data:Mass = m = 450 g
T₁ = 19.5 °C
T₂ = 31.2 °C
Change in Temperature = ΔT = 31.2 - 19.5 = 11.7 °C
c = 0.21 cal/g °C
Required:Heat = Q = ?
Formula:Q = mcΔT
Solution:Put the given data in the above formula.
Q = (450)(0.21)(11.7)
Q = 1105.65 cal
[tex]\rule[225]{225}{2}[/tex]
If 8.25
mol of C5H12
reacts with excess O2,
how many moles of CO2
will be produced by the following combustion reaction?
C5H12+8O2⟶6H2O+5CO2
The given reaction equation tells us that for every 1 mol of C₅H₁₂, 5 moles of CO₂ will be produced. Since 8.25 mol of C₅H₁₂ is given, 8.25 mol C₅H₁₂ x 5 moles CO₂/1 mol C₅H₁₂ = 41.25 moles CO₂ will be produced.
What is reaction?Reaction is the process of responding to an event or stimulus in a particular way. It can occur at the physical, cognitive, or emotional level. Physically, a reaction could be as simple as a reflex or as complex as a multi-step process. Cognitively, it could involve forming a judgment or understanding. Emotionally, it could involve feelings of fear, shock, anger, or joy. In the context of science, reactions are often chemical or physical processes that involve the conversion of one set of substances into another.
To learn more about reaction
https://brainly.com/question/25769000
#SPJ1
Chemistry Table balance A+B→C
Table 1 attached
The reaction A + B → C has the following rate expression is 197.62 [A][B] M/s
How to determine rate expression?Using the experimental data to determine the order of the reaction with respect to A and B, assume that the rate of the reaction is given by:
rate = [tex]k[A]^x[B]^y[/tex]
where k = rate constant and
x and y = orders of the reaction with respect to A and B, respectively.
Compare the rates of the reaction in trials 1 and 2 while keeping the concentration of A constant:
rate1/rate2 = [tex]\frac{k[A]^x[B]^y}{k[A]^x[B]^y} = \frac{[B]^y}{[B]^y} = 1[/tex]
Conclude that the reaction is first-order with respect to B.
Similarly, compare the rates of the reaction in trials 1 and 3 while keeping the concentration of B constant:
rate1/rate3 =[tex]\frac{k[A]^x[B]^y}{k[A]^x[B]^y} = \frac{[A]^x}{[A]^x} = 1[/tex]
Therefore, the reaction is first-order with respect to A.
The rate expression for the reaction A + B → C is:
rate = k[A][B]
Using any of the experimental trials to determine the value of the rate constant k, use trial 1:
rate1 =[tex]k[A]^1[B]^1[/tex]
k = [tex]\frac{rate1}{[A]^1[B]^1}[/tex] = (3.30 E-3)/(0.012 M x 0.014 M) = 197.62 M⁻² s⁻¹
Therefore, the rate expression for the reaction A + B → C is:
rate = 197.62 [A][B] M/s
In this case, the units of k are M⁻¹ s⁻¹ because the reaction is first-order with respect to both A and B.
Find out more on rate expression here: https://brainly.com/question/15154019
#SPJ1
Macmillan Learning Determine the formal charge on each atom in the structure. H H-B-H H What is the overall charge on the structure? -2 +1 Answer Bank +2 +3 -3 -4 +4 0
The overall charge on the structure is negative one (-1).
The central boron atom in the structure is bonded to two hydrogen atoms. Boron has three valence electrons, and it has formed only two bonds, so it has a formal charge of +1.
Each of the hydrogen atoms has one valence electron, and each is bonded to the boron atom, so each hydrogen atom has a formal charge of -1. The sum of the formal charges in the structure is equal to the charge of the ion, which is -2. Adding up the formal charges of the atoms, we get:
B: +1
H: -1 (two times)
Overall charge = sum of formal charges = +1 - 1 - 1 = -1
Therefore, the overall charge on the structure is negative one (-1).
Learn more about formal charge, here:
https://brainly.com/question/11723212
#SPJ1
Which of the following represents an exothermic reaction?
Question 5 options:
CH4(g) + 2O2(g) → CO2(g) + 2H2O(g) + energy
2H2O(l) + energy → 2H2(g) + O2(g)
6CO2(g) + 6H2O(l) + energy → C6H12O6(aq) + 6O2(g)
Answer:
exothermic reaction is: Reactants → Products + Energy.
Explanation:
Note: ΔH represents the change in energy. If the energy produced in an exothermic reaction is released as heat, it results in a rise in temperature.
Please help anyone !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
The volume of ammonia needed to react completely with 30 Liters of NO at STP is 45 L.
What is the volume of ammonia required in the reaction?
The volume of ammonia needed to react completely with 30 Liters of NO at STP is calculated as follows;
4NH₃ + 6NO → 5N₂ + 6H₂O
From the reaction given above, we can see that;
4 moles of ammonia ------------> 6 moles of NO
ratio = 4 : 6
The volume of ammonia required is calculated as;
4 -------------- > 6
30 L -----------> ?
? = (30 L x 6 ) / 4
? = 45 L
Learn more about reaction here: https://brainly.com/question/29470602
#SPJ1
Can someone help me ?
The problem requires the calculation of the volume of carbon dioxide produced at STP when 587 mol of octane combusts; ,therefore, the volume of CO₂ produced at 36.0 °C and 0.995 atm is approximately 124,700 L.
The ideal gas law is given by:
PV = nRT
P is the pressure in atm, V is the volume in L, n is the number of moles, R is the gas constant (0.0821 L·atm/mol·K), and T is the temperature in K.
587 mol octane × (16 mol CO₂/2 mol octane) = 4696 mol CO2
Next, one can use the ideal gas law to calculate the volume of CO₂ produced at 36.0 °C and 0.995 atm. Then one needs to convert the temperature to kelvin by adding 273.15:
T = 36.0 °C + 273.15 = 309.15 K
Substituting the values into the ideal gas law:
PV = nRT
V = nRT/P
V = (4696 mol)(0.0821 L·atm/mol·K)(309.15 K)/(0.995 atm)
V ≈ 124,700 L
Therefore, the volume of CO2 produced at 36.0 °C and 0.995 atm is approximately 124,700 L.
Learn more about the ideal gas law here.
https://brainly.com/question/30570365
#SPJ1
Why are leaves green
Answer:
Leaves are green due to the presence of an organelle chloroplast (in abundance) which contains the pigment chlorophyll
Explanation:
Now saying chlorophyll pigment is a green pigment might be slightly incorrect. The two famous types (Chlorophyll a, Chlorophyll b) only absorb red and blue light from the atmosphere and reflect green light hence giving the pigment a green appearance and lastly giving the leaves a green color too
Answer:
Chlorophyll
Explanation:
Plants are often seen as green to the human eye due to the presence of chlorophyll, which is the primary pigment used in photosynthesis. Chlorophyll absorbs light in the red and blue-violet parts of the spectrum, but reflects or transmits green light, resulting in the characteristic green color of leaves.
Arrange the following ions in order of increasing ionic radius: selenide ion, rubidium ion, bromide ion, strontium ion.
Answer:
Br, Se, Sr, Rb
Explanation:
Atomic radius increases as you move to the left and down the periodic table. The increase in radius as you move left is due to decreasing effective nuclear charge (the pull an electron feels from the nucleus) since the number of protons decrease. The increase in radius as you move down is due to a higher number of principle energy levels (orbital in which the electron is located relative to the atom's nucleus), causing the electrons to be farther from the nucleus.