The new volume of the inflatable ball after the radius becomes half of the original one is 16π.
The original volume of the ball is given as 96π
The radius then becomes half of its original size which means if the radius of the ball is 'r' then the new radius becomes 'r/2'.
The formula for the volume of the ball is equal to, where 'r' is the radius of the ball. (4/3)π X r³
With this the original volume of the ball is
(4/3)π X r³
and the new volume of the ball after it's halved is
V₂ = (4/3)π X (r/2)³
After simplification
V₂ = (4/3)π X (r³/8)
The new volume of the ball is:
V₂ = (1/6) X πr³
So the new volume is (1/6) of the original volume. We can calculate this as
V₂ = (1/6) X 96π
= 16π
Therefore, the new volume of the inflatable ball is 16π.
To learn more about Volume visit
brainly.com/question/29504549
#SPJ4
Deation 15 of 25
mat is the point-slope equation of a line with alope -3 that contains the point
A.y-4--3(x-8)
By+4=3(x-8)
ay+4=3(x+8)
Dy-4=3(x*8)
Answer:
y = -3x + 20.
Step-by-step explanation:
The correct point-slope equation of a line with slope -3 that contains the point (8,-4) is:
y - (-4) = -3(x - 8)
Expanding the right-hand side:
y + 4 = -3x + 24
Subtracting 4 from both sides:
y = -3x + 20
Therefore, the answer is not given in any of the options provided. The correct equation is y = -3x + 20.
What is 2/3 ÷ 1/6?
A: 4/6
B: 1/6
C: 3/6
D: 5/6
Answer:
4
Step-by-step explanation:
2/3 / 1/6
= 2/3 * 6/1
= 12/3
= 4.
First one gets brainlist
the average january surface water temperatures (°c) of lake michigan from 2000 to 2009 were 5.07, 3.57, 5.32, 3.19, 3.49, 4.25, 4.76, 5.19, 3.94, and 4.34.
the mean value of these temperatures is 4.312.
what is the variance of this data set?
The variance of the data set is 0.318652.
To find the variance of this data set, we need to use the formula:
variance = Σ(x - μ)² / n
Where Σ represents the sum, x is the value of each data point, μ is the mean value, and n is the number of data points.
Using this formula, we can calculate the variance as follows:
Variance = [(5.07 - 4.312)² + (3.57 - 4.312)² + (5.32 - 4.312)² + (3.19 - 4.312)² + (3.49 - 4.312)² + (4.25 - 4.312)² + (4.76 - 4.312)² + (5.19 - 4.312)² + (3.94 - 4.312)² + (4.34 - 4.312)²] / 10
Variance = [0.225769 + 0.449769 + 0.370656 + 1.323856 + 0.716164 + 0.006544 + 0.175684 + 0.382884 + 0.135556 + 0.000484] / 10
Variance = 3.18652 / 10
Variance = 0.318652
Therefore, the variance of the data set is 0.318652.
Learn more about "variance": https://brainly.com/question/9304306
#SPJ11
You spin a spinner that has 12 equal-sized sections numbered 1 to 12. Find the probability of p(odd or multiple of 5)
The probability we want to get is:
p(odd or multiple of 5) = 7/12
How to find the probability?The probability is equal to the quotient between the number of outcomes for the given event and the total number of outcomes.
The numbers that are odd or multiples of 5 in the set of outcomes are:
{1, 3, 5, 7, 9, 10, 11}
So 7 outcomes out of 12, then the probability is:
P = 7/12
Learn more about probability at:
https://brainly.com/question/25870256
#SPJ1
Given m||n, find the value of x
The value of x is 32.
A set of angles that are between the two line parallels but on each side of the transverse are referred to as alternate external or exterior angles. The measure of the alternate external or exterior angles is equal.
According to the alternate outside angle theorem, alternate exterior angles are regarded as congruent angles or degrees of equal magnitude when two parallel lines intersected by a transversal.
Given that the lines m and n are parallel, and the angles are [tex](3x-2)^{0}[/tex] and [tex](2x+30)^{0}[/tex].
The given angles are alternate external or exterior angles. So, they must be equal.
[tex](3x-2)^{0} = (2x+30)^{0}[/tex]
Rearrange the above equation to find the value of x as follows,
[tex]3x-2x=30+2[/tex]
[tex]x=32[/tex]
Hence, the value of x is 32.
Read more about alternate external:
https://brainly.com/question/26111088
A researcher asked 933 people what their favourite type of TV programme was: news, documentary, soap or sports. They could only choose one answer. As such, the researcher had the number of people who chose each category of programme. How should she analyse these data?
a. T-test
b. One-way analysis of variance
c. Chi-square test
d. Regression
The researcher should analyze the data obtained from 933 people who were asked about their favorite type of TV program, with the condition that they could only choose one answer. The appropriate statistical test to analyze these data is c. Chi-square test.
The Chi-square test is used for analyzing categorical data, which is the case in this scenario where individuals have to choose among news, documentary, soap, or sports. The test will help the researcher determine if there is a significant difference in preferences for TV program types among the respondents.
The specific techniques and statistical tests used may vary depending on the goals of the research and the nature of the data.
Therefore option c is correct.
Learn more about Statistical Tests:
https://brainly.com/question/15110538
#SPJ11
A straight line ax+by=16.it passes through a(2,5) and b(3,7).find values of a and b
The values of a and b that satisfy the equation of the line and pass through points A(2,5) and B(3,7) are a = 3 and b = 2.
To find the values of a and b, we need to use the coordinates of points A and B and the equation of the line ax+by=16.
First, we substitute point A(2,5) into the equation to get:
a(2) + b(5) = 16
Next, we substitute point B(3,7) into the equation to get:
a(3) + b(7) = 16
We now have two equations with two unknowns, which we can solve simultaneously.
Multiplying the first equation by 3 and the second equation by -2, we get:
6a + 15b = 48
-6a - 14b = -32
Adding the two equations, we eliminate the a variable and get:
b = 2
Substituting b = 2 into one of the original equations, we get:
2a + 10 = 16
Solving for a, we get:
a = 3
Therefore, the values of a and b that satisfy the equation of the line and pass through points A(2,5) and B(3,7) are a = 3 and b = 2.
To learn more about values, click here:
https://brainly.com/question/30145972
#SPJ11
A circle is circumscribed around a regular octagon with side lemgths of 10 feet. Another circle is inscribed inside the octagon. Find the area. Of the ring created by the two circles. Round the respective radii of the circles to two decimals before calculating the area
The area of the ring created by the two circles is approximately 1374.63 square feet.
Let's first find the radius of the circumscribed circle. We can draw a diagonal of the regular octagon, which will be twice the length of one of its sides, forming an isosceles triangle with two radii of the circle.
The angle at the center of the circle between two adjacent sides of the octagon will be 360 degrees divided by 8, or 45 degrees.
The angle at the top of the isosceles triangle will be half of that, or 22.5 degrees. Using trigonometry, we can find the radius of the circumscribed circle:
[tex]$\sin(22.5^\circ) = \frac{opposite}{hypotenuse}$$\sin(22.5^\circ) = \frac{10}{2r}$$r = \frac{10}{2\sin(22.5^\circ)} \approx 21.21$[/tex]
Next, we can find the radius of the inscribed circle. Drawing radii from the center of the octagon to the points where it touches the circle, we can form 8 congruent isosceles triangles, each with a base of length 10 and two equal legs.
The angle at the top of each triangle will be half of the central angle between two adjacent sides of the octagon, or 22.5 degrees. Using trigonometry again, we can find the length of each leg of the triangle:
[tex]$\tan(22.5^\circ) = \frac{opposite}{adjacent}$$\tan(22.5^\circ) = \frac{r'}{5}$$r' = 5\tan(22.5^\circ) \approx 2.93$[/tex]
Now we can calculate the area of the ring created by the two circles:
[tex]$A = \pi R^2 - \pi r'^2$$A = \pi (21.21)^2 - \pi (2.93)^2 \approx 1374.63$ square feetTherefore, the area of the ring created by the two circles is approximately 1374.63 square feet.\\\\\\\\[/tex]
To learn more about bounded area go to:
https://brainly.com/question/28339136?referrer=searchResults
#SPJ11
Barbara’s Bigtime Bakery baked the world’s largest chocolate cake. (It was also the world’s worstcake, as 343 people got sick after eating it. ) The length was 600 cm, the width 400 cm, and the height 180 cm. Barbara and her two assistants, Boris and Bernie, applied green peppermint frosting on the four sides and the top. How many liters offrosting did they need for this dieter’s nightmare? One liter of green frosting covers about 1200 cm²
The total liters of frosting needed is 500, under the condition that the length was 600 cm, the width 400 cm, and the height 180 cm.
In order to evaluate the amount of frosting needed, we have to evaluate the surface area of the cake. The surface area of the cake is the summation of the areas of all its sides.
Here the area of each side is equivalent to its length multiplied by its width. Then the area of the given top is equivalent to its length multiplied by its width.
Then the evaluated surface area of the cake is
2 × (length × height + width × height) + length × width
= 2 × (600 cm × 180 cm + 400 cm × 180 cm) + 600 cm × 400 cm
= 2 × (108000 cm² + 72000 cm²) + 240000 cm²
= 2 × 180000 cm² + 240000 cm²
= 600000 cm²
Hence, one liter of green frosting covers about 1200 cm².
600000 cm² / 1200 cm² per liter = 500 liters
Therefore, Barbara and her assistants needed 500 liters of frosting for their dieter's nightmare.
To learn more about surface area
https://brainly.com/question/951562
#SPJ4
At the Fisher farm, the weights of zucchini squash are Normally distributed. Which standardized weight represents the top 10% of the zucchinis?
Find the z-table here.
–1. 64
–1. 28
1. 28
1. 64
The standardized weight which represents the top 10% of the zucchinis from the z-score for the fisher farm the weights of zucchini squash are Normally distributed is 1.28.
Standardized normal distribution = Z given by ,
Z = (X - μ)/σ
Here, X is sample, is μ mean and is σ standard deviation.
At the Fisher farm, the weights of zucchini squash are Normally distributed.
For the normal distribution,
The value mean be 0 and standard deviation be 1.
Z = (X - μ)/σ
μ = 0 , σ = 1
Z = (X -0)/1
Z = X
For the top 10% of the zucchinis, the value of α is 0.9. From the table for this value the z score is,
Z = X
Z = 1.28
Learn more about the z score click here:
brainly.com/question/13299273
#SPJ4
Solve the inequality for x 4x-1 grater then -5
The solution of the inequality 4x-1 grater then -5 is x > -1
Solving the inequality for x
From the question, we have the following parameters that can be used in our computation:
4x-1 grater then -5
Express properly
so, we have the following representation
4x - 1 > -5
Add 1 to both sides of the inequality
so, we have the following representation
4x > -4
Divide both sides by 4
x > -1
Hence, the solution of the inequality is x > -1
Read more about inequality at
https://brainly.com/question/25275758
#SPJ1
Kevin and his family are going camping.the tent has a width of 20ft,and the sides are 12ft long.how high is the tent in the middle?round to nearest tenth
Therefore , the solution of the given problem of unitary method comes out to be length (12 ft) that is less than its width (20 ft), which is the case with the tent.
What is a unitary method?The well-known simple approach, real variables, and any crucial elements from the very initial And specialised inquiry can all be used to finish the work. Customers may then be given another chance to try the product in response. If not, significant impacts on our understanding of algorithms will vanish.
Here,
The hypotenuses of two right triangles created by halving the triangle can be viewed as the two sides of the triangle. Next, we have
=> h² = (12/2)² - (20/2)²
=> h² = 36 - 100
=> h² = -64
The fact that the outcome is bad indicates that we made a mistake. In this instance, it is because a legitimate triangular prism cannot be formed using the specified dimensions.
A triangular prism cannot have a length (12 ft) that is less than its width (20 ft), which is the case with the tent.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ9
An eighth-grade student estimated that she needs $9,500 for tuition and fees for each year of college. She already has $5,000 in a savings account. The table shows the projected future value of the account in five years based on different monthly deposits. Initial Balance (dollars) $5,000 $5,000 $5,000 $5,000 Monthly Deposit (dollars) $100 $200 $300 $400 Account Value in Five Years (dollars) $11,000 $17,000 $23,000 $29,000 Problem The student wants to have enough money saved in four years to pay the tuition and fees for her first two years of college. Based on the table, what is the minimum amount she should deposit in the savings account every month? A $200 B $100 C $300 D $400
$23,000 is more than the $19,000 needed for tuition and fees for the first two years, the minimum amount the student should deposit in the savings account every month is $300 (option C).
What is the account value in five years with a monthly deposit of $300?The minimum monthly deposit the student should make in order to save enough money for her first two years of college tuition and fees in four years, we need to calculate how much she would need to have in her savings account at the end of four years.
Since the student estimated she needs $9,500 per year for tuition and fees, she will need $19,000 for her first two years. Since she already has $5,000 in her savings account, she needs to save an additional $14,000 in four years.
Looking at the table, we can see that the account value in five years with a monthly deposit of $200 is $17,000. To find out how much the account value would be in four years, we need to calculate the future value of $17,000 with a 4-year time frame and an annual interest rate of 0%, which gives:
Future value = $17,000 x (1 + 0%)^(4 x 12/12) = $17,000
Since the account value with a $200 monthly deposit is only $17,000 after 5 years, which is not enough to cover the $19,000 needed for tuition and fees for the first two years, the student needs to make a higher monthly deposit.
Looking at the table again, we can see that the account value in five years with a monthly deposit of $300 is $23,000. To find out how much the account value would be in four years, we need to calculate the future value of $23,000 with a 4-year time frame and an annual interest rate of 0%, which gives:
Future value = $23,000 x (1 + 0%)^(4 x 12/12) = $23,000
$23,000 is more than the $19,000 needed for tuition and fees for the first two years, the minimum amount the student should deposit in the savings account every month is $300 (option C).
Learn more about Tuition and fees
brainly.com/question/12221197
#SPJ11
Find the volume of a pyramid with a square base, where the side length of the base is
11. 8 ft and the height of the pyramid is 5. 2 ft. Round your answer to the nearest
tenth of a cubic foot.
The volume of the pyramid with a square base of side length 11.8 ft and a height of 5.2 ft is 240.0 cubic feet.
To find the volume of a pyramid with a square base of side length 11.8 ft and a height of 5.2 ft, you can use the following formula:
Volume = (1/3) × Base Area × Height
1: Find the base area.
The base is a square with a side length of 11.8 ft, so the area of the base is:
Base Area = Side Length × Side Length
Base Area = 11.8 ft × 11.8 ft
Base Area ≈ 139.24 square ft
2: Find the volume.
Now, use the formula to find the volume:
Volume = (1/3) × Base Area × Height
Volume = (1/3) × 139.24 sq ft × 5.2 ft
Volume ≈ 240.0368 cubic ft
3: Round your answer to the nearest tenth.
Volume ≈ 240.0 cubic ft
So, the volume of the pyramid is approximately 240.0 cubic feet.
Learn more about Volume:
https://brainly.com/question/1972490
#SPJ11
hellp if you can love you
Answer:
Circumference = 56.52 cmStep-by-step explanation:
It's given that, Radius of the circle is 9 cm.
We know that Circumference of the circle is calculated as 2πr
where,
π = 3.14Substituting the required values,
Circumference = 2 × 3.14 × 9
= 6.28 × 9
= 56.52 cm
Hence the required circumference of the circle is 56.52 cm
A charitable group will be shipping packages to an area of the country that has been devastated by tornadoes. they plan to ship two kinds of packages: food and clothing. they have donations of good and clothing and money. the money will be used to pay the shipping costs.
they collected $126. each package of food costs $18 to ship and each package of clothing costs $14 to ship.
write an inequality to represent this situation.
The charitable group has collected $126 to packages of food and clothing to the tornado-affected area
To represent the situation where a charitable group is shipping food and clothing packages to an area devastated by tornadoes, we can use the following inequality:
Let F be the number of food packages and C be the number of clothing packages. The shipping cost for food packages is $18 per package and for clothing packages is $14 per package.
They have collected $126 for shipping costs. The inequality representing this situation is:
18F + 14C ≤ 126
This inequality indicates that the total cost of shipping food packages (18F) plus the total cost of shipping clothing packages (14C) should be less than or equal to the available budget ($126).
To know more about packages refer here:
https://brainly.com/question/12285133
#SPJ11
Quickly
Triangle XYZ- triangle JKL. Use the image to answer the question.
K to j is10.44
K to L = unknown
L to J = 9.84
X to Y = 8.7
X to Z = 8.2
Y to Z = 7.8
Determine the measurement of KL.
A: KL = 8.58
B: KL = 6.36
The value of KL as shown in the image is 12 units
What is an equation?An equation is an expression that shows how numbers and variables using mathematical operators.
Two triangles are said to be similar, if the ratio of their corresponding sides are in the same proportion.
For the triangle shown, since triangle XYZ is similar to triangle JKL, hence:
KL/XY = KJ / XZ
substituting, KJ = 10.44:
KL / 8.7 = 11.31 / 8.2
KL = 12
The value of KL is 12 units
Find out more on equation at: https://brainly.com/question/22688504
#SPJ1
Find area bounded by y = in(x)/x, y = 0, and x = e¹⁹. (Express numbers in exact form. Use symbolic notation and fractions where needed.)
The area bounded by y = in(x)/x, y = 0, and x = e¹⁹ is 361/2 square units.
To find the area bounded by the curves y = ln(x)/x, y = 0, and x = e¹⁹, we need to integrate the function ln(x)/x with respect to x over the interval [1, e¹⁹].
∫[1, e¹⁹] ln(x)/x dx
To solve this integral, we use integration by parts with u = ln(x) and dv/dx = 1/x dx.
∫ ln(x)/x dx = ∫u dv = uv - ∫v du
where v = ln(x) and du/dx = 1/x dx.
∫ ln(x)/x dx = ln(x)^2/2 |[1, e¹⁹] - ∫[1, e¹⁹] (1/x)(ln(x)/2) dx
Evaluating the definite integral at the limits gives:
ln(e¹⁹)²/2 - ln(1)²/2 = 361/2
So the area bounded by the curves y = ln(x)/x, y = 0, and x = e¹⁹ is 361/2 square units.
More can be learned about area at brainly.com/question/20733870
#SPJ11
At what value(s) of x does cos x = 8x? X= (Use a comma to separate answers as needed. Type an integer or decimal rounded to two decimal places as needed.) Use Newton's method to obtain the third approximation, X2, of the positive fourth root of 4 by calculating the third approximation of the right 0 of f(x)= x⁴ - 4. Start with x0 = 1. The third approximation of the fourth root of 4 determined by calculating the third approximation of the right of f(x) = x⁴ - 4, starting with x0 = 1, is (Round to four decimal places.)
The third approximation of the fourth root of 4, starting with x0 = 1, is approximately 1.7321
To find the third approximation, X2, of the positive fourth root of 4 using Newton's method, we will follow these steps:
1. Define the function f(x) = x^4 - 4 and its derivative f'(x) = 4x^3.
2. Start with an initial guess x0 = 1.
3. Apply Newton's method formula to find the next approximation: x1 = x0 - f(x0) / f'(x0).
4. Repeat the process for the second and third approximations.
Step 1:
f(x) = x^4 - 4
f'(x) = 4x^3
Step 2:
x0 = 1
Step 3:
x1 = x0 - f(x0) / f'(x0) = 1 - (1^4 - 4) / (4 * 1^3) = 1 - (-3 / 4) = 1 + 0.75 = 1.75
Step 4:
x2 = x1 - f(x1) / f'(x1) = 1.75 - (1.75^4 - 4) / (4 * 1.75^3) ≈ 1.7321
The third approximation of the fourth root of 4 determined by calculating the third approximation of the right of f(x) = x^4 - 4, starting with x0 = 1, is approximately 1.7321 (rounded to four decimal places).
To know more about approximation, visit:
https://brainly.com/question/29669607#
#SPJ11
Write a derivative formula for the function.
f(x) = 2x√7x+8 + 96
The derivative formula of the given function f(x) is:
f'(x) = 2√(7x+8) + 7x/(√(7x+8))
This formula gives the value of the derivative of the function f(x) for any value of x.
How we find derivative?The derivative of f(x) using the product rule and chain rule:
f'(x) = 2√(7x+8) + 2x(1/2)(7x+8)^(-1/2)(7)
f'(x) = 2√(7x+8) + 7x/(√(7x+8))
Simplify the derivative
The derivative of the function f(x) is given by f'(x) = 2√(7x+8) + 7x/(√(7x+8))
In this formula, the first term represents the derivative of the function 2x√(7x+8) using the chain rule, and the second term represents the derivative of the function 96, which is a constant and has a derivative of zero.
Learn more about Derivative
brainly.com/question/30365299
#SPJ11
A bank is offering 3. 5% simple interest on a savings account. If you earned $525 in interest in 2 years, how much did you deposit in the savings?
The amount deposited is 7500 in the bank with 3. 5% simple interest on a savings account.
To solve this problem, we need to use the formula for simple interest:
I = P * r * t
Where:
I = Interest earned
P = Principal (amount deposited)
r = Interest rate per year (as a decimal)
t = Time (in years)
In this case, we know that the interest rate is 3.5% or 0.035 as a decimal.
We also know that the interest earned is $525, and the time period is 2 years.
So, we can plug in these values and solve for the principal:
525 = P * 0.035 * 2
Simplifying the equation, we get:
525 = 0.07P
Dividing both sides by 0.07, we get:
P = 7500
Therefore, the amount deposited in the savings account was $7500.
Learn more about simple interest : https://brainly.com/question/25845758
#SPJ11
Solve the equation
Complete using the provide data and solve
Answer:
VM = 20
Step-by-step explanation:
Basic proportionality theorem or Thale's theorem:
If a line is drawn parallel to one side of a triangle to intersect the other sides in two side in distinct points, the other two sides are divided in the same ratio.
VN = VT - NT
= 49 - 14
= 35
[tex]\sf \dfrac{VM}{MU} = \dfrac{VN}{NT}\\\\\\\dfrac{VM}{8}=\dfrac{35}{14}\\\\\\\dfrac{VM}{8}=\dfrac{5}{2} \\\\\\VM = \dfrac{5}{2}*8\\\\VM=5*4\\\\\boxed{\bf VM = 20}[/tex]
Evaluate h'(9) where h(x) = f(x) · g(x) given the following.• f(9) = 9• f '(9) = −1.5• g(9) = 3• g'(9) = 2h'(x) =
In order to evaluate h'(9), we need to use the product rule, which states that the derivative of a product of two functions is equal to the first function times the derivative of the second function, plus the second function times the derivative of the first function. Mathematically, this can be expressed as:
(h(x))' = f(x)g'(x) + g(x)f'(x)
Using the given values, we can substitute them into the formula and solve for h'(9):
h'(x) = f(x)g'(x) + g(x)f'(x)
h'(9) = f(9)g'(9) + g(9)f'(9)
h'(9) = 9(2) + 3(-1.5)
h'(9) = 18 - 4.5
h'(9) = 13.5
Therefore, the value of h'(9) is 13.5.
In simpler terms, the product rule tells us that when we have a function that is the product of two other functions, we can find the derivative of that function by multiplying one function by the derivative of the other and adding it to the other function multiplied by the derivative of the first. In this case, we have two functions f(x) and g(x), and we use their respective values and derivatives to find the derivative of their product h(x).
MORE QUESTION ON product rule DERIVATIVE : https://brainly.com/question/30340084
#SPJ11
Qn in attachment
.
..
Answer:
option d
Step-by-step explanation:
24
pls mrk me brainliest (* ̄(エ) ̄*)
The height h and the base area B of a cone are given. Find the volume of the cone. Write your answer in terms of pi.
H = 9 units
B = 5pi square units
The volume is ____ cubic units
The volume of the cone is (5/3)π(9²) cubic units ≈ 381.7 cubic units.
The formula for the volume of a cone is V = (1/3)πr²h, where r is the radius of the circular base and h is the height of the cone. However, we are given the base area B instead of the radius, so we need to find the radius first.
We know that the area of a circle is A = πr², so if the base area of the cone is B = 5π square units, then πr² = 5π, which means r² = 5. Solving for r, we get r = √5.
Now that we have the height h = 9 units and the radius r = √5 units,
we can use the formula for the volume of a cone:
V = (1/3)πr²h.
Substituting the values, we get
V = (1/3)π(√5)²(9) = (5/3)π(9²) cubic units, which simplifies to ≈ 381.7 cubic units.
learn more about volume here:
https://brainly.com/question/31211180
#SPJ4
1. Simplify (Write each expression without using the absolute value symbol. )
|120+x| if x<-120
2. Simplify (Write each expression without using the absolute value symbol. )
|x-120| if x<-120
3. Simplify (Write each expression without using the absolute value symbol. )
|x-(-12)| if x>-12
4. Simplify (Write each expression without using the absolute value symbol. )
|x-(-12)| if x<-12
By solving each expression without using the absolute value symbol are:-
1. -x-120 if x<-120
2. -(x-120) if x<-120
3. x+12 if x>-12
4. -(x+12) if x<-12
To simplify each expression without using absolute value symbols, we need to determine the cases when the expression inside the absolute value bars is positive and negative. Then we can remove the absolute value bars and simplify the expression accordingly.
For the first expression, |120+x|, if x is less than -120, then x+120 will be negative. Therefore, we can simplify the expression as -x-120.
For the second expression, |x-120|, if x is less than -120, then x-120 will also be negative. Therefore, we can simplify the expression as -(x-120).
For the third expression, |x-(-12)|, if x is greater than -12, then x-(-12) is positive. Therefore, we can simplify the expression as x+12.
For the fourth expression, |x-(-12)|, if x is less than -12, then x-(-12) is negative. Therefore, we can simplify the expression as -(x+12).
To know more about Simplify expression, refer here:
https://brainly.com/question/403991#
#SPJ11
1. Your primary job’s gross income is $3,500. 00/month, and your second job’s realized income is $368. 49/month. Deductions are FICA (7. 65%), federal tax withholding (10. 75%), and state tax withholding (8. 35%). How much is the income on your monthly budget?
2. Your fixed expenses are $1,035. 65/month and are 36% of your realized income. Use proportions to compute the realized income on your budget
1. The income on your monthly budget is $2,932.24. 2. The realized income on your budget is $2,876.25.
1. To calculate the net income after deductions, we first need to find the amount deducted for each tax.
FICA deduction = 7.65% of gross income = 0.0765 x 3500 = $267.75
Federal tax withholding = 10.75% of gross income = 0.1075 x 3500 = $376.25
State tax withholding = 8.35% of gross income = 0.0835 x 3500 = $292.25
Total deductions = FICA + Federal tax withholding + State tax withholding = $267.75 + $376.25 + $292.25 = $936.25
Net income = Gross income - Total deductions = $3,500.00 - $936.25 = $2,563.75
Adding the income from the second job, the total income on the monthly budget is:
Total income = Net income + Second job income = $2,563.75 + $368.49 = $2,932.24
2. Let x be the realized income on the budget. We know that fixed expenses are 36% of realized income, so we can set up a proportion:
Fixed expenses / Realized income = 36% / 100%
or
$1,035.65 / x = 0.36 / 1
Cross-multiplying, we get:
x = $1,035.65 / 0.36 = $2,876.25
Therefore, the realized income on the budget is $2,876.25.
Know more about income here:
https://brainly.com/question/30157678
#SPJ11
3. (3 points) For ordinary differential equation
X =1- ƛx³6
with ƛ > 0, compute the update Ax= x(t+h) - x(t) using
⚫ Euler's method
⚫ the implicit Euler method
⚫ the midpoint method.
The following are the updates for the given ordinary differential equation using Euler's method, the implicit Euler method, and the midpoint method.
To compute the update Ax for the given ordinary differential equation using Euler's method, we first need to discretize the time domain. Let t0 be the initial time and tn = t0 + nh be the time after n steps of size h. Then, using Euler's method, we have:
xn+1 = xn + hf(xn, tn)
where f(xn, tn) = 1 - ƛxn³/6. Therefore,
Ax = xn+1 - xn = h(1 - ƛxn³/6)
Using the implicit Euler method, we have:
xn+1 = xn + hf(xn+1, tn+1)
where f(xn+1, tn+1) = 1 - ƛxn+1³/6. Solving for xn+1, we get:
xn+1 = (xn + h)/[1 + ƛh/6(xn+1)²]
which is a nonlinear equation that needs to be solved iteratively at each step. Therefore, the update Ax becomes:
Ax = xn+1 - xn
Using the midpoint method, we have:
xn+1 = xn + hf(xn+½h, tn+½h)
where f(xn+½h, tn+½h) = 1 - ƛ(xn+½h)³/6. Therefore,
xn+1 = xn + h(1 - ƛxn³/6 + 3ƛx²n h/4)
and the update Ax becomes:
Ax = xn+1 - xn = h(1 - ƛxn³/6 + 3ƛx²n h/4)
These are the updates for the given ordinary differential equation using Euler's method, the implicit Euler method, and the midpoint method.
To know more about Euler's method, click on the link below:
https://brainly.com/question/30860703#
#SPJ11
Find the mass and center of mass of a wire in the shape of the helix x = t, y = 2 cos t, z = 2 sin t, 0 ≤ t ≤ 2π, if the density at any point is equal to the square of the distance from the origin.
The center of mass is given by:
(xbar, ybar, zbar) = (Mx/m, My/m, Mz/m)
= (0, 16/(3π), 16/(3π))
To find the mass of the wire, we need to integrate the density function over the length of the wire. The length of the wire can be found using the arc length formula:
ds = sqrt(dx^2 + dy^2 + dz^2)
= sqrt(1 + 4sin^2(t) + 4cos^2(t)) dt
= sqrt(5) dt
Integrating this from 0 to 2π gives us the length of the wire:
L = ∫_0^(2π) sqrt(5) dt
= 2πsqrt(5)
Now we can find the mass of the wire:
m = ∫_0^(2π) ρ ds
= ∫_0^(2π) (x^2 + y^2 + z^2) ds
= ∫_0^(2π) (t^2 + 4cos^2(t) + 4sin^2(t)) sqrt(5) dt
= 4πsqrt(5)
To find the center of mass, we need to find the moments about each coordinate axis:
Mx = ∫_0^(2π) ρ x ds
= ∫_0^(2π) t(t^2 + 4cos^2(t) + 4sin^2(t)) sqrt(5) dt
= 0 (due to symmetry)
My = ∫_0^(2π) ρ y ds
= ∫_0^(2π) 2cos^2(t) (t^2 + 4cos^2(t) + 4sin^2(t)) sqrt(5) dt
= 32π/(3sqrt(5))
Mz = ∫_0^(2π) ρ z ds
= ∫_0^(2π) 2sin^2(t) (t^2 + 4cos^2(t) + 4sin^2(t)) sqrt(5) dt
= 32π/(3sqrt(5))
Finally, the center of mass is given by:
(xbar, ybar, zbar) = (Mx/m, My/m, Mz/m)
= (0, 16/(3π), 16/(3π))
To learn more about density function, refer below:
https://brainly.com/question/31039386
#SPJ11
The hourly wages earned by 20 employees are shown in the first box-and-whisker plot below. The person earning $15 per hour quits and is replaced with a person earning $8 per hour. The graph of the resulting salaries is shown in plot 2. A box-and-whisker plot is shown. The number line goes from 7 to 15. The whiskers range from 8 to 15, and the box ranges from 8. 8 to 10. 2. A line divides the box at 9. 5. Plot 1 A box-and-whisker plot is shown. The number line goes from 7 to 15. The whiskers range from 8 to 11, and the box ranges from 8. 7 to 10. A line divides the box at 9. 6. Plot 2 How does the mean and median change from plot 1 to plot 2? The mean and median remain the same. The mean decreases, and the median remains the same. The mean remains the same, and the median decreases. The mean and median decrease.
The mean decreases, and the median remains the same from plot 1 to plot 2.
In the first box-and-whisker plot, the hourly wages earned by 20 employees are displayed, with a range from $8.70 per hour to $11.50 per hour. The median, which is the value that separates the higher half of the data from the lower half, is $10 per hour. The mean, which is the average of all the wages, is calculated by adding up all the wages and dividing the total by 20.
When one employee earning $15 per hour quits and is replaced by a new employee earning $8 per hour, the second box-and-whisker plot is created. The range of wages extends from $8 per hour to $15 per hour, with a median of $9.50 per hour. Since the new employee is earning a lower wage, the mean hourly wage decreases.
Therefore, the correct answer to the question is that the mean decreases, and the median remains the same. It is important to note that while the median does not change in this case, it is not always the case in other situations where data is added or removed from a set. It is also important to note that box-and-whisker plots are helpful in visualizing the spread of data and identifying any outliers.
To know more about box-and-whisker plot, refer to the link below:
https://brainly.com/question/31658865#
#SPJ11