The volume of the larger cone will be 48 cm³.
This is because when a shape is enlarged by a scale factor of 2, the volume is increased by a factor of 2³ (or 8). So, 6 x 8 = 48.
When we enlarge a shape by a scale factor, we are multiplying all of its dimensions by that factor. In the case of a cone, this means that we are increasing the radius and the height of the cone by a factor of 2.
We can use the formula for the volume of a cone to find out how the volume changes when we enlarge it. The formula for the volume of a cone is V = (1/3)πr²h, where r is the radius and h is the height.
If we multiply the radius and the height of the cone by 2, we get a new cone with a radius of 2r and a height of 2h. Plugging these new values into the formula for the volume of a cone, we get:
V' = (1/3)π(2r)²(2h) = (1/3)π(4r²)(2h) = (8/3)πr²h
We can simplify this expression by multiplying the original volume by 8/3:
V' = (8/3) x 6 = 48
So the volume of the larger cone is 48 cubic centimeters.
To know more about scale factor click on below link:
https://brainly.com/question/29464385#
#SPJ11
if the silver sheet costs $9.75 per cm^2, the copper sheet costs $3.25 per cm^2, and the stone costs $1.75 per cm^2, what is the materials cost for the brooch
AnswerAnswer:
Step-by-step explanation:
To determine the materials cost for the brooch, we need to know the area of each material used in the brooch. Let's say that the brooch is made up of a 5 cm x 5 cm square of silver, a 2 cm x 2 cm square of copper, and a 3 cm x 1 cm rectangle of stone.
The area of the silver sheet is 5 cm x 5 cm = 25 cm^2, so the cost of the silver is 25 cm^2 x $9.75/cm^2 = $243.75.
The area of the copper sheet is 2 cm x 2 cm = 4 cm^2, so the cost of the copper is 4 cm^2 x $3.25/cm^2 = $13.
The area of the stone is 3 cm x 1 cm = 3 cm^2, so the cost of the stone is 3 cm^2 x $1.75/cm^2 = $5.25.
Therefore, the total materials cost for the brooch is $243.75 + $13 + $5.25 = $262.
Jesse can mow 3 yards in 8 hours. Jackson can mow twice as many yards per hour. What is the constant of proportionality between the number of yards Jackson can mow and the number of hours?
If Jesse can mow 3 yards in 8 hours. Jackson can mow twice as many yards per hour the constant of proportionality between the number of yards Jackson can mow and the number of hours is 3/4.
To find the constant of proportionality between the number of yards Jackson can mow and the number of hours, we can use the formula:
k = y/x
where k is the constant of proportionality, y is the number of yards, and x is the number of hours.
We know that Jesse can mow 3 yards in 8 hours, which means his rate of mowing is: 3 yards/8 hours = 3/8 yards per hour
We also know that Jackson can mow twice as many yards per hour as Jesse, which means his rate of mowing is:
2 * (3/8) yards per hour = 3/4 yards per hour
Now we can use the formula to find the constant of proportionality for Jackson:
k = y/x = (3/4) yards per hour / 1 hour = 3/4
Therefore, the constant of proportionality between the number of yards Jackson can mow and the number of hours is 3/4.
To learn more about “proportionality” refer to the https://brainly.com/question/1496357
#SPJ11
Simplify (write each expression without using the absolute value symbol.)
|x÷3|, if x<0
When dealing with absolute value expressions, we must consider both the positive and negative values of the argument.
In this case, we are asked to simplify[tex]|x÷3| if x<0[/tex], which means that x is a negative number.
To simplify this expression, we must first evaluate x÷3, which gives us a negative number divided by a positive number, resulting in a negative quotient.
However, since we are only interested in the absolute value of this quotient, we must ignore the negative sign and write the expression as:
[tex]|x÷3| = -(x÷3)[/tex]
Note that the negative sign in front of the expression serves to cancel out the negative sign of the quotient, thus giving us a positive result.
Therefore, the simplified expression for[tex]|x÷3| if x<0 is -(x÷3)[/tex]. This expression can be used to evaluate the value of |x÷3| for any negative value of x, by simply plugging in the corresponding value for x.
To know more about absolute value expressions refer here
https://brainly.com/question/28468787#
#SPJ11
20% of all college students volunteer their time. is the percentage of college students who are volunteers different for students receiving financial aid? of the 381 randomly selected students who receive financial aid, 57 of them volunteered their time. what can be concluded at the
The p-value is less than the significance level so reject the null hypothesis and concluded percentage of the students volunteer their time is different from receiving financial aid students.
Percentage of college students who volunteer their time = 20%
Perform a hypothesis test.
Null hypothesis H₀: p = 0.20,
where p is the proportion of college students who volunteer their time.
The alternative hypothesis is Hₐ: p ≠ 0.20.
Indicating that the proportion of college students who volunteer their time is different for students receiving financial aid.
57 out of 381 randomly selected students who receive financial aid volunteered their time.
Test the hypothesis,
Calculate the sample proportion of volunteers among the students receiving financial aid,
p₁ = 57 / 381
= 0.149
Using Test statistic,
which follows a normal distribution under the null hypothesis .
Mean = 0
Standard deviation σ = √(p(1-p)/n),
where p = 0.20 is the proportion under the null hypothesis
n = 381 is the sample size.
z
= (p₁ - p) /√(p×(1-p)/n)
= (0.149 - 0.20) / √(0.20(1-0.20)/381)
= -2.55
Using attached table of p-value from z-score.
Calculated test statistic of -2.55 corresponds to a p-value of 0.0054,
which is less than the significance level α = 0.01.
Reject the null hypothesis .
Therefore, we conclude that there is evidence to suggest that the percentage of college students who volunteer their time is different for students receiving financial aid.
Learn more about students here
brainly.com/question/20883600
#SPJ4
The above question is incomplete, the complete question is:
20% of all college students volunteer their time. is the percentage of college students who are volunteers different for students receiving financial aid? of the 381 randomly selected students who receive financial aid, 57 of them volunteered their time. what can be concluded at the α = 0.01 level of significance?
Help asap please!!!!
Ella rolls a die and then flips a coin. The sample space for this compound event is represented in the table (His heads and Tis talls). Complete the table and the sentence beneath it. Die 1 2 3 4 5 6 heads H-1 H-2 H-3 H-5 H-6 Coin tails T-1 T-3 T-4 T-5 The size of the sample space is
The sample space for Ella's compound event where she rolls a die and then flips a coin can be represented in the table below:
Die: 1 2 3 4 5 6
Coin: H-1 H-2 H-3 H-5 H-6 T-1 T-3 T-4 T-5
The size of the sample space is the total number of possible outcomes, which in this case is the number of rows in the table. We can see that there are 9 rows in the table, so the size of the sample space is 9.
To understand the sample space, we can imagine that each row in the table represents a possible outcome of the compound event. For example, the first row represents the outcome where Ella rolls a 1 on the die and gets heads on the coin. The second row represents the outcome where Ella rolls a 2 on the die and also gets heads on the coin, and so on.
Understanding the sample space is important in probability theory because it allows us to calculate the probability of specific events occurring. By knowing the size of the sample space and the number of favorable outcomes, we can determine the probability of an event happening.
To know more about sample space refer here
https://brainly.in/question/30573881#
#SPJ11
There are a total of 2. 1 x 10 to the 6 power vehicles registered in New York City These are distributed among the 5 boroughs of the city. What is the average number of vehicles registered in each borough of NYC? Give your answer in scientific notation
The average number of vehicles registered in each borough of NYC is 4.2 x 10^5.
To find the average number of vehicles registered in each borough of NYC, we need to divide the total number of registered vehicles by the number of boroughs. Therefore, the average number of vehicles registered in each borough can be calculated as:
Average number of vehicles = Total number of vehicles registered / Number of boroughs
= 2.1 x 10^6 / 5
= 4.2 x 10^5
Therefore, the average number of vehicles registered in each borough of NYC is 4.2 x 10^5.
For more questions like Vehicles click the link below:
https://brainly.com/question/31842762
#SPJ11
Complete the following to use the difference of two squares to find the product of 22 and 18.( + )( - ) =( )2 - ( )2 =396
The complete equation of two squares to find the product of 22 and 18 is (22 + 18)(22 - 18) = 396
When we can interpret an expression as the difference of two perfect squares, i.e. a2-b2, we can factor it as (a+b)(a-b).
To use the difference of two squares to find the product of 22 and 18:
First, find the average of the two numbers:
(22 + 18) ÷ 2 = 20
Then, find the difference between the two numbers:
22 - 18 = 4
Now we can write:
(20 + 4)(20 - 4) = 24 × 16 = 384
But we need to add the extra 12 to get 396:
(20 + 4)(20 - 4) + 12 = 396
So the completed equation is:
(22 + 18)(22 - 18) = 396
Learn more about difference of two square at https://brainly.com/question/16863737
#SPJ11
A pair of standard six sided dice are to be rolled. What is the probability of rolling a sun of 6?
State your answer as a fraction
The probability of rolling a sum of 6 when two standard six-sided dice are rolled is 5/36, or approximately 0.139.
What is probability?The probability of an event occurring is defined by probability. There are many instances in real life where we may need to make predictions about how something will turn out.
There are 36 possible outcomes when two standard six-sided dice are rolled. Each die has 6 possible outcomes, so the total number of outcomes is 6 x 6 = 36.
To find the probability of rolling a sum of 6, we need to count the number of ways we can get a sum of 6. There are five possible ways to get a sum of 6:
- Roll a 1 on the first die and a 5 on the second die
- Roll a 2 on the first die and a 4 on the second die
- Roll a 3 on the first die and a 3 on the second die
- Roll a 4 on the first die and a 2 on the second die
- Roll a 5 on the first die and a 1 on the second die
So, the probability of rolling a sum of 6 is 5/36.
Therefore, the probability of rolling a sum of 6 when two standard six-sided dice are rolled is 5/36, or approximately 0.139.
Learn more about probability on:
https://brainly.com/question/31870688
#SPJ4
Find the length of side a given a = 50°, b = 20, and c = 35. round to the nearest whole number.
The length of side a is 50 if the angle ∠bac is 50° and the length of side b is 20 and side c is 35 using cosine law.
Length of side b = 20
Length of side c = 35
Angle ∠bac = 50°
To calculate the length of the side a, we need to use the cosine law. The formula is:
[tex]a^2 = b^2 + c^2 - 2bc cos(A)[/tex]
Substituting the given values in the formula, we get:
[tex]a^2 = 20^2 + 35^2 - 2(20)(35)cos(50°)[/tex]
[tex]a^{2}[/tex] = 400 + 1225 + (1400)*(0.642)
[tex]a^{2}[/tex] = 1625 + 898.8
a = [tex]\sqrt{2523.8}[/tex]
a = 50
Therefore we can conclude that the length of side a is 50 using cosine law.
To learn more about the cosine law
https://brainly.com/question/17289163
#SPJ4
HELP ME PLSSSS ANYBODY OF ANY AGE I WILL LEAVE A GOOD REVIEW
Answer:
the third one
Step-by-step explanation:
Answer:
Option 3 is the correct answer
Step-by-step explanation:
The surface area of a prism is the area of the full net.
The area of the full net is the sum of the areas of each part
For the given net, there are three rectangles, and two triangles.
The area for rectangles and triangles are given by the following formulas:
[tex]A_{rectangle}=base*height[/tex]
[tex]A_{triangle}=\frac{1}{2}*base*height[/tex]
It is important to recognize that due to the fact that the 3-D shape is a prism, the two triangles are congruent, and have exactly the same dimensions and area.
Looking at the options:
Option 1 has three products added together. This would be the base time height of each of the three rectangles. It does not include the area for either of the triangles.
Option 2 does have an extra term in front with 3 numbers multiplied together. It most closely resembles 2 times the product of the base and height of the triangle, but recall the area for a triangle is one-half of the base times height (this may make more sense when looking at option 3). This over-calculates the area of the triangle, and then doubles that over-calculated area (to match the second triangle)
Option 3 has an extra term in front with the number 2 times a parenthesis with 3 terms. These three terms represent the "one-half" from the formula for the area of a triangle, and the base and height of the triangle. The 2 in front of the parentheses represents that there are two of those triangles, both with that area. This correctly calculates the area of the net, and thus, the surface area of the triangular prism.
Option 4 has an extra term in front, similar to option 3 which calculates the area of one triangle correctly, but fails to account for the area of the second triangle.
Option 3 is the correct answer.
Find the Differentials of
1) z = x^2 - xy^2 + 4y^5
2) f(x,y) = (3x-y)/(x+2y)
3) f(x,y) = xe^x3y
1) To find the differentials of z = x^2 - xy^2 + 4y^5, we can use the total differential formula:
dz = (∂z/∂x)dx + (∂z/∂y)dy
Taking the partial derivatives of z with respect to x and y:
∂z/∂x = 2x - y^2
∂z/∂y = -2xy + 20y^4
Substituting these into the total differential formula:
dz = (2x - y^2)dx + (-2xy + 20y^4)dy
2) To find the differentials of f(x,y) = (3x-y)/(x+2y), we can again use the total differential formula:
df = (∂f/∂x)dx + (∂f/∂y)dy
Taking the partial derivatives of f with respect to x and y:
∂f/∂x = (y-3)/(x+2y)^2
∂f/∂y = (3x-2y)/(x+2y)^2
Substituting these into the total differential formula:
df = [(y-3)/(x+2y)^2]dx + [(3x-2y)/(x+2y)^2]dy
3) To find the differentials of f(x,y) = xe^x3y, we can once again use the total differential formula:
df = (∂f/∂x)dx + (∂f/∂y)dy
Taking the partial derivatives of f with respect to x and y:
∂f/∂x = e^(x3y) + 3xye^(x3y)
∂f/∂y = 3x^2e^(x3y)
Substituting these into the total differential formula:
df = (e^(x3y) + 3xye^(x3y))dx + (3x^2e^(x3y))dy
Here are the results:
1) For z = x^2 - xy^2 + 4y^5, the partial derivatives are:
∂z/∂x = 2x - y^2
∂z/∂y = -2xy + 20y^4
2) For f(x,y) = (3x-y)/(x+2y), the partial derivatives are:
∂f/∂x = (3(x+2y) - 3(3x-y))/(x+2y)^2
∂f/∂y = (-1(x+2y) + (x+2y))/(x+2y)^2
3) For f(x,y) = xe^(x^3y), the partial derivatives are:
∂f/∂x = e^(x^3y) * (1 + 3x^2y)
∂f/∂y = xe^(x^3y) * x^3
These partial derivatives represent the differentials for each respective function.
Learn more about Differentials here: brainly.com/question/24898810
#SPJ11
There are 157 newly built homes in a subdivision 68 gallons of paint and 13 paint brushes were used for each house about how many gallons of paint we use for the new homes
About 10,676 gallons of paint were used to paint the 157 newly built homes in the subdivision, assuming each house required exactly 68 gallons of paint and 13 paint brushes.
How to solve this statement problem?The statement problem states that there are 157 newly built homes in a subdivision, and that 68 gallons of paint and 13 paint brushes were used for each house. This means that each house required 68 gallons of paint and 13 paint brushes.
To find the total amount of paint used for all 157 houses, we need to multiply the amount of paint used per house (68 gallons) by the number of houses (157):
Total amount of paint = 68 gallons/house x 157 houses
Total amount of paint = 10,676 gallons
Therefore, approximately 10,676 gallons of paint were used for the 157 newly built homes in the subdivision.
It's worth noting that this calculation assumes that each house required exactly 68 gallons of paint and 13 paint brushes. In reality, there may be some variation in the amount of paint and brushes used for each house, so the actual total may be slightly different.
However, this calculation provides a reasonable estimate of the total amount of paint used
Learn more about statement problem
https://brainly.com/question/16768045
#SPJ11
help me What is the rule of this function?– 5+ 5× 5÷ 5
÷ 5
Question 1 of 7
The value of the expression 5 + 5 × 5 ÷ 5 ÷ 5 is equal to 10.
What is the rule of the function?The order of operations in mathematics is to perform the operations in the following order:
Parentheses or BracketsExponents or RootsMultiplication or Division (from left to right)Addition or Subtraction (from left to right)Using this rule, we can simplify the expression:
First, we perform the multiplication and division from left to right:
5 x 5 = 25
25 ÷ 5 = 5
Then, we add the remaining terms:
5 + 5 = 10
Learn more about functions here: https://brainly.com/question/25638609
#SPJ1
Find the exact length of the curve. 36y² = (x² – 4)³, 5 ≤ x ≤ 9, y ≥ 0 = 96.666
The exact length of the curve is 112/3(√3 + 1), or approximately 96.666.
To find the exact length of the curve, we can use the formula for arc length:
L = ∫a^b √(1 + [f'(x)]²) dx
where f(x) = (x² - 4)^(3/2)/6, 5 ≤ x ≤ 9.
First, we find f'(x):
f'(x) = 3x(x² - 4)^(1/2)/12 = x(x² - 4)^(1/2)/4
Then we substitute f'(x) into the formula for arc length:
L = ∫5^9 √(1 + [x(x² - 4)^(1/2)/4]²) dx
L = ∫5^9 √(1 + x²(x² - 4)/16) dx
L = ∫5^9 √(16 + 16x²(x² - 4)/16) dx
L = ∫5^9 √(16x² + x^4 - 4x²) dx
L = ∫5^9 √(x^4 + 12x²) dx
L = ∫5^9 x²√(x^2 + 12) dx
We can use the substitution u = x^2 + 12, which gives du/dx = 2x and dx = du/2x, to simplify the integral:
L = (1/2)∫37^93 √u du
L = (1/2) [(2/3)u^(3/2)]_37^93
L = (1/3)[(125 + 108√3) - (13 + 36√3)]
L = (1/3)(112√3 + 112)
L = 112/3(√3 + 1)
Therefore, the exact length of the curve is 112/3(√3 + 1), or approximately 96.666.
To learn more about integral visit: https://brainly.com/question/18125359
#SPJ11
Identify all the lines on the graph with unit rates that are less than 2 and greater than the unit rate of the relationship in the table. X y
7 8
14 16
21 24
The only line on the graph with a unit rate less than 2 is the horizontal line passing through y=8.
To identify the unit rates on the graph, we need to find the slope of the line connecting each pair of points. We can use the formula:
slope = (change in y) / (change in x)
For example, the slope between the first two points (7,8) and (14,16) is:
slope = (16-8) / (14-7) = 8/7
Similarly, we can find the slopes for the other pairs of points:
- between (7,8) and (21,24): slope = (24-8) / (21-7) = 16/14 = 8/7
- between (14,16) and (21,24): slope = (24-16) / (21-14) = 8/7
Notice that all three slopes are equal, which means the graph represents a line with a constant unit rate of 8/7.
To find lines with unit rates less than 2, we need to look for steeper lines on the graph. Any line with a slope greater than 2/8 (or 1/4) will have a unit rate greater than 2.
One way to see this is to note that a slope of 2/8 means that for every 2 units of increase in y, there is 8 units of increase in x. This is equivalent to saying that the unit rate is 2/8 = 1/4. If the slope is greater than 2/8, then the unit rate is greater than 1/4, and therefore greater than 2.
Looking at the graph, we can see that the steepest line has a slope of 2/3, which means it has a unit rate of 2/3. Therefore, any line with a slope greater than 2/3 will have a unit rate greater than 2, and any line with a slope less than 2/3 will have a unit rate less than 2.
To summarize:
- The graph represents a line with a constant unit rate of 8/7.
- Any line with a slope greater than 2/3 has a unit rate greater than 2.
- Any line with a slope less than 2/3 has a unit rate less than 2.
To know more about unit rate, refer to the link below:
https://brainly.com/question/28802476#
#SPJ11
Please help me i will do anything
in one area, the lowest angle of elevation of the sun in winter is find the distance x that a plant needing full sun can be placed from a fence that is 10.5 feet high. round your answer to the tenths place when necessary.
Therefore, the distance x that a plant needing full sun can be placed from a fence that is 10.5 feet high is approximately 28.7 feet.
In order to find the distance x that a plant needing full sun can be placed from a fence that is 10.5 feet high, we will use the angle of elevation and the tangent function.
1. Given the lowest angle of elevation of the sun in winter is 20 degrees, we will use this angle in our calculations.
2. Set up a right triangle with the fence as the vertical side (opposite side), the distance x as the horizontal side (adjacent side), and the angle of elevation (20 degrees) at the point where the fence meets the ground.
3. Use the tangent function to find the distance x:
tan(angle) = opposite side / adjacent side
4. Plug in the values we have:
tan(20) = 10.5 / x
5. Solve for x:
x = 10.5 / tan(20)
6. Calculate the value of x:
x ≈ 28.7 feet
Therefore, the distance x is approximately 28.7 feet.
Note: The question is incomplete. The complete question probably is: In one area, the lowest angle of elevation of the sun in winter is 20 degrees. Find the distance x that a plant needing full sun can be placed from a fence that is 10.5 feet high. Round your answer to the tenths place when necessary.
Learn more about Tangent function:
https://brainly.com/question/1533811
#SPJ11
Consider the function F(x,y)= e - x2 16-y2 76 and the point P(2.2) a. Find the unit vectors that give the direction of steepest ascent and steepest descent at P. b. Find a vector that points in a direction of no change in the function at P.
At the point P(2,2), the unit vector for the direction of steepest ascent is (-i + j)/√2, and the unit vector for the direction of steepest descent is (i - j)/√2. A vector that points in the direction of no change in the function at P is (2e^(-1/3)/49) i + (2e^(-1/3)/49) j + (2/7) k.
To find the unit vectors that give the direction of steepest ascent and steepest descent at P, we need to find the gradient of F at P and normalize it to obtain a unit vector.
First, we find the partial derivatives of F with respect to x and y
Fx = -2x e^(-x^2/(16-y^2))/((16-y^2)^2)
Fy = 2y e^(-x^2/(16-y^2))/((16-y^2)^2)
Plugging in the coordinates of P, we get
Fx(2,2) = -2e^(-1/3)/49
Fy(2,2) = 2e^(-1/3)/49
Therefore, the gradient of F at P is
∇F(2,2) = (-2e^(-1/3)/49) i + (2e^(-1/3)/49) j
To obtain the unit vector in the direction of steepest ascent, we normalize the gradient
u = (∇F(2,2))/||∇F(2,2)|| = (-i + j)/√2
To obtain the unit vector in the direction of steepest descent, we take the negative of u
v = -u = (i - j)/√2
To find a vector that points in a direction of no change in the function at P, we need to find a vector orthogonal to the gradient of F at P. One way to do this is to take the cross product of the gradient with the vector k in the z-direction
w = ∇F(2,2) x k = (2e^(-1/3)/49) i + (2e^(-1/3)/49) j + (2/7) k
Therefore, the vector that points in a direction of no change in the function at P is
(2e^(-1/3)/49) i + (2e^(-1/3)/49) j + (2/7) k
To know more about unit vectors:
https://brainly.com/question/30279109
#SPJ4
This sont Use a calculator or program to compute the first 10 iterations of Newton's method for the given function and initial approximation, f(x) = 2 sin x + 3x + 3, Xo = 1.5 Complete the table. (Do not round until the final answer. Then found to six decimal places as needed) k k XX 1 6 2 7 3 8 4 9 5 10
given: function f(x) = 2sin(x) + 3x + 3 ,Xo=1.5
1. Compute the derivative of the function, f'(x).
2. Use the iterative formula: Xₖ₊₁ = Xₖ - f(Xₖ) / f'(Xₖ)
3. Repeat the process 10 times.
First, let's find the derivative of f(x):
f'(x) = 2cos(x) + 3
Now, use the iterative formula to compute the iterations:
X₁ = X₀ - f(X₀) / f'(X₀)
X₂ = X₁ - f(X₁) / f'(X₁)
...
X₁₀ = X₉ - f(X₉) / f'(X₉)
Remember to not round any values until the final answer, and then round to six decimal places. Since I cannot actually compute the iterations, I encourage you to use a calculator or program to find the values for each Xₖ using the provided formula.
As President of Spirit Club, Rachel organized a "Day of Decades" fundraiser where students could pay a fixed amount to dress up as their favorite decade. Of the 19 students who participated, 15 of them dressed up as the '40s.
If Rachel randomly chose 16 of the participants to take pictures of for the yearbook, what is the probability that exactly 13 of the chosen students dressed up as the '40s?
Write your answer as a decimal rounded to four decimal places.
The probability of choosing exactly 13 students who dressed up as the 40s out of the 16 selected students is approx. 0.4334.
What is the probability of choosing exactly 13 students who dressed up as the 40s?We can model this situation as a hypergeometric distribution, where we have a population of 19 students, 15 of whom dressed up as the 40s.
We want to choose a sample of 16 students and find the probability that exactly 13 of them dressed up as the '40s.
The probability of choosing exactly 13 students who dressed up as the 40s can be calculated:
(number of ways to choose 13 students who dressed up as the 40s) * (number of ways to choose 3 students who dressed up as other decades) / (total number of ways to choose 16 students)
The number of ways to choose 13 students who dressed up as the '40s is the number of combinations of 15 choose 13:
(15 choose 13) = 105
The number of ways to choose 3 students who dressed up as other decades is the number of combinations of 4 choose 3, which is:
(4 choose 3) = 4
The total number of ways to choose 16 students from 19 is the number of combinations of 19 choose 16, which is:
(19 choose 16) = 969
105 * 4 / 969 = 0.4334
Therefore, the probability of choosing exactly 13 students who dressed up as the 40s = 0.4334 (rounded to four decimal places)
Learn more about probability at brainly.com/question/13604758
#SPJ1
Finx, Inc., purchased a truck for $40,000. The truck is expected to be driven 15,000 miles per year over a five-year period and then sold for approximately $5,000.
Determine depreciation for the first year of the truck's useful life by the straight-line and units-of-output methods if the truck is actually driven 16,000 miles. (Round depreciation per mile for the units-of-output method to the nearest whole cent).
The depreciation for the first year of the truck's useful life is $7,467 by the straight-line method and $2,720 by the units-of-output method.
Straight-line method:Depreciation per year = (Cost - Salvage value) / Useful life
Depreciation per year = (40,000 - 5,000) / 5 = $7,000
Depreciation for the first year = (16,000 / 15,000) x $7,000 = $7,467
Units-of-output method:Depreciation per mile = (Cost - Salvage value) / Total miles expected to be driven
Depreciation per mile = (40,000 - 5,000) / (5 x 15,000) = $0.17/mile
Depreciation for the first year = 16,000 x $0.17 = $2,720
Therefore, the depreciation for the first year of the truck's useful life is $7,467 by the straight-line method and $2,720 by the units-of-output method.
Learn more about The depreciation
https://brainly.com/question/30531944
#SPJ4
Jose reads his book at an average rate of
2. 5
2. 5 pages every four minutes. If Jose continues to read at exactly the same rate what method could be used to determine how long it would take him to read
20
20 pages?
It would take Jose approximately 3232 minutes (or about 53.87 hours) to read 2020 pages at the same rate of 2.5 pages every four minutes.
To determine how long it would take Jose to read 2020 runners at the same rate of2.5 runners every four twinkles, we can use a proportion. Let x be the number of twinkles it would take Jose to read 2020 runners. also, we can set up the following proportion:
2.5 pages / 4 minutes = 2020 pages / x minutes
To solve for x, we can cross-multiply and simplify:
2.5 pages * x minutes = 4 minutes * 2020 pages
2.5x = 8080
x = 8080 / 2.5
x = 3232
Therefore, it would take Jose approximately 3232 minutes to read 2020 pages at the same rate of 2.5 pages every four minutes.
Learn more about equations at
https://brainly.com/question/246646
#SPJ4
(upper and lower bounds)
a
=
8.4
rounded to 1 dp
b
=
6.19
rounded to 2 dp
find the minimum of
a
−
b
The minimum value of a - b is around 2.2 with a = 8.4 rounded to one decimal place and b = 6.19 rounded to two decimal places.
We must first subtract b (lower bound) from a (upper bound) to determine the least value of a - b, which is equal to 8.4 - 6.19 = 2.21. 2.21 is the difference between a and b. However, the question requests that we round off this number to the nearest tenth.
We remove the first decimal point because 1 is
less than 5, giving us 2.2. Hence the minimum value of a -b to the nearest decimal is found to be 2.2.
To know more about upper bound visit:
https://brainly.com/question/31219875
#SPJ4
The complete question is:
Given a = 8.4 rounded to 1 decimal place and b = 6.19 rounded to 2 decimal places, find the minimum value of a - b rounded to 1 decimal place.
O A fifth grade
class is split into groups
of
students. The teacher brought in candy
bars for a fraction celebration. When it
was time for
the celebration,
the teacher'
gave each
group
6
candi bars. How much
does each student get. Al representation
Answer:
IT depends on how many kids there are per group.
Step-by-step explanation:
The random variable x is the number of occurrences of an event over an interval of ten minutes. it can be assumed that x has a poisson probability distribution. it is known that the mean number of occurrences in ten minutes is 5. the probability that there are 2 occurrences in ten minutes is
The evaluated probability that there have been 2 occurrences in ten minutes is 0.0842, under the condition that the mean number of occurrences in ten minutes is 5.
Here we have to apply the Poisson distribution formula. The formula is
[tex]P(X = k) = (e^{-g} * g^k) / k!,[/tex]
Here
X = number of occurrences,
k = number of occurrences we want to find the probability for,
e = Number of Euler's
g = mean number of occurrences in ten minutes.
For the given case, g = 5 since
Therefore,
P(X = 2) = (e⁻⁵ × 5²) / 2!
≈ 0.0842.
Hence, after careful consideration the evaluated probability that there are 2 occurrences in ten minutes is 0.0842.
To learn more about probability
https://brainly.com/question/13604758
#SPJ4
The function C (t) = 60 + 24t is used to find the total cost (in dollars) of renting an industrial cleaning unit for thours.
What does C (12) represent?
The cost at half the hourly rate
The cost of renting the unit for 12 days
The cost of renting the unit for 12 hours
Twelve times the cost of renting the unit for 1 hour
C(12) represents the total cost (in dollars) of renting the industrial cleaning unit for 12 hours.
How to find the representation of function?The problem gives us a function C(t) = 60 + 24t, where t represents the number of hours that an industrial cleaning unit is rented for. The function tells us that the total cost (in dollars) of renting the unit is equal to $60 plus $24 per hour.
Now, we are asked to find what C(12) represents. To do so, we substitute t = 12 into the function, which gives us:
C(12) = 60 + 24(12)
We can simplify this expression by multiplying 24 by 12, which gives us:
C(12) = 60 + 288
Adding 60 and 288 together, we get:
C(12) = 348
So, C(12) represents the total cost (in dollars) of renting the industrial cleaning unit for 12 hours. Therefore, the correct answer to the question is: The cost of renting the unit for 12 hours.
Learn more about Functions
brainly.com/question/23040788
#SPJ11
Evaluate the integral ∫8(1-tan²(x)/sec² dx Note Use an upper-case "C" for the constant of integration
The integral ∫8(1-tan²(x)/sec² dx Note Use an upper-case "C" for the constant of integration is ∫8(1-tan²(x)/sec²(x)) dx = 8 tan(x) + C where C is the constant of integration.
To evaluate the integral ∫8(1-tan²(x)/sec²(x)) dx, we need to use trigonometric identities to simplify the integrand.
First, we use the identity tan²(x) + 1 = sec²(x) to rewrite the integrand as follows:
8(1 - tan²(x)/sec²(x)) = 8(sec²(x)/sec²(x) - tan²(x)/sec²(x))
Simplifying this expression by canceling out the common factor of sec²(x), we get:
8(sec²(x) - tan²(x))/sec²(x)
Next, we use the identity sec²(x) = 1 + tan²(x) to simplify the expression further:
8(sec²(x) - tan²(x))/sec²(x) = 8((1 + tan²(x)) - tan²(x))/sec²(x)
Simplifying the expression inside the parentheses, we obtain:
8/ sec²(x)
Therefore, the integral simplifies to:
∫8(1-tan²(x)/sec²(x)) dx = ∫8/ sec²(x) dx
We can now use the substitution u = cos(x) and du/dx = -sin(x) dx to transform the integral into a simpler form:
∫8/ sec²(x) dx = ∫8/cos²(x) dx = 8∫cos(x)² dx
Using the power-reducing formula cos²(x) = (1 + cos(2x))/2, we get:
8∫cos(x)² dx = 8/2 ∫(1 + cos(2x))/2 dx = 4(x + 1/2 sin(2x)) + C
Substituting back u = cos(x), we obtain:
∫8(1-tan²(x)/sec²(x)) dx = 8 tan(x) + C
where C is the constant of integration.
To learn more about integral visit: https://brainly.com/question/18125359
#SPJ11
What are the operations in the equation 4x – 5 = 7? What operations do you need to use to solve for x?
Answer:
x=3, Adding and dividing. (Im not too sure how to answer that question, Are there some options that you learned in class?)
Step-by-step explanation:
4x-5=7
+5 +5
4x=12
/4 /4
x=3
What’s the answer? I need help please
Answer: 10/12
Step-by-step explanation:
since they give you adjacent to angle m and hypotenuse use
cos x = opp/hyp
cos M = 10/12
A boat travels a straight route from the marina to the beach. The marina is located at point (0,0) on a coordinate plane, where each unit represents 1 mile. The beach is 3. 5 miles east and 4 miles south from the marina. Use the positive y-axis as north. What is the distance the boat travels to get to the beach? Round your answer to the nearest tenth. *
The distance the boat travels to get to the beach is approximately 5.0 miles.
To see why, we can draw a right triangle on the coordinate plane, with one leg along the x-axis (going 3.5 miles east) and the other leg along the y-axis (going 4 miles south). The hypotenuse of this triangle is the straight distance from the marina to the beach, which is the distance the boat travels.
Using the Pythagorean theorem, we can find the length of the hypotenuse:
c^2 = a^2 + b^2
c^2 = (3.5)^2 + (4)^2
c^2 = 12.25 + 16
c^2 = 28.25
c ≈ 5.0
Therefore, the distance the boat travels to get to the beach is approximately 5.0 miles.
To know more about distance, visit:
https://brainly.com/question/15172156#
#SPJ11
Find an equation in the slope-intercept form for the line: slope = 4, y-intercept = 4
Answer:
y=4x+4
Step-by-step explanation:
The slope formula is:
[tex]y=mx+b[/tex]
with m being the slope and b being the y-intercept
Given: slope=4, y-intercept=4
We can substitute the slope and the y-intercept into the question:
y=4x+4
Hope this helps! :)
The equation of the line in slope-intercept form of a line with slope 4 and y-intercept 4 is [tex]\text{y} = 4\text{x} + 4[/tex].
What is the slope?The ratio that y increase as x increases is the slope of a line. The slope of a line reflects how steep it is, but how much y increases as x increases. Anywhere on the line, the slope stays unchanged (the same).
[tex]\text{m}=\dfrac{\text{y}_2-\text{y}_1}{\text{x}_2-\text{x}_1}[/tex]
[tex]\text{m}=\dfrac{(\text{y}\bar{\text{a}}-\text{y}\bar{\text{a}})}{(\text{x}\bar{\text{a}}-\text{x}\bar{\text{a}})}[/tex]
It is given that:
A line with slope 4 and y-intercept 4.
The linear equation in one variable can be made:
As we know,
The standard equation of the line is:
[tex]\text{y} = \text{mx} + \text{c}[/tex]
Here m is the slope and c is the y-intercept.
[tex]\text{m} = 4[/tex]
[tex]\text{c} = 4[/tex]
[tex]\boxed{\bold{y = 4x + 4}}[/tex]
Thus, the equation of the line in slope-intercept form of a line with slope 4 and y-intercept 4 is [tex]\text{y} = 4\text{x} + 4[/tex].
Learn more about the slope here:
brainly.com/question/3605446