Answer:
The answer is option 2.
Explanation:
Both sides are pulling the rope with equal force where the rope doesn't move. So they have a balanced forces.
You have just landed on Planet X. You take out a ball of mass 100 gg , release it from rest from a height of 16.0 mm and measure that it takes a time of 2.90 ss to reach the ground. You can ignore any force on the ball from the atmosphere of the planet. How much does the 100-g ball weigh on the surface of Planet X?
Answer:
0.173 N.
Explanation:
We will calculate the mass and then use the following calculations on the surface of planet X that is :
[tex]W=mg[/tex]
We would use the following equation to get the value of g for planet X that is :
[tex]y_f-y_i=v_{yi}t+\frac{1}{2}gt^2[/tex]
Then, put the values in the above equation.
[tex]16=0+\frac{1}{2}\times g\times(2.90)^2[/tex]
[tex]\bf\mathit{g=3.80\;m/s^2}[/tex]
Now, we will measure the ball weight on planet X's surface:
[tex]m=\frac{100}{1000} \;\;\;\;\;\;\;\;\;\;[1kg=1000g][/tex]
Then, we have to put the value in the above equation.
[tex]W=0.1\times 1.73=0.173\:N[/tex]
How much displacement will a spring with a constant of 120N / m achieve if it is stretched by a force of 60N?
Answer:
Explanation:
There's a formula for this:
[tex]F = k*displacement[/tex]
F being force, k being the spring constant, and displacement being the change in x
We are given the force and the spring constant, so this is essentially isolating the Δx term. Do 60N/120N per meter. The newtons cancel out and you get a final answer of Δx = 0.5 meters
Aparticlewhosemassis2.0kgmovesinthexyplanewithaconstantspeedof3.0m/s along the direction r = i + j . What is its angular momentum (in kg · m2/s) relative to the point (0, 5.0) meters?
Answer:
[tex]\vec{L}=-30\frac{kgm^2}{s}\hat{k}[/tex]
Explanation:
In order to calculate the angular momentum of the particle you use the following formula:
[tex]\vec{L}=\vec{r}\ X\ \vec{p}[/tex] (1)
r is the position vector respect to the point (0 , 5.0), that is:
r = 0m i + 5.0m j (2)
p is the linear momentum vector and it is given by:
[tex]\vec{p}=m\vec{v}=(2.0kg)(3.0m/s)(\hat{i+\hat{j}})=6\frac{kgm}{s}(\hat{i}+\hat{j})[/tex] (3)
the direction of p comes from the fat that the particle is moving along the i + j direction.
Then, you use the results of (2) and (3) in the equation (1) and solve for L:
[tex]\vec{L}=-30\frac{kgm^2}{s}\hat{k}[/tex]
The angular momentum is -30 kgm^2/s ^k
A ball thrown horizontally from the top of a building hits the ground in 0.600 s. If it had been thrown with twice the speed in the same direction, it would have hit the ground in:________.
a. 4.0 s.
b. 1.0 s.
c. 0.50 s.
d. 0.25 s.
e. 0.125 s.
Answer:
none of the answers is correct, the time is the same t₁ = t₂ = 0.600 s
Explanation:
This is a kinematics exercise, analyze the situation a bit. The vertical speed in both cases is the same is zero, the horizontal speed in the second case is double (vₓ₂ = 2 vₓ₁)
let's find the time to hit the ground
y = y₀ + I go t - ½ g t²
0 = y₀ - ½ g t²
t = √ 2y₀ / g
with the data from the first launch
y₀i = ½ g t²
y₀ = ½ 9.8 0.6²
y₀ = 1,764 m
with this is the same height the time to descend in the second case is the same
t₂ = 0.600 s
this is because the horizontal velocity change changes the offset on the x axis, but does not affect the offset on the y axis
Therefore, none of the answers is correct, the time is the same
t₁ = t₂ = 0.600 s
An underwater diver sees the sun at an apparent angle of 45.00 from the vertical. How far is the sun above the horizon? [n in water=1.333
Answer:
19.872 degrees
Explanation:
Mathematically;
Using Snell’s law
n1 sin A = n2 sinB
Where ;
n1 = refractive index in air = 1
n2 is refractive index in water = 1.33
A = ?
B = 45
Substituting the values in the equation;
1 sin A = 1.33 sin45
Sin A = 1.33 sin 45
A = arc sin (1.33 sin 45)
A = 70.12
Thus, the actual direction of the Sun with respect to the horizon = 90-A = 19.872 degrees
A 2 kg object is subjected to three forces that give it an acceleration −→a = −(8.00m/s^2)ˆi + (6.00m/s^2)ˆj. If two of the three forces, are −→F1 = (30.0N)ˆi + (16.0N)ˆj and −→F2 = −(12.0N)ˆi + (8.00N)ˆj, find the third force.
Answer:
[tex]\vec{F_3}=(-34.0N)\hat{i}+(-12.0N)\hat{j}[/tex]
Explanation:
You have three forces F1, F2 an F3 that produce the following acceleration:
a = −(8.00m/s^2)ˆi + (6.00m/s^2)ˆj
you know that force F1 and F2 are:
F1 = (30.0N)ˆi + (16.0N)ˆj
F2 = −(12.0N)ˆi + (8.00N)ˆj
and the force F3 is unknown:
F3 = F3x ˆi + F3y ˆj
The second Newton law is given by the following equation:
[tex]\vec{F}=m\vec{a}[/tex]
F: the total force = F1 +F2 + F3
m: mass of the object = 2 kg
By the properties of vectors you have:
[tex]\vec{F_1}+\vec{F_2}+\vec{F_3}=m\vec{a}\\\\(30.0-12.0+F_{3x})N\hat{i}+(16.0+8.00+F_{3y})N\hat{j}=(2.0kg)[(-8.00m/s^2)\hat{i}+(6.00m/s^2)\hat{j}]\\\\(18.0+F_{3x})N\hat{i}+(24.0+F_{3y})\hat{j}=(-16.00N)\hat{i}+(12.0N)\hat{j}[/tex]
Both x and y component must be equal in the previous equality, then you have:
[tex]18.0N+F_{3x}=-16.00N\\\\F_{3x}=-34.00N\\\\24.0N+F_{3y}=12.0N\\\\F_{3y}=-12.00N[/tex]
Hence, the vector F3 is:
[tex]\vec{F_3}=(-34.0N)\hat{i}+(-12.0N)\hat{j}[/tex]
Chapter 24, Problem 20 GO A politician holds a press conference that is televised live. The sound picked up by the microphone of a TV news network is broadcast via electromagnetic waves and heard by a television viewer. This viewer is seated 2.9 m from his television set. A reporter at the press conference is located 4.1 m from the politician, and the sound of the words travels directly from the celebrity's mouth, through the air, and into the reporter's ears. The reporter hears the words exactly at the same instant that the television viewer hears them. Using a value of 343 m/s for the speed of sound, determine the maximum distance between the television set and the politician. Ignore the small distance between the politician and the microphone. In addition, assume that the only delay between what the microphone picks up and the sound being emitted by the television set is that due to the travel time of the electromagnetic waves used by the network.
Answer:
Therefore, the distance between politician and TV set is 2536kmExplanation:
Assuming that the TV signal is sent in a straight line from the camera to the TV receiver, which is very far from the truth.
The reporter hears the sound is
4.1 / 343 = 0.01195 s later
The viewer hears the sound from the TV is
2.9 / 343 = 0.00845s
the difference is 0.00845 sec
the question is how far the TV signal can travel in that time.
the distance between politician and TV set is
= 0.00845 * 3*10^8 m
= 2536 km
d = 2536km
Therefore, the distance between politician and TV set is 2536kmHow many ohms of resistance are in a 120–volt hair dryer that draws 7.6 amps of current?
From Ohm's law . . . Resistance = (voltage) / (current)
Resistance = (120 volts) / (7.6 Amperes)
Resistance = 15.8 Ω
Problem 3A solid uniform sphere of mass 120 kg and radius 1.7 m starts from rest and rolls without slipping down an inclined plane of vertical height 5.3 m. What is the angular speed of the sphere at the bottom of the inclined plane
Answer:
5.1 rad/s
Explanation:
Mechanical energy of the system is conserved since no external work is done on the sphere.
[tex]mgh = mv^2/2 + I\omega^2/2[/tex]
Substituting v = ωr and I = 2 m r^2/5, we get,
=> [tex]mgh=m(\omega r)^2/2 + (2\omega r^2/5)\omega^2/2[/tex]
=> [tex]mgh = m\omega^2r^2/2 + m\omega^2r^2/5[/tex]
=> [tex]gh =\omega^2r^2/2+\omega^2r^2/5[/tex]
=> [tex]gh = 7\omega^2 r^2/10[/tex]
=> [tex]\omega r = (10gh/7)^{1/2}[/tex]
=> [tex]\omega = (1/r)(10gh/7)^{1/2} = (1 / 1.7)(10\times 9.8\times 5.3 / 7)^{1/2}[/tex] = 5.1 rad/s
To move a large crate across a rough floor, you push on it with a force at an angle of 15 degrees below the horizontal. Find the force necessary to start the crate moving, given that the mass of the crate is 32 kg and the coefficient of static friction between the crate and the floor is 0.49.
Answer:
663N
Explanation:
We need to find the force that will overcome the frictional force.
The angle of the normal force is 15°.
The mass of the crate is 32 kg
The coefficient of static friction is 0.49
Frictional force is given in terms of Normal force as:
F = μNcosθ
where μ = coefficient of static friction
N = normal force
θ = angle of normal force
Frictional force is given as:
F = mg
=>mg = μNcosθ
=> N = mg/(μcosθ)
N = (32 * 9.8) / (0.49 * cos15)
N= 313.6 / 0.473
N = 663 N
The force needed to cause the box to move must be 663N or greater.
Which of the following statements is true of a gas?
It has a fixed volume, but not a fixed shape
It has closely packed molecules
It can change into a liquid by adding heat
It takes the shape and size of a container
Answer:
it takes the shape and size of the container that it is in
Explanation:
Answer:
it takes the shape and size of a container
A high diver of mass 60.0 kg steps off a board 10.0 m above the water and falls vertical to the water, starting from rest. If her downward motion is stopped 2.10 s after her feet first touch the water, what average upward force did the water exert on her
Answer:
The average upward force exerted by the water is 988.2 N
Explanation:
Given;
mass of the diver, m = 60 kg
height of the board above the water, h = 10 m
time when her feet touched the water, t = 2.10 s
The final velocity of the diver, when she is under the influence of acceleration of free fall.
V² = U² + 2gh
where;
V is the final velocity
U is the initial velocity = 0
g is acceleration due gravity
h is the height of fall
V² = U² + 2gh
V² = 0 + 2 x 9.8 x 10
V² = 196
V = √196
V = 14 m/s
Acceleration of the diver during 2.10 s before her feet touched the water.
14 m/s is her initial velocity at this sage,
her final velocity at this stage is zero (0)
V = U + at
0 = 14 + 2.1(a)
2.1a = -14
a = -14 / 2.1
a = -6.67 m/s²
The average upward force exerted by the water;
[tex]F_{on\ diver} = mg - F_{ \ water}\\\\ma = mg - F_{ \ water}\\\\F_{ \ water} = mg - ma\\\\F_{ \ water} = m(g-a)\\\\F_{ \ water} = 60[9.8-(-6.67)]\\\\F_{ \ water} = 60 (9.8+6.67)\\\\F_{ \ water} = 60(16.47)\\\\F_{ \ water} = 988.2 \ N[/tex]
Therefore, the average upward force exerted by the water is 988.2 N
Two identical objects are pressed against two different springs so that each spring stores 55.0J of potential energy. The objects are then released from rest. One spring is quite stiff (hard to compress), while the other one is quite flexible (easy to compress).Which of the following statements is or are true? (More than one statement may be true.)A. Both objects will have the same maximum speed after being released.B. The object pressed against the stiff spring will gain more kinetic energy than the other object.C. Both springs are initially compressed by the same amount.D. The stiff spring has a larger spring constant than the flexible spring.E. The flexible spring must have been compressed more than the stiff spring.
Answer:
A , D , E
Explanation:
Solution:-
- Consider the two identical objects with mass ( m ).
- The stiffness of the springs are ( k1 and k2 ).
- Both the spring store 55.0 J of potential energy.
- We will apply the principle of energy conservation on both the systems. In both cases the spring stores 55.0 Joules of energy. Once released, the objects gain kinetic energy with a consequent loss of potential energy in either spring.
- The maximum speed ( v ) is attained when all the potential energy is converted to kinetic energy.
- Apply Energy conservation for spring with stiffness ( k1 ).
ΔU = ΔEk
55.0 = 0.5*m*v^2
v = √ ( 110 / m )
- Apply Energy conservation for spring with stiffness ( k2 ).
ΔU = ΔEk
55.0 = 0.5*m*v^2
v = √ ( 110 / m )
Answer: Both objects will have the same maximum speed ( A )
- We are told that one spring is more stiff as compared to the other one. The measure of stiffness is proportionally quantified by the spring constant. To mathematically express we can write it as:
k1 > k2
Where,
k1: The stiff spring
k2: The flexible spring
Answer: The stiff spring has a larger spring constant than the flexible spring. ( D )
- We will assume that the spring with constant ( k1 ) undergoes a displacement ( x1 ) and the spring with constant ( k2 ) undergoes a displacement ( x2 ). The potential energy stored in both spring is the same. Hence,
U1 = U2
0.5*( k1 ) * ( x1 )^2 = 0.5*( k2 ) * ( x2 )^2
[ k1 / k2 ] = [ x2 / x1 ]^2
Since,
k1 > k2 , then [ k1 / k2 ] > 1
Then,
[ x2 / x1 ]^2 > 1
[ x2 / x1 ] > 1
x2 > x1
Answer: The flexible spring ( x2 ) was compressed more than the stiff spring ( x1 ). ( E )
An object is known to have a coefficient of kinetic friction (µk) of 0.167 and a coefficient of static friction (µk) of 0.42. If the normal force is 200 N, how much frictional force will it encounter while it is moving?
Answer:
Ff = 33.4N
Explanation:
To find the frictional force while the object is moving, you take into account that the friction force depends of the coefficient of kinetic friction.
The frictional force is given by:
[tex]F_f=\mu_kN[/tex] (1)
Ff: frictional force = ?
µk: coefficient of kinetic friction = 0.167
N: normal force of the object = 200N
You replace the values of the parameters in the equation (1):
[tex]F_f=(0.167)(200N)=33.4N[/tex]
The frictional force, while the objects is moving, is 33.4N
A beam of light is incident upon a flat piece of glass (n = 1.50) at an angle of incidence of 30.00. Part of the beam is transmitted and part is reflected. Determine the angle between the reflected and transmitted rays
Answer:
130.528779365 degrees
Explanation:
The angle of incidence is 30 degrees. From this, we can use Snell's Law to calculate the angle of refraction.
n1/n2 = sin(theta2)/sin(theta1)
let theta1 be 30 degrees, and n1 be the refractive index of air = 1
1/1.5 = sin(theta2)/sin(30deg)
solve:
sin(theta2) = 2/3 sin(30deg) = 1/3
theta2 = arcsin (1/3) = 19.4712206345 degrees
The angle of reflection will always be equal to the angle of incidence, in this case, 30 degrees.
Because these angles are measured relative to the normal, the angle formed between the two rays is the difference between the normal line (180 degrees) and the sum of the two angle measures.
Angle between = 180-30-19.4712206345 = 130.528779365 degrees
The angle between the reflected and transmitted rays 130.5287 degrees
What is the refraction of light?The angle of incidence is 30 degrees. From this, we can use Snell's Law to calculate the angle of refraction.
[tex]\dfrac{n_1}{n_2} = \dfrac{sin(\theta_2)}{sin(\theta_1)}[/tex]
let [tex]\theta_1[/tex] be 30 degrees, and n1 be the refractive index of air = 1
[tex]\dfrac{1}{1.5} = \dfrac{sin(\theta_2)}{sin(30)}[/tex]
solve:
[tex]sin(\theta_2) = \dfrac{2}{3} sin(30) = \dfrac{1}{3}[/tex]
[tex]\theta_2 = sin ^{-1}\dfrac{1}{3} = 19.4712 \ degrees[/tex]
The angle of reflection will always be equal to the angle of incidence, in this case, 30 degrees.
Because these angles are measured relative to the normal, the angle formed between the two rays is the difference between the normal line (180 degrees) and the sum of the two angle measures.
Angle between = 180-30-19.4712206345 = 130.528779365 degrees
Hence the angle between the reflected and transmitted rays 130.5287 degrees
To know more about the Refraction of light follow
https://brainly.com/question/10729741
The cornea behaves as a thin lens of focal lengthapproximately 1.80 {\rm cm}, although this varies a bit. The material of whichit is made has an index of refraction of 1.38, and its front surface is convex,with a radius of curvature of 5.00 {\rm mm}.(Note: The results obtained here are not strictlyaccurate, because, on one side, the cornea has a fluid with arefractive index different from that of air.)a) If this focal length is in air, what is the radius ofcurvature of the back side of the cornea? (in mm)b) The closest distance at which a typical person can focus onan object (called the near point) is about 25.0 {\rm cm}, although this varies considerably with age. Wherewould the cornea focus the image of an 10.0 {\rm mm}-tall object at the near point? (in mm)c) What is the height of the image in part B? (mm)d) Is this image real or virtual? Is it erect orinverted?
Answer:
Explanation:
a )
from lens makers formula
[tex]\frac{1}{f} =(\mu-1)(\frac{1}{r_1} -\frac{1}{r_2})[/tex]
f is focal length , r₁ is radius of curvature of one face and r₂ is radius of curvature of second face
putting the values
[tex]\frac{1}{1.8} =(1.38-1)(\frac{1}{.5} -\frac{1}{r_2})[/tex]
1.462 = 2 - 1 / r₂
1 / r₂ = .538
r₂ = 1.86 cm .
= 18.6 mm .
b )
object distance u = 25 cm
focal length of convex lens f = 1.8 cm
image distance v = ?
lens formula
[tex]\frac{1}{v} - \frac{1}{u} = \frac{1}{f}[/tex]
[tex]\frac{1}{v} - \frac{1}{-25} = \frac{1}{1.8}[/tex]
[tex]\frac{1}{v} = \frac{1}{1.8} -\frac{1}{25}[/tex]
.5555 - .04
= .515
v = 1.94 cm
c )
magnification = v / u
= 1.94 / 25
= .0776
size of image = .0776 x size of object
= .0776 x 10 mm
= .776 mm
It will be a real image and it will be inverted.
Two plates with area 7.00×10−3 m27.00×10−3 m2 are separated by a distance of 4.80×10−4 m4.80×10−4 m . If a charge of 5.40×10−8 C5.40×10−8 C is moved from one plate to the other, calculate the potential difference (voltage) between the two plates. Assume that the separation distance is small in comparison to the diameter of the plates.
Answer:
The voltage is [tex]V = 418.60 \ Volts[/tex]
Explanation:
From the question we are told that
The area of the both plate is [tex]A = 7.00 *10^{-3} \ m^2[/tex]
The distance between the plate is [tex]d = 4.80*10^{-4}\ m[/tex]
The magnitude of the charge is [tex]q = 5.40 *10^{-8} \ C[/tex]
The capacitance of the capacitor that consist of the two plates is mathematically represented as
[tex]C = \frac{\epsilon _o A}{d}[/tex]
Where [tex]\epsilon_o[/tex] is the permitivity of free space with a value [tex]e = 8.85*10^{-12} \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]
So
[tex]C = \frac{8.85*10^{-12} * (7* 10^{-3})}{ 4.8*10^{-4}}[/tex]
[tex]C = 1.29 *10^{-10} \ F[/tex]
The potential difference between the plate is mathematically represented as
[tex]V = \frac{ Q}{C }[/tex]
[tex]V = \frac{ 5.4*10^{-8}}{1.29 *10^{-10}}[/tex]
[tex]V = 418.60 \ Volts[/tex]
John pushes Hector on a plastic toboggan.The free-body diagram is shown. A free body diagram with 4 force vectors. The first vector is pointing downward, labeled F Subscript g Baseline = negative 490 N. The second vector is pointing right, labeled F Subscript t Baseline = 735 N. The third vector is pointing upward, labeled F Subscript N Baseline = 490 N. The fourth vector is pointing left, labeled F Subscript f Baseline = negative 245 N. The up and down vectors are the same length. The right vector is longer than the left vector. What is the net force acting on Hector and the toboggan?
Answer:
490 N
Explanation:
is the correct answer
If the up and down vectors are the same length. The right vector is longer than the left vector, then the net force acting on Hector and the toboggan would be 490 Newtons.
What is Newton's second law?Newton's Second Law states that The resultant force acting on an object is proportional to the rate of change of momentum.
As given in the problem John pushes Hector on a plastic toboggan .The free-body diagram is shown. A free body diagram with 4 force vectors. The first vector is pointing downward, labeled F Subscript g Baseline = negative 490 N. The second vector is pointing right, labeled F Subscript t Baseline = 735 N. The third vector is pointing upward, labeled F Subscript N Baseline = 490 N. The fourth vector is pointing left, labeled F Subscript f Baseline = negative 245 N.
The net force acting on the vertical direction = 490-490
=0
The net force acting on the horizontal direction = 735 -245
=490 Newtons
Thus, the net force acting on Hector and the toboggan would be 490 Newtons.
Learn more about Newton's second law from here, refer to the link ;
brainly.com/question/13447525
#SPJ5
assuming 100% efficient energy conversion how much water stored behind a 50 centimeter high hydroelectric dam would be required to charged the battery
Answer:
The amount of water that will power a battery with that rating = 7.35 m³
Explanation:
The power rating for the battery is missing from the question.
Complete Question
Assuming 100% efficient energy conversion how much water stored behind a 50 centimeter high hydroelectric dam would be required to charged the battery with power rating, 12 V, 50 Ampere-minutes
Solution
Potential energy possessed by water at that height = mgH
m = mass of the water = ρV
ρ = density of water = 1000 kg/m³
V = volume of water = ?
g = acceleration due to gravity = 9.8 m/s²
H = height of water = 50 cm = 0.5 m
Potential energy = ρVgH = 1000 × V × 9.8 × 0.5 = (4900V) J
Energy of the battery = qV
q = 50 A.h = 50 × 60 = 3,000 C
V = 12 V
qV = 3,000 × 12 = 36,000 J
Energy = 36,000 J
At a 100% conversion rate, the energy of the water totally powers the battery
(4900V) = (36,000)
4900V = 36,000
V = (36,000/4900)
V = 7.35 m³
Hope this Helps!!!
An 80-kg quarterback jumps straight up in the air right before throwing a 0.43-kg football horizontally at 15 m/s . How fast will he be moving backward just after releasing the ball?
Sort the following quantities as known or unknown. Take the horizontal direction to be along the x axis.
mQ: the mass of the quarterback
mB: the mass of the football
(vQx)i: the horizontal velocity of quarterback before throwing the ball
(vBx)i: the horizontal velocity of football before being thrown
(vQx)f: the horizontal velocity of quarterback after throwing the ball
(vBx)f: the horizontal velocity of football after being thrown
Answer:
vBxf = 0.08625m/s
Explanation:
This is a problem about the momentum conservation law. The total momentum before equals the total momentum after.
[tex]p_f=p_i[/tex]
pf: final momentum
pi: initial momentum
The analysis of the momentum conservation is about a horizontal momentum (x axis). When the quarterback jumps straight up, his horizontal momentum is zero. Then, after the quarterback throw the ball the sum of the momentum of both quarterback and ball must be zero.
Then, you have:
[tex]m_Qv_{Qxi}+m_{Bxi}v_{Bxi}=m_Qv_{Qxf}+m_{Bxf}v_{Bxf}[/tex] (1)
mQ: the mass of the quarterback = 80kg
mB: the mass of the football = 0.43kg
(vQx)i: the horizontal velocity of quarterback before throwing the ball = 0m/s
(vBx)i: the horizontal velocity of football before being thrown = 0m/s
(vQx)f: the horizontal velocity of quarterback after throwing the ball = ?
(vBx)f: the horizontal velocity of football after being thrown = 15 m/s
You replace the values of the variables in the equation (1), and you solve for (vBx)f:
[tex]0\ kgm/s=-(80kg)(v_{Bxf})+(0.46kg)(15m/s)\\\\v_{Bxf}=\frac{(0.46kg)(15m/s)}{80kg}=0.08625\frac{m}{s}[/tex]
Where you have taken the speed of the quarterback as negative because is in the negative direction of the x axis.
Hence, the speed of the quarterback after he throws the ball is 0.08625m/s
Which of these charges is experiencing the electric field with the largest magnitude? A 2C charge acted on by a 4 N electric force. A 3C charge acted on by a 5N electric force. A 4C charge acted on by a 6N electric force. A 2C charge acted on by a 6N electric force. A 3C charge acted on by a 3N electric force. A 4C charge acted on by a 2N electric force. All of the above are experiencing electric fields with the same magnitude
Answer:
The highest electric field is experienced by a 2 C charge acted on by a 6 N electric force. Its magnitude is 3 N.
Explanation:
The formula for electric field is given as:
E = F/q
where,
E = Electric field
F = Electric Force
q = Charge Experiencing Force
Now, we apply this formula to all the cases given in question.
A) A 2C charge acted on by a 4 N electric force
F = 4 N
q = 2 C
Therefore,
E = 4 N/2 C = 2 N/C
B) A 3 C charge acted on by a 5 N electric force
F = 5 N
q = 3 C
Therefore,
E = 5 N/3 C = 1.67 N/C
C) A 4 C charge acted on by a 6 N electric force
F = 6 N
q = 4 C
Therefore,
E = 6 N/4 C = 1.5 N/C
D) A 2 C charge acted on by a 6 N electric force
F = 6 N
q = 2 C
Therefore,
E = 6 N/2 C = 3 N/C
E) A 3 C charge acted on by a 3 N electric force
F = 3 N
q = 3 C
Therefore,
E = 3 N/3 C = 1 N/C
F) A 4 C charge acted on by a 2 N electric force
F = 2 N
q = 4 C
Therefore,
E = 2 N/4 C = 0.5 N/C
The highest field is 3 N, which is found in part D.
A 2 C charge acted on by a 6 N electric force
A river flows due south with a speed of 5.00 m/s. A man steers a motorboat across the river; his velocity relative to the water is 4.00 m/s due east. The river is 780 m wide. Part A What is the magnitude of his velocity relative to the earth
Answer:
6.4 m/s
Explanation:
From the question, we are given that
Speed of the river, v(r) = 5 m/s
velocity relative to the water, v(w) = 4 m/s
Width of the river, d = 780 m
The magnitude of his velocity relative to the earth is v(m)
v(m) can be gotten by using the relation
[v(m)]² = [v(w)]² + [v(r)]²
[v(m)]² = 4² + 5²
[v(m)]² = 16 + 25
[v(m)]² = 41
v(m) = √41
v(m) = 6.4 m/s
thus, the magnitude of the velocity relative to earth is 6.4 m/s
A rocket rises vertically, from rest, with an acceleration of 3.99 m/s2 until it runs out of fuel at an altitude of 775 m. After this point, its acceleration is due to gravity downwards. What is the speed of the rocket, in m/s, when it runs out of fuel?
Answer:
Vf = 78.64 m/s
Explanation:
The rocket is travelling upward at a constant acceleration of 3.99 m/s² until it runs out of fuel. So, in order to calculate its velocity at the point, where it runs out of fuel, we can simply use 3rd equation of motion:
2as = Vf² - Vi²
where,
a = acceleration = 3.99 m/s²
s = distance or height covered by rocket till fuel runs out = 775 m
Vf = Final Velocity = ?
Vi = Initial velocity = 0 m/s (Since, rocket starts from rest)
Therefore,
2(3.99 m/s²)(775 m) = Vf² - (0 m/s)²
Vf = √(6184.5 m²/s²)
Vf = 78.64 m/s
an object's resistance to any change in motion is the_________ of the object.
An object's resistance to any change in motion is the Inertia of the object.
please help! i will be giving 50 points, this is for my psychology class.
Iris has been ahead of her classmates for as long as she has been in school. Lately, her classmates have started making fun of her for being a “teacher’s pet,” and they mock her whenever she raises her hand to answer a question.
Iris is most likely being negatively stereotyped as being __________.
A.
below average
B.
normal
C.
intellectually disabled
D.
gifted
Answer:
D
Explanation:
the other students are making fun of her most likely because they are jealous that she is successing in school. hope this helps :)
Answer:
D
Explanation:
Two large insulating parallel plates carry charge of equal magnitude, one positive and the other negative, that is distributed uniformly over their inner surfaces. Rank the points 1 through 5 according to the magnitude of the electric field at the points, least to greatest.
A. 1, 2, 3, 4, 5
B. 2, then 1, 3, and 4 tied, then 5
C. 1, 4, and 5 tie, then 2 and 3 tie
D. 2 and 3 tie, then 1 and 4 tie, then 5
E. 2 and 3 tie, then 1, 4, and 5 tie
Answer:
The correct answer is C 1, 4, and 5 tie, then 2 and 3 tie
Explanation:
Solution
The electric field due to sheets E₁ positive =б/2E₀
E₂ is negative = б/2E₀
Now,
At the point 1, 4, 5 the electric field due to the sheets are in the opposite direction
At the point 1, the net field = -E₁ + E₂ =0
At the point A, the net field = -E₁ - E₂ = 0
Now,
At nay point inside between them, the electric field is seen to be at the same direction.
At the 2, 3 points the field is seen at the right
Thus,
E net = E₁ + E₂
= б/2E₀ + σ/2E₀
=б/E₀
Note: Kindly find an attached copy of the complete question to the solution
The correct answer is option C
The rank of the points according to the magnitude of the electric field is 1, 4, and 5 tie, then 2 and 3 tie
The magnitude of the electric field:
Let sheet 1 has positive surface charge density and sheet 2 has a negative surface charge density
The electric field (without direction) due to sheets will be
E₁ =σ/2E₀
E₂= σ/2E₀
Now,
At the point 1, 4, 5 the electric field due to the sheets is given by:
E = E₁ - E₂
E = σ/2E₀ - σ/2E₀
since the positive charge plate will have electric field lines away from the sheet and the negative charge plate will have electric field lines towards the sheet
E = 0
Now,
At points 2, 3 which are between the plates,
The net electric field is:
E = E₁ + E₂
since the electric field due to both the plates will be from positive to negative ( towards the negatively charged plate)
E = σ/2E₀ + σ/2E₀
E = σ/E₀
Learn more about surface charge density:
https://brainly.com/question/8966223?referrer=searchResults
The self-referencing effect refers to ________.
An automobile being tested on a straight road is 400 feet from its starting point when the stopwatch reads 8.0 seconds and is 550 feet from the starting point when the stopwatch reads 10.0 seconds.
A. What was the average velocity of the automobile during the interval from t = 10.0 seconds to t = 8.0 seconds
B. What was the average velocity of the automobile during the interval from t - Ostot - 10.0 s? (Assume that the stopwatch read t = 0 and started at the same time as the auto.)
C. If the automobile averages 100 ft/s from t - 10.0 stot - 20.0 s, what distance does it travel during this interval?
D. The automobile has a special speedometer calibrated in feet/s instead of in miles/hour. Att 85 the speedometer reads 65 ft/s; and at t = 10 s it reads 80 ft/s. What is the average acceleration during this interval?
Answer:
a) v = 75 ft / s , b) v = 55 ft / s , c) Δx = 1000 ft
Explanation:
We can solve this exercise with the expressions of kinematics
a) average speed is defined as the distance traveled in a given time interval
v = (x₂-x₁) / (t₂-t₁)
v = (550 - 400) / (10 -8)
v = 75 ft / s
b) we repeat the calculations for this interval
v = (550 - 0) / (10 -0)
v = 55 ft / s
c) we clear the distance from the average velocity equation
Δx = v (t₂ -t₁)
Δx = 100 (20-10)
Δx = 1000 ft
Friction is a force that acts in an ___________ direction of movement.
a) similar
b) opposite
c) parallel
d) west
Answer:
the answer is opposite.
plz mark brainliest
Explanation:
As you get ready for bed, you roll up one of your socks into a tight ball and toss it into the laundry basket across the room. Then, you try to toss the other sock without rolling it up.. What effects whether or not your socks land in the basket?
Answer:
The drag (air resistance) it experiences along its flight to the basket, due to the shape and surface area of the socks, the size of the sock (weight), and the speed with which the socks is tossed.
Explanation:
The socks, like every other particle or body travelling through air is met by a resistance that impedes its motion. This resistance is due to the air molecules around, that collide with the body as it travels through them. The resistance offered by this force is proportional to the surface area of the body that collides with the air molecule, so, rolling the socks into a ball reduces the effect of air resistance on the socks, compared to the one tossed without rolling. Air resistance is also largely dependent on the relative motion of the body and the air molecules, the density of the fluid (air), and the size of the body (weight).
Therefore, whether the socks lands in the basket or not is affected by the drag (air resistance) it experiences along its flight to the basket, due to the shape and surface area of the socks, size of the socks (weight), and the speed with which the socks is tossed.
Drag force opposes motion of objects through fluid with its magnitude depending on the velocity of the object in the fluid
The single parameter that effects whether or not the socks lands in the basket is the drag force, [tex]\mathbf{F_D}[/tex] acting on the socks
[tex]F_D = \mathbf{C_D \times A \times \dfrac{\rho \times v_r^2}{2}}[/tex]
The reason that drag force is the parameter that effects the landing point of the socks is as follows:
The parameters that effects whether or not the socks land in the basket or not are;
The distance of the basket away from the thrower = The range, RThe velocity with which the socks are thrown, uThe angle of elevation with which each socks is thrown, θThe amount of drag experienced by each socks, [tex]\mathbf{F_D}[/tex]The parameters, R, u, and θ depends on the thrower, that parameter that effects the whether or not the socks lands in the basket that is independent of the thrower, is the drag, [tex]\mathbf{F_D}[/tex]
Drag is the force opposing (slows) the motion of an object in a fluid.
The drag force, [tex]\mathbf{F_D}[/tex], slowing down motion, is given by the following formula;
[tex]F_D = \mathbf{C_D \times A \times \dfrac{\rho \times v_r^2}{2}}[/tex]
Where;
[tex]v_r[/tex] = The velocity of flow of the fluid, relative to the object
ρ = The density of the fluid
[tex]C_D[/tex] = The drag coefficient
A = The cross sectional area of the fluid
Therefore, the independent parameter that effects whether or not the socks lands in the basket is the drag force on the socks
Learn more about drag force here:
https://brainly.com/question/17074446