The interaction between two like-charged objects is repulsive. ... Positively charged objects and neutral objects attract each other; and negatively charged objects and neutral objects attract each other.
Answer:
they repel with each other. object of like charges repel while object of opposite charges attracts with each other.
I love you
Please answer my question :-)
Answer:
A- Astronomical body
C- Galaxy
D- Comet
B- Moon
Hope this helps you! Have a great day!
Answer:
1. A
2. C
3. D
4. B
Explanation:
the distance between crest and the adjacent trough of water waves is 3m, they pass a given point at rate of 5m/s. what is the frequency and the speed of water waves?
Friction is necessary when you are on a bike to stay
Answer:
yes friction is needed hope this helps might of been to long tho
Your bike is too big if your can't touch the ground A.Knees B.Hands C.Feet
Answer: C: Feet
Explanation: Why...
An object initially traveling in a straight line with
a speed of 5.0 meters per second is accelerated
at 2.0 meters per second squared for 4.0 seconds.
The total distance traveled by the object in the
4.0 seconds is
Answer:
We conclude that the total distance traveled by the object in the 4 seconds is 36 m.
Explanation:
Given
Initial velocity u = 5.0 m/sAcceleration a = 2.0 m/s²Time t = 4 sTo determine
The total distance traveled by the object in the 4.0 seconds is
Important Tip:
We can determine the total distance traveled by the object in the 4.0 seconds by using the equation of motion such as
[tex]s=ut+\frac{1}{2}at^2[/tex]
where
s = distanceu = initial velocitya = accelerationt = timesubstituting u = 5.0, a = 2, and t = 4 in the formula
[tex]s=ut+\frac{1}{2}at^2[/tex]
[tex]s=\left(5\right)\left(4\right)+\frac{1}{2}\left(2\right)\left(4\right)^2[/tex]
[tex]s=20+16[/tex]
[tex]s=36[/tex] m
Therefore, we conclude that the total distance traveled by the object in the 4 seconds is 36 m.
The total distance traveled by the object is 36 meters.
Given the following data:
Initial velocity = 5.0 m/s Acceleration = 2.0 [tex]m/s^2[/tex] Time = 4.0 seconds.To find the total distance traveled by the object, we we would use the second equation of motion.
Mathematically, the second equation of motion is given by the formula;
[tex]S = ut + \frac{1}{2}at^2[/tex]
Where:
S is the total distance traveled.
u is the initial velocity.
a is the acceleration.
t is the time measured in seconds.
Substituting the values into the formula, we have;
[tex]S = 5(4) + \frac{1}{2}(2)(4^2)\\\\S = 20 + 1(16)[/tex]
Total distance, S = 36 meters.
Therefore, the total distance traveled by the object is 36 meters.
Read more: https://brainly.com/question/8898885
2. One tin for weight control is to:
Eat alone
Eat slowly
Answer:
Eat slowly
Explanation:
If you eat slower, you'll chew your food better, which leads to better digestion. Digestion actually starts in the mouth, so the more work you do up there, the less you'll have to do in your stomach. This can help lead to fewer digestive problems. Less stress.
An insulated, vertical piston-cylinder assembly contains 50 L of steam at 105 oC. The outside pressure is 101 kPa. The piston has a diameter of 20 cm and the combined mass of the piston and the load is 75 kg. The electrical heater and the paddle wheel are turned on and the piston rises slowly by 25 cm with a constant pressure. The total internal energy increases by 3.109 kJ.
Determine:
a. The pressure of air inside the cylinder during the process.
b. The boundary work performed by the gas.
c. The combined work transfer by the shaft and electricity.
Answer:
Explanation:
From the given information:
The pressure of the air during the process = [tex]P_{atm} + P_{due \ to \ wt \ of \ piston}[/tex]
[tex]= 101 \ kPa + \dfrac{75 \ kg \times 9.8 \ m/s^2 \times \dfrac{1 \ N }{1 \ kg.m/s^2} }{\dfrac{\pi}{4}(0.2 \ m)^2} ( \dfrac{1 \ N }{m^2} \times \dfrac{1 \ kPa}{1000 \ n/m^2})[/tex]
The pressure of the air during the process = 124.42 kPa
The boundary work = P × ΔW
The boundary work = 124.42 kPa × (π/4) × (0.2 m)² × 0.25 m × (1 kJ/1 kPa.m³)
The boundary work = 0.977 kJ
The combined work transfer = [tex]W_{boundary} + \Delta U[/tex]
The combined work transfer = 0.977 + 3.109 kJ
The combined work transfer = 4.086 kJ
Canon launch is a 4.0 kg bowling ball with 50 J of kinetic energy what is the bowling ball speed
Answer:
5 m/s
Explanation:
50=1/2*4v^2
4*1/2=2
25*2=50
so...
square rood of 25 is 5
answer 5 m/s
sorry if that didn't make since
what happens when a wave passes through a medium ?
Answer:
When waves travel from one medium to another the frequency never changes. As waves travel into the denser medium, they slow down and wavelength decreases. Part of the wave travels faster for longer causing the wave to turn. The wave is slower but the wavelength is shorter meaning frequency remains the same.
Explanation:
If your mass is 63.7kg and standing 7.5m away from a boulder with a mass of 9750.6kg what is the gravitational force?
The gravitational force is determined as 7.37 x 10⁻⁷ N.
What the gravitational force?
The gravitational force is determined by applying Newton's law of universal gravitation.
Mathematically, the formula for the Newton's law of universal gravitation is given as;
Fg = ( Gm₁m₂ ) / ( r² )
where;
G is universal gravitation constantm₁ is your massm₂ is the mass of the boulderr is the distance between you and the boulderFg = ( 6.67 x 10⁻¹¹ x 63.7 x 9750.6 ) / ( 7.5² )
Fg = 7.37 x 10⁻⁷ N
Learn more about gravitational force here: https://brainly.com/question/72250
#SPJ1
Semiconductors can simplistically be thought of as an intermediate state between insulators and conductors. In a semiconductor, charges are normally bound in place (like in an insulator), but when injected with enough energy, the charges can move freely (like in a conductor). Given what we have observed about the behavior of conductors and insulators in this exploration, what would happen if we replaced the glass rod with a semiconductor material
Answer:
The semiconductor rod will conduct electricity
Explanation:
Glass rod does not conduct electricity. Glass is one of the best insulators of electricity. But when a glass rod is replace with a semi conductor, then the semi conductor rod starts conducting electricity as the electrons are free to move.
Semi conductors are special materials in which the energy band lies in between the conductor and the non conductor. The conductivity of a semi conductor increases with the increasing temperature.
In an semi conductor the electrons are free to move and as they starts moving they conduct electricity. Thus a semi conductor rod replacing a glass rod conducts electricity.
If all pairs of adjacent sides of a quadrilateral are congruent then it is called _________.
(A) rectangle (B) parallelogram (C) trapezium, (D) rhombus
Answer:
D
Explanation:
If you need an explanation feel free to ask.
A question to think about on units: Suppose we wanted to exchange scientific information with a newly discovered species of intelligent life living on a planet orbiting the star Alpha Centauri. And suppose that our new friends have managed to become fluent in our language, but have not yet had the opportunity to visit the Earth. Which of the following statements would they understand?
a. The mass of the electron is 9.10938188 x 10^-31.
b. The speed of light is 2.99792458 x 10^8 meters/second.
c. The ratio of the proton's mass to the electron's mass is 1836.153. Explain your reasoning
Answer:
b. The speed of light is 2.99792458 x 10^8 meters/second.
Explanation:
Speed of light is a universal constant and its value is same throughout the universe . So alien living near Alpha Centauri will quickly understand about it . But other statements are not universal . Mass of electron can vary as per relativistic formula of Einstein . Similarly , mass of proton can also vary according to relativistic concept . It depends upon the velocity of particle . So, the ratio of mass of proton and mass of electron will also vary from one star to another .
An electron, tial well may be anywhere within the interval 2a. So the uncertainty in its position is Δx= 2a. There must be a corresponding uncertainty in the momentum of the electron and hence it must have a certain kinetic energy. Calculate this energy from the uncertainty relationship and compare it.
Answer:
[tex]K = \frac{h'}{8 m \ \Delta x^2}[/tex]K
Explanation:
The Heisenberg uncertainty principle is
Δx Δp ≥ h' / 2
h’ =[tex]\frac{h}{2\pi }[/tex]
The kinetic energy of a particle is
K = ½ m v²
p = mv
v = [tex]\frac{p}{m}[/tex]
substitute
K = [tex]\frac{1}{2} \frac{p^2}{m}[/tex]
from the uncertainty principle,
Δp = [tex]\frac{h'}{2 \ \Delta x}[/tex]
we substitute
K = [tex]\frac{1}{2m} ( \frac{h'}{2 \ \Delta x})^2[/tex]
[tex]K = \frac{h'}{8 m \ \Delta x^2}[/tex]
If a wave has a speed of 1000 m/s and frequency of 500 Hz, what is the wavelength?
• 1500 Hz
• 2 m
• 0.05 m
Answer:
2 m
Explanation:
speed=frequency×wavelength
wavelength=speed/frequency
wavelength=1000/500
=2 m
Which of the following hydrocarbons are SATURATED hydrocarbons?
I. alkanes II. alkenes III. alkynes IV. cycloalkanes
A. I and IV
B. II and III
C. I and III
D. II and IV
Answer:
i think c
Explanation:
An ideal gas in a 50.0 L tank has a
pressure of 2.45 atm at 22.5°C.
How many moles of gas are in
the tank?
Answer:
5.05225 moles
Explanation:
The computation of the number of moles of gas in the tank is shown below:
Given that
Volume = V = 50 L = 50.0 × 10^-3m^3
Pressure = P = 2.45 atm = 2.45 × 101325
Temperature = T = 22.5°C = (22.5 + 273)k = 295.5 K
As we know thta the value of gas constant R is 8.314 J/mol.K
Now
PV = nRT
n = PV ÷ RT
= ((2.45 × 101325) (50.0 × 10^-3)) ÷ ((8.314) (295.5))
= 5.05225 moles
If a satellite is orbiting the Earth in elliptical motion, then it will move _______________ (slowest, fastest) when its closest to the Earth. While moving towards the Earth (along the path from D to A) there is a component of force in the __________________ (same, opposite) direction as the motion; this causes the satellite to ___________________ (slow down, speed up). While moving away from the Earth (along the path from A to D) there is a component of force in the _________________ (same, opposite) direction as the motion; this causes the satellite to ___________________ (slow
Answer:fastest,same,slow down,opposite,slow
Explanation:
A satellite move fastest when its closest to the Earth. The other correct options are same direction, speed up, opposite direction and slow.
Velocity of a satellite around the planet.If a satellite is orbiting the Earth in elliptical motion, then it will move fastest when its closest to the Earth (based on Kepler's, law).
While moving towards the Earth (along the path from D to A) there is a component of force in the same direction as the motion; this causes the satellite to speed up.
While moving away from the Earth (along the path from A to D) there is a component of force in the opposite direction as the motion; this causes the satellite to slow.
Learn more about motion of satellite here: https://brainly.com/question/25721729
#SPJ2
1
What kind of adaptation is a long neck on a tortoise? *
(10 Points)
O
A. Structural
B. Behavioral
a
C. Functional
a
D. Physiological
Answer:
The answer is ......... structural adaptation
Explanation:
because structural adaptations is a physical thinng in their body so its A please give me brainliest
This is the build up of substance such as pesticides in an organism and occurs when an organism absorb a substance at a rate faster than that at which the substance is lost
Answer:
which the substance is lost by catabolism and excretion.
Explanation:
• How much work is
required to lift a 2kg
object 2m high?
Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh
The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)
:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️
Explanation:
2.) The lob in tennis is an effective tactic when your opponent is near the net. It consists of lofting the ball over his/her head, forcing them to move quickly away from the net. Suppose that you loft the ball with an initial speed of 15m/s at an angle of 50 degrees from the horizontal. At this moment your opponent is 10m from the ball. They begin to run away from you 0.3 seconds after the ball was launched hoping to reach the ball and hit it back to you at a height of 2.1m above where you hit it. What is the minimum average speed that your opponent must move so that he is in position to hit this ball
Answer:
The minimum average speed the opponent must move so that he is in position to hit the ball is approximately 5.79 m/s
Explanation:
The given parameters of the ball are;
The initial speed of the ball = 15 m/s
The direction in which the ball is launched = 50° above the horizontal
The location of the other tennis player when the ball is launched = 10 m from the ball
The time at which the other tennis player begins to run = 0.3 seconds after the ball is launched
The height at which the ball is hit back = 2.1 m above the height from which the ball is launched
The vertical position, 'y', at time, 't', of a projectile motion is given as follows;
y = (u·sinθ)·t - 1/2·g·t²
When y = 2.1 m, we have;
2.1 = (15·sin(50°))·t - 1/2·9.8·t²
∴ 4.9·t² - (15·sin(50°))·t + 2.1 = 0
Solving with the aid of a graphing calculator function, we get;
t = 0.199776187257 s or t = 2.14525782198 s
Therefore, the ball is at 2.1 m above the start point on the other side of the court at t ≈ 2.145 seconds
The horizontal distance, 'x', the ball travels at t ≈ 2.145 seconds is given as follows;
x = u × cos(50°) × t = 15 × cos(50°) × 2.145 ≈ 20.682 m
The horizontal distance the ball travels at t ≈ 2.145 seconds, x ≈ 20.682 m
Therefore, we have;
The time the other player has to reach the ball, t₂ =2.145 s - 0.3 s ≈ 1.845 s
The distance the other player has to run, d = 20.682 m - 10 m = 10.682 m
The minimum average speed the other player has to move with, [tex]v_s[/tex] = d/t₂
∴ [tex]v_s[/tex] = 10.682 m/(1.845 s) ≈ 5.78970189702 m/s ≈ 5.79 m/s
The minimum average speed the opponent must move so that he is in position to hit the ball, [tex]v_s[/tex] ≈ 5.79 m/s.
Energy Transformation and Conservation
Explain how different forms of energy are related.
Answer:
Energy transformation is when energy changes from one form to another – like in a hydroelectric dam that transforms the kinetic energy of water into electrical energy. While energy can be transferred or transformed, the total amount of energy does not change – this is called energy conservation.
Explanation:
point.
4.
i. Explain why a particle moving with a constant speed along a circular
path has a radial acceleration.
ii. Show that the acceleration of a body moving in a circular path of
radius r with uniform speed v is → and draw a diagram to show the
direction of the acceleration.
2
iii. Show that the expression à = † is dimensionally correct.
Explanation:
Explanation: When a particle moves along a straight path, then the radius of curvature is infinitely great. This means that v2/r is zero. Explanation: When a particle moves with a uniform velocity, then dv/dt will be zero.
Please help I don’t get this give me answers please
Answer:
c
Explanation:
cylindrical electric resistance heater has a diameter of 1cm and length of 0.25m. When air at 25oC flows across the heater a heat-transfer coefficient of 25W/(m2 . oC) exists at the surface. (JUSTIFY ANY ASSUMPTIONS YOU IMPOSE!) a) If the electrical input to the heater is 5W, what is the steady state surface temperature of the heater if radiation is assumed negligible
Answer:
Explanation:
From the information given:
The diameter of the cylindrical heater (d) = 1 cm
The length of the cylindrical heater (l) = 0.25 m
The ambient air temperature [tex](T_{\infty})[/tex] = 25° C= (273+25)K = 298 K
The convective heat transfer coefficient (h) = 25 W/m² °C
The electric input Q = 5W
As stated in the question that if radiation is being neglected:-
Let also assume that;
the heat transfer takes place at a steady-state
1-D flow takes place
No external heat generation; &
No force convection takes place;
Then; the heat transfer through the convection can be calculated as:
[tex]Q = hA(T - T_{\infty})[/tex]
[tex]5= 25 \times (\pi \times (1\times 10^{-2}) \times 0.25) (T -0.25)[/tex]
By solving the above calculation:
T ( surface temperature of the heater) = 50.46° C 122.83° F
a body of mass 20kg initially at rest is subjected to a force of 40N for 1sec calculate the change in kinetic energy showing the solution
Answer:
Change in KE is 40 J
Explanation:
Recall that the impulse exerted on an object equal the change of momentum of the object (ΔP), which in time is defined as the product of the force exerted on it times the time the force was acting:
Change in momentum is: ΔP = F * Δt
In our case,
ΔP = 40 N * 1 sec = 40 N s
Since the object was initially at rest, its initial momentum was zero, and the final momentum should then be 40 N s.
So, the initial KE was 0, and the final (KEf) can be calculated using:
KEf = 1 /(2 m) Pf^2 = 1 / (40) 40^2 = 40 J
So, the change in kinetic energy is:
KEf - KEi = 40 J - 0 j = 40 J
The resultant of three vectors is 90.00 cm 34o N of W. If two of these three vectors are 17.89 cm 27o W of S, and 36.00 cm NW, what is the magnitude and direction of the third vector? (Ans: 57.85 cm, 44.76o N of W)
Answer:
Magnitude of the third vector: 57.85 cm
The direction of the third vector: 44.76 N of W
Explanation:
The electric field from two charges in the plane of the paper is represented by the dashed lines and arrows below.
Select a response for each statement below. (Use 'North' towards top of page, and 'East' to the right)
The magnitude of the E-field at Ris .... than at M.
The force on a (+) test charge at P is zero.
The magnitude of the charge on the left is .... that on the right.
The force on a (+) test charge at L is directed ....
The force on a (-) test charge at J is directed
The force on a (-) test charge at N is directed ....
The sign of the charge on the right is negative.
Answer:
a) electric field at point P must be zero
b) harged must be positive
c) force ais in the direction of the electric field
d) force is in the opposite direction to the electric field
e) force is in the opposite direction to the field
Explanation:
After reading your exercise, it is unfortunate that the diagram did not come out, but we are going to answer the questions in general.
a) force on a charge (+) is zero
this implies that the electric field at point P must be zero
F = q E
b) the magnitude of the charge on the left is on the right
this indicates that the charged must be positive since the lines must exit the charge
c) force on load directed towards (direction not indicated)
since the charge is positive the force at point L is in the direction of the electric field at this point
d) force on test load (-) does not indicate direction
The force on a negative charge is in the opposite direction to the electric field at point J
e) Force on a test load (-) at point N
the force is in the opposite direction to the field at point N
A proton accelerates from rest in a uniform electric field of 664 N/C. At some later time, its speed is 1.46 106 m/s. (a) Find the magnitude of the acceleration of the proton. m/s2 (b) How long does it take the proton to reach this speed? µs (c) How far has it moved in that interval? m (d) What is its kinetic energy at the later time? J
Answer:
Explanation:
In an electric field E force on charge q
F = Eq , acceleration a = Eq / m
a = 664 x 1.6 x 10⁻¹⁹ / 1.67 x 10⁻²⁷
= 636.16 x 10⁸ m /s²
b )
initial velocity u = 0
final velocity v = 1.46 x 10⁶ m/s
v = u + at
1.46 x 10⁶ = 0 + 636.16 x 10⁸ x t
t = 2.29 x 10⁻⁵ s
c )
s = ut + 1/2 a t²
= 0 + .5 x 636.16 x 10⁸ x ( 2.29 x 10⁻⁵ )²
= 1668 x 10⁻²
= 16.68 m
d )
Kinetic energy = 1/2 m v²
= .5 x 1.67 x 10⁻²⁷ x ( 1.46 x 10⁶ )²
= 1.78 x 10⁻¹⁵ J .