How do I solve all of these?

How Do I Solve All Of These?

Answers

Answer 1

A. The volume (in L) is 12.80 L

B. The mole is 0.035 mole

C. The temperature is 407.57 °C

D. The pressure is 126.98 atm

A. How do i determine the volume?

The volume can be obtained as follow:

Pressure (P) = 5.44 atmNumber of mole (n) = 2 molesTemperature (T) = 151 °C = 151 + 273 = 424 KGas constant (R) = 0.0821 atm.L/molKVolume (V) =?

PV = nRT

5.44 × V = 2 × 0.0821 × 424

Divide both sides by 5.44

V = (2 × 0.0821 × 424) / 5.44

Volume (V) = 12.80 L

B. How do i determine the mole?

The number of mole can be obtained as follow:

Pressure (P) = 0.250 atmVolume (V) = 1.80 LTemperature (T) = 155 KGas constant (R) = 0.0821 atm.L/molKNumber of mole (n) = ?

PV = nRT

0.250 × 1.80 = n × 0.0821 × 155

Divide both sides by (0.0821 × 155)

n = (0.250 × 1.80) / (0.0821 × 155)

Number of mole (n) = 0.035 mole

C. How do i determine the temperature?

The temperature can be obtained as follow:

Pressure (P) = 4.47 atmVolume (V) = 26 LGas constant (R) = 0.0821 atm.L/molKNumber of mole (n) = 2.08 molesTemperature (T) = ?

PV = nRT

4.47 × 26 = 2.08 × 0.0821 × T

Divide both sides by (2.08 × 0.0821)

T = (4.47 × 26) / (2.08 × 0.0821)

T = 680.57 K

Subtract 273 to obtain answer in °C

T = 680.57 - 273 K

Temperature (T) = 407.57 °C

D. How do i determine the pressure?

The pressure can be obtained as follow:

Volume (V) = 2.25 LNumber of mole (n) = 10 molesTemperature (T) = 75 °C = 75 + 273 = 348 KGas constant (R) = 0.0821 atm.L/molKPressure (P) = ?

PV = nRT

P × 2.25 = 10 × 0.0821 × 348

Divide both sides by 2.25

P = (10 × 0.0821 × 348) / 2.25

Pressure (P) = 126.98 atm

Learn more about number of mole:

https://brainly.com/question/29927685

#SPJ1


Related Questions

If an area has a very cold climate, it is most likely that the area

Answers

If an area has a very cold climate, it is most likely that the area experiences low temperatures throughout the year.

Cold climate regions are often characterized by sub-zero temperatures and limited precipitation, which can lead to dry and barren landscapes. These regions are typically found in the polar regions of the world, such as the Arctic and Antarctic, as well as in high-altitude mountain ranges.

The cold climate can have a significant impact on the environment, with many plants and animals adapted to survive in the harsh conditions. In cold climates, plants and animals often have adaptations that help them conserve heat and energy, such as thick fur coats, hibernation, or slow growth rates.

This means that the biodiversity in cold climate regions may be different than that found in more temperate regions.

Human communities that live in cold climate regions have also adapted to the extreme conditions, often relying on traditional techniques to survive. For example, the Inuit people of the Arctic have developed an intricate knowledge of the land and sea to hunt, fish, and gather food. They have also developed specialized tools and clothing to withstand the cold temperatures.

Overall, a cold climate can have a significant impact on the environment and the communities that rely on it. Understanding the unique challenges and adaptations of these regions is crucial for effective conservation and management.

To know more about cold climate, visit:

https://brainly.com/question/11673115#

#SPJ11

Consider these two entries from a fictional table of standard reduction potentials.


X3+ + 3e—>


X(s)


E° = -2. 43 V


Y3+ + 3e—>


Y(S)


E° = -0. 44 V


What is the standard potential of a galvanic (voltaic) cell where X is the anode and Y is the cathode?


Edell


=


V

Answers

The standard potential of the galvanic cell where X is the anode and Y is the cathode is 1.99 V.

The standard potential of a galvanic cell can be calculated by subtracting the reduction potential of the anode (X) from the reduction potential of the cathode (Y).

E°cell = E°cathode - E°anode

In this case, Y has a higher reduction potential than X, so Y will be the cathode and X will be the anode.

E°cell = E°Y - E°X

E°cell = (-0.44 V) - (-2.43 V)

E°cell = 1.99 V

To know more about the standard potential of the galvanic cell, click below.

https://brainly.com/question/28167837

#SPJ11

What mass in grams of sucrose must be dissolved in 2000 grams of water to make a 0. 1m solution?

Answers

We need to dissolve 6.85 grams of sucrose in 2000 grams of water to make a 0.1 M solution.

To calculate the mass of sucrose needed to make a 0.1 molar solution in 2000 grams of water, we need to use the formula:

[tex]m = n *M * MW[/tex]

Step 1: Calculate the number of moles of sucrose needed

Molarity (M) = 0.1 mol/L

volume of solution = 2000 grams of water ÷ density of water = 2000 mL

We need to calculate the number of moles of sucrose that would be present in 2000 mL of a 0.1 M solution:

moles of solute (n) = [tex]M * V = 0.1 mol/L *2.0 L = 0.2 moles[/tex]

Step 2: Calculate the mass of sucrose needed

Molecular weight of sucrose is 342.3 g/mol.

We can use the formula:

[tex]m = n * M * MW \\m = 0.2 moles *0.1 mol/L * 342.3 g/mol = 6.85 g[/tex]

To know more about Molecular weight, here

brainly.com/question/18948587

#SPJ4

What is the molarity of a solution made by dissolving 2. 0 mol of solute in 6. 0 L of solvent?

Answers

The molarity of the solution is 0.33 M.

To calculate the molarity, you need to divide the moles of solute by the volume of the solvent in liters. In this case, you have 2.0 moles of solute and 6.0 liters of solvent. Using the formula M = moles/volume, you can find the molarity of the solution:

M = (2.0 moles) / (6.0 L)
M = 0.33 M

This means that the concentration of the solute in the solution is 0.33 moles per liter. Molarity is an important concept in chemistry as it helps in determining the concentration of a particular substance in a solution and is useful in various calculations and reactions.

To know more about moles  click on below link:

https://brainly.com/question/26416088#

#SPJ11

using wedge-dash notation to designate stereochemistry, draw (r)-3-aminobutan-1-ol.

Answers

To draw (R)-3-aminobutan-1-ol using wedge-dash notation, follow these steps: 1. Draw a four-carbon chain representing butan-1-ol. 2. Add an -OH group to the first carbon. 3. Add an -NH2 group to the third carbon.

To draw (R)-3-aminobutan-1-ol using wedge-dash notation to designate stereochemistry, we first need to determine the absolute configuration of the molecule. The priority of the substituents attached to the chiral center (the carbon with four different groups attached) must be determined according to the Cahn-Ingold-Prelog (CIP) rules. The highest priority group is given a number 1, the second-highest priority group is given a number 2, and so on. For (R)-3-aminobutan-1-ol, the substituents attached to the chiral center are: - NH2 (amino group) - highest priority - OH (hydroxy group) - second-highest priority - CH3 (methyl group) - third-highest priority - H (hydrogen) - lowest priority To determine the absolute configuration, we need to look at the orientation of the substituents in three-dimensional space. If the lowest priority group is pointing away from us (into the page), we use the right-hand rule to determine the orientation of the remaining three groups. If the sequence of priorities goes clockwise, the configuration is (R); if it goes counterclockwise, the configuration is (S). In the case of (R)-3-aminobutan-1-ol, we can assign the following orientations: - NH2 (highest priority) - wedge - OH - dash - CH3 - wedge - H (lowest priority) - into the page Based on this, we can see that the sequence of priorities goes clockwise, indicating that the configuration is (R). Therefore, the wedge-dash notation for (R)-3-aminobutan-1-ol is: H NH2 | | C---C | | CH3 OH The NH2 and CH3 groups are represented by wedges, indicating that they are coming out of the page towards the viewer. The OH group is represented by a dash, indicating that it is going into the page away from the viewer. The H group is represented by a thin line, indicating that it is behind the plane of the paper.

Visit to know more about wedge dadhdash notation:-

https://brainly.com/question/30478936

#SPJ11

When ammonium is added to water the temperature of the water decreases. Ammonium nitrates can be recovered by evaporating the water added Which explains those observations A the ammonium nitrates dissolved in water and process is endothermic B the ammonium nitrate reacts with the water and process is endothermic C the ammonium nitrates dissolved in water and process is exothermic D the ammonium nitrate reacts with the water and process is exothermic

Answers

Ammonium nitrates can be recovered by evaporating the water added explains that ammonium nitrates dissolved in water and process is endothermic. Thus, option A is correct.

When ammonium is added to water, the temperature of the water decreases. This is because the dissolution of ammonium in water is an endothermic process, meaning it requires energy in the form of heat to take place. When ammonium dissolves in water, it absorbs heat from the surroundings, which causes the temperature of the water to decrease.

Furthermore, ammonium nitrates can be recovered by evaporating the water that was added. This indicates that the ammonium nitrates dissolved in water and the process is endothermic. If the ammonium nitrate had reacted with the water, it would not be possible to recover it by evaporation.

Therefore, option A, "the ammonium nitrates dissolved in water and process is endothermic," is the correct explanation for the observations that when ammonium is added to water, the temperature decreases, and ammonium nitrates can be recovered by evaporating the water added.

To know more about Ammonium nitrates, visit:

https://brainly.com/question/5148461#

#SPJ11

1: calculate the ph of a 0.25m solution of h3o+
2: calculate the ph of a 6.3x10-8m solution of h3o+
3: look at your answer for 4 and 5 which one is a base?
4: look at 4 and 5 which one is a strong acid
please show your work

Answers

The pH of a 6.3 x [tex]10^{-8[/tex]M solution of H₃O+ is approximately 7.20.

A 0.25 M solution of H₃O+ is not a strong acid, since it is not a single acid that completely dissociates in water.

A 6.3 x [tex]10^{-8[/tex] M solution of H₃O+  is not a strong acid, since it is a very weak acid with a very low concentration of H₃O+ ions.

The pH of a 0.25 M solution of H₃O+ can be calculated using the formula:

pH = -log[H₃O+]

where [H₃O+] is the concentration of H₃O+ ions in moles per liter (M).

In this case, [H3O+] = 0.25 M,

pH = -log(0.25) = 0.602

Therefore, the pH of a 0.25 M solution of H₃O+ is approximately 0.602.

The pH of a 6.3 x [tex]10^{-8[/tex] M solution of H₃O+ can be calculated using the same formula:

pH = -log[H₃O+]

In this case, [H₃O+] = 6.3 x [tex]10^{-8[/tex]M, so we have:

pH = -log(6.3 x [tex]10^{-8[/tex]) = 7.20

Therefore, the pH of a 6.3 x [tex]10^{-8[/tex] M solution of H₃O+ is approximately 7.20.

There is no information given for question 3.

A strong acid is an acid that completely dissociates in water to produce H₃O+  ions. The most common example of a strong acid is hydrochloric acid (HCl).

Looking at the given solutions:

A 0.25 M solution of H₃O+  is not a strong acid, since it is not a single acid that completely dissociates in water.

A 6.3 x [tex]10^{-8[/tex] M solution of H₃O+  is not a strong acid, since it is a very weak acid with a very low concentration of H₃O+  ions.

Therefore, neither of the given solutions is a strong acid.

To know more about strong acid

https://brainly.com/question/31143763

#SPJ4

A student finds the mass and volume of four mystery liquids. The data is provided

Answers

The student's task is to determine the density of the four mystery liquids using the mass and volume measurements.

Density is a physical property that describes the amount of mass per unit volume.

The formula for density is density = mass/volume. Once the density of each liquid is determined, the student can compare it to known densities of different substances to identify the liquid.

This information can be useful in various fields such as chemistry, pharmacology, and environmental science.

The student may also use this data to calculate other properties of the liquids such as viscosity, surface tension, and boiling point. Overall, measuring mass and volume is a fundamental method in scientific research and analysis.

To know more about mystery liquids refer here: https://brainly.com/question/22053907#

#SPJ11

calculate the molarity of 102.6 grams of sugar, C12H22O11 in 500. mL of solution

Answers

The molarity of the sugar solution is 0.5988 M (mol/L).

To calculate the molarity of a solution, we need to know the number of moles of solute (the substance being dissolved) and the volume of the solution in liters.

First, we need to determine the number of moles of sugar (C12H22O11) in the given mass of 102.6 grams:

The molar mass of C12H22O11 can be calculated as follows:

12(12.01 g/mol) + 22(1.01 g/mol) + 11(16.00 g/mol) = 342.3 g/mol

The number of moles of C12H22O11 in 102.6 grams can be calculated as:

102.6 g / 342.3 g/mol = 0.2994 mol

Next, we need to convert the volume of the solution from milliliters to liters:

mL = 0.5 L

Now we can calculate the molarity (M) of the solution:

M = moles of solute/liters of solution

M = 0.2994 mol / 0.5 L

M = 0.5988 M

Therefore, the molarity of the sugar solution is 0.5988 M (mol/L).

learn more about molarity here

https://brainly.com/question/14469428

#SPJ1

A 4 L sample of gas at 30 degrees celcius and 1 atm is changed to 0 degrees celcius and 800torr. What is its new volume?

Answers

A 4 L sample of gas at 30 degrees celcius and 1 atm is changed to 0 degrees celcius and 800torr. 4.51 L is its new volume.

To solve this problem, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas.

[tex]P1V1/T1 = P2V2/T2[/tex]

where P1, V1, and T1 are the initial conditions, and P2, V2, and T2 are the final conditions.

Substituting the given values, we get:

[tex]\left(\frac{{1 , \text{atm} \cdot 4 , \text{L}}}{{303 , \text{K}}}\right) = \left(\frac{{0.8 , \text{atm} \cdot V2}}{{273 , \text{K}}}\right)[/tex]

Solving for V2, we get:

[tex]V2 = \frac{{1 , \text{atm} \cdot 4 , \text{L} \cdot 273 , \text{K}}}{{303 , \text{K} \cdot 0.8 , \text{atm}}} = 4.51 , \text{L}[/tex]

Therefore, the new volume of the gas is 4.51 L when the temperature is changed from 30 degrees Celsius to 0 degrees Celsius and the pressure is changed from 1 atm to 800 torr.

To know more about the sample of gas refer here :

https://brainly.com/question/13137455#

#SPJ11

Solve the following problems using the chemical formulas as a conversion factor.


1. How many grams of Lead (Pb) contain 1. 25x104 grams of PbCO3?


2. Determine the number of moles of Hydrogen (H) in 0. 0737 mol of N2H4


3. How many grams of Iron (Fe) contain 6. 45x10-3 grams of Fe3O4?


4. Determine the number of moles of Sodium (Na) in 4. 2 mol of NaClO3

Answers

There are 0.1474 moles of hydrogen atoms in 0.0737 mol of N2H4.

What is Mole?

In chemistry, a mole is a unit used to express the amount of a substance. One mole of a substance is defined as the amount of that substance that contains as many elementary entities (atoms, molecules, or other particles) as there are atoms in 12 grams of carbon-12.

To determine the mass of lead in PbCO3, we need to use the molar mass of PbCO3 and the stoichiometric relationship between Pb and PbCO3. The molar mass of PbCO3 is 267.21 g/mol, and the stoichiometric relationship between Pb and PbCO3 is 1:1.

Thus, the mass of Pb in 1.25x10^4 g of PbCO3 can be calculated as follows:

Mass of Pb = (1.25x10^4 g PbCO3) x (1 mol PbCO3/267.21 g PbCO3) x (1 mol Pb/1 mol PbCO3) x (207.2 g Pb/mol Pb)

= 1.02x10^4 g Pb

Therefore, 1.02x10^4 g of Pb is contained in 1.25x10^4 g of PbCO3.

The formula for N2H4 indicates that there are two hydrogen atoms for every molecule of N2H4. Therefore, we can calculate the number of moles of hydrogen atoms in 0.0737 mol of N2H4 as follows:

Number of moles of H atoms = (0.0737 mol N2H4) x (2 mol H atoms/1 mol N2H4)

= 0.1474 mol H

Learn more about Mole, visit;

https://brainly.com/question/15356425

#SPJ4

At constant temperature and pressure, a system is most likely to undergo a reaction so that in its final state, as compared to its initial state, the system has:


A) lower energy and higher entropy


B) lower energy and lower entropy


C) higher energy and lower entropy


D) higher energy and higher entropy

Answers

In general, a system tends to favor a reaction that results in an increase in entropy, which is a measure of the number of possible arrangements of the system's particles. The answer is A) lower energy and higher entropy.

This is due to the fact that the increase in the number of particles in the system or the increase in the number of ways the particles can be arranged leads to an increase in entropy. On the other hand, a system also tends to favor a reaction that results in a decrease in energy, which is a measure of the system's ability to do work.

Therefore, when a system undergoes a reaction that decreases its energy while increasing its entropy, it is moving towards a more stable and disordered state.

This is because a lower energy state means that the system is releasing energy, while a higher entropy state means that the system is becoming more disordered and spread out. This tendency towards lower energy and higher entropy is known as the second law of thermodynamics, which governs the behavior of all physical systems.

The answer is A) lower energy and higher entropy.

To know more about entropy refer to-

https://brainly.com/question/13135498

#SPJ11

Ite
a city is considering different water purification methods for the water supply. which fact would help inform the city if cost was
a significant constraint? (1 point)
iter
reverse osmosis systems are more expensive because of the chlorine treatments
iten
olon exchange systems are more expensive because of the chlorine treatments
iten
o reverse osmosis systems are more expensive because of the use of filters that need replacement
iten
olon exchange systems are more expensive because of the use of filters that need replacement
item
iten

Answers

If cost is a significant constraint for Itea city in choosing a water purification method for their water supply, then the fact that ion exchange systems are more expensive because of the use of filters that need replacement would be important to consider.

While reverse osmosis systems are also more expensive, it is primarily due to the chlorine treatments, which may not be a significant factor for the city. Therefore, ion exchange systems may not be a cost-effective option in the long run due to the ongoing expenses of replacing filters.

This information can help inform the city's decision-making process and ensure that they choose a water purification method that meets their needs while also being financially feasible.

to know more about water purification refer here

https://brainly.com/question/29629219#

#SPJ11

2. Dragonflies can travel at speeds up to 35 miles perhour. How many meters per second is that? (1 mile = 1609 meters)


3. The Hyperion is the tallest redwood tree in the worldat 379. 7 feet. How many centimeters is that? (1 inch = 2. 54 cm)


4. How many atoms are in 2. 35 moles sulfur?


5. How many molecules are in 3. 45 moles sucrose?


Pls Help ASAP!

Answers

2. To convert miles per hour to meters per second, we need to divide by 2.237.

Thus, 35 miles per hour is equal to (35/2.237) meters per second.

Simplifying, we get:

= 15.646 m/s

3. To convert feet to centimeters, we need to multiply by 30.48.

Thus, 379.7 feet is equal to (379.7 x 30.48) centimeters.

Simplifying, we get:

= 1158.754 centimeters

4. To calculate the number of atoms in 2.35 moles of sulfur, we need to use Avogadro's number, which is 6.022 x 10^23 atoms per mole.

Therefore, the number of atoms in 2.35 moles of sulfur is:

2.35 moles x 6.022 x 10^23 atoms/mole = 1.41 x 10^24 atoms

5. To calculate the number of molecules in 3.45 moles of sucrose, we need to use Avogadro's number, which is 6.022 x 10^23 molecules per mole.

Therefore, the number of molecules in 3.45 moles of sucrose is:

3.45 moles x 6.022 x 10^23 molecules/mole = 2.08 x 10^24 molecules

to know more about Avogadro's number refer here:

https://brainly.com/question/28812626#

#SPJ11

An unknown gas with a mass of 205 g occupies a volume of 20. 0 L at 273 K and 1. 00 atm. What is the molar mass of this compound?

Answers

The molar mass of the unknown gas is approximately 221.6 g/mol.

To find the molar mass of the unknown gas, we can use the ideal gas law equation:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

First, we need to convert the given values to their appropriate units:

mass (m) = 205 g

volume (V) = 20.0 L

pressure (P) = 1.00 atm

temperature (T) = 273 K

Next, we can rearrange the ideal gas law equation to solve for the number of moles:

n = PV / RT

Substituting the given values, we get:

n = (1.00 atm) x (20.0 L) / [(0.08206 L atm/mol K) x (273 K)]

n = 0.926 mol

Now we can calculate the molar mass of the unknown gas by dividing its mass by the number of moles:

molar mass = mass / n

molar mass = 205 g / 0.926 mol

molar mass = 221.6 g/mol

To know more about molar mass refer to-

https://brainly.com/question/22997914

#SPJ11

B) Express the answer to this multistep calculation using the appropriate number of significant figures: 87. 95 feet x 0. 277 feet +5. 02 feet - 1. 348 feet + 10. 0 feet.

Answers

The answer to the multistep calculation, expressed using the appropriate number of significant figures, is 24.3 feet.

In order to determine the appropriate number of significant figures in the answer, we need to follow the rules of significant figures for addition and subtraction.

When adding or subtracting numbers, the answer should be rounded to the same number of decimal places as the measurement with the least number of decimal places.

Here, the measurement with the least number of decimal places is 10.0 feet, which has one decimal place. Therefore, we should round the final answer to one decimal place as well.

Now, let's perform the calculation:

87.95 feet x 0.277 feet + 5.02 feet - 1.348 feet + 10.0 feet = 24.3108725 feet

Rounding to one decimal place, the final answer is:

24.3 feet

Therefore, the answer to the multistep calculation, expressed using the appropriate number of significant figures, is 24.3 feet.

To know more about significant figures  refer here:

https://brainly.com/question/29153641

#SPJ11

H2 + Br2 → 2HBr. How many liters of hydrogen gas are needed to react with 9.0 g of bromine?

Answers

We need 1.26 liters of hydrogen gas to react with 9.0 g of bromine.

To solve this problem, we need to use the balanced chemical equation for the reaction between hydrogen gas (H₂) and bromine (Br₂):

[tex]H_2 + Br_2 - > 2HBr[/tex]

According to the stoichiometry of this equation, one mole of Br₂ reacts with one mole of H₂ to produce two moles of HBr. Therefore, we need to determine the number of moles of Br₂ in 9.0 g, and then use the mole ratio to find the number of moles of H₂ required.

Finally, we can convert the number of moles of H₂ to liters using the ideal gas law.

First, we need to calculate the number of moles of Br₂ in 9.0 g:

The molar mass of Br₂ is 2(79.90 g/mol) = 159.80 g/mol

The number of moles of Br₂ in 9.0 g is:

9.0 g / 159.80 g/mol = 0.0563 mol Br₂

Next, we use the mole ratio from the balanced equation to find the number of moles of H₂ required:

According to the balanced equation, one mole of Br₂ reacts with one mole of H₂, so we need 0.0563 moles of H₂.

Finally, we can use the ideal gas law to convert the number of moles of H₂ to liters:

The ideal gas law is PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

We can assume standard temperature and pressure (STP), which is 0°C (273.15 K) and 1 atm.

At STP, one mole of an ideal gas occupies 22.4 L.

Therefore, the volume of H2 required is:

V = (0.0563 mol) x (22.4 L/mol) = 1.26 L

Therefore, we need 1.26 liters of hydrogen gas to react with 9.0 g of bromine.

learn more about temperature here

https://brainly.com/question/26866637

#SPJ1

9. An unknown gas has a volume of 200L at 5 atm and -140°C. What is its volume at STP?


10. A Los Angeles class nuclear sub has an internal volume of eleven million liter at a


pressure of 1. 250 atm. If a crewman were to open one of the hatches to the outside


ocean while it was underwater (pressure of 15. 75 atm), what would be the new volume


of the air inside?


11. A man heats a balloon in the oven (Why?. Who knows?. It is a crazy world we live in).


If the balloon initially has a volume of 0. 40 L and a temperature of 20 °C, what is its


volume after he heats it to 250 °C?


Mixed Gas Laws


12. A gas has a pressure of 1. 26 atm and occupies a volume of 7. 40 L. If the gas is


compressed to a volume of 2. 93 L, what is its new pressure?


13. People who are angry sometimes say that they feel as if they'll explode. If a calm


person with a lung capacity of 3. 5 liters and a body temperature of 36 °C gets angry,


what is the volume of their lungs if their temperature rises to 39 °C. Do you think they


will really explode?

Answers

9. Using the combined gas law, the volume of the gas at STP can be calculated as 112.2 L. This equation takes into account the initial pressure, temperature, and volume, as well as the new pressure and temperature at STP.

10. Applying Boyle's law, the new volume of the air inside the submarine would be approximately 87,873.2 L. This is calculated by multiplying the initial volume and pressure, and dividing by the new pressure.

11. Using the combined gas law, the new volume of the balloon can be calculated as 0.98 L. This equation takes into account the initial temperature, volume, and pressure, as well as the new temperature.

12. Using Boyle's law, the new pressure of the gas can be calculated as 3.25 atm. This equation takes into account the initial pressure and volume, as well as the new volume.

13. Using Charles' law, the new volume of the person's lungs can be calculated as 3.8 L. This equation takes into account the initial lung capacity and temperature, as well as the new temperature.

It is highly unlikely that a person would actually explode from anger, as the body has mechanisms in place to regulate pressure and prevent such an event.

To know more about Charles' law click on below link:

https://brainly.com/question/16927784#

#SPJ11

do avalanchers play a large part in shaping the Earth's surface?

Answers

Answer:

yes

Explanation:

yes, avalanches a big part in the shaping of the earths surface.

Yes, avalanches can play a significant role in shaping the Earth's surface, particularly in mountainous areas.


The movements of snow, ice, and debris down a slope known as avalanches can significantly impact the Earth's surface, especially in mountainous regions. These natural occurrences can cause various landscape changes, erosion, and deposition.

A student made the claim that a 4 gram paintball fired from a paintball gun at 90 m/s could have about the same kinetic energy as a 1 gram bb pellet fired from a bb gun at 180 m/s do you agree or disagree with the student's claim?

Answers

I agree with the student's claim that a 4-gram paintball fired from a paintball gun at 90 m/s could have about the same kinetic energy as a 1-gram bb pellet fired from a bb gun at 180 m/s.

To answer this question, we need to compare the kinetic energy of the paintball and the bb pellet. The formula for kinetic energy is 1/2mv^2, where m is the mass of the object and v is its velocity.

For the paintball, with a mass of 4 grams and a velocity of 90 m/s, the kinetic energy is:

1/2 * 0.004 kg * (90 m/s)^2 = 18.18 joules

For the bb pellet, with a mass of 1 gram and a velocity of 180 m/s, the kinetic energy is:

1/2 * 0.001 kg * (180 m/s)^2 = 16.2 joules

So, the student's claim is actually true - the 4-gram paintball fired at 90 m/s has slightly more kinetic energy than the 1-gram bb pellet fired at 180 m/s. However, it's worth noting that the two projectiles have different sizes and shapes, and would behave differently upon impact.

Learn more about kinetic energy at https://brainly.com/question/8101588

#SPJ11

Determine which of the substrates will and will not react with naome in an sn2 reaction to form an appreciable amount of product.

Answers

The substrates that will react are CH₃CH₂CH₂Br and CH₃CH₂CH₂CH₂Br  and (CH₃)₃CNH₂ and CH₃CH₂OH will not react with naome in an sn2 reaction to form an appreciable amount of product.

Based on the Sn2 reaction mechanism, substrates with good leaving groups and low steric hindrance are more likely to react with nucleophiles like NaOMe.

Therefore, the substrates CH₃CH₂Br, (CH₃)₂CHBr, CH₃CH₂I, and (CH₃)₃CBr are expected to react with NaOMe to form appreciable amounts of product. On the other hand, substrates with poor leaving groups or high steric hindrance are less likely to undergo Sn2 reactions.

Therefore, the substrates (CH₃)₃CNH₂ and CH₃CH₂OH are not expected to react with NaOMe to form appreciable amounts of product. Finally, CH₃CH₂CH₂Br and CH₃CH₂CH₂CH₂Br may react with NaOMe, but to a lesser extent due to their higher steric hindrance.

To know more about the Sn2 reaction mechanism refer here :

https://brainly.com/question/31472916#

#SPJ11

Complete question :

Determine which of the substrates will and will not react with NaOMe in an Sy2 reaction to form an appreciable amount of product. Substrate will react Substrate will NOT react Answer Bank CH,CH.CH,BE (CH),CBE (CH), CHRE CH, CH,CH,NH, (CH),CCH,BE CH,CH.CH, OH

A container has 0.182 mol of CO₂ gas at STP. How many liters does the gas take up?

Answers

Answer:

4.08 L

Explanation:

At standard temperature and pressure, a mole of any gas equals 22.4 L.

We have 0.182 mol of CO₂ gas. We know that every mole of gas is 22.4 L, so

[tex]0.182mol*\frac{22.4L}{1mol} =4.08L[/tex]

⇒ 4.08 L of CO₂ is the answer

Answer:

SI Unit: Volume = 4.133 L of carbon dioxide

Non-SI Unit: Volume = 4.079 L carbon dioxide

Molar Volume of Gases:

At STP conditions (Standard Temperature and Pressure), which is conditions at 100 kPa and at 0°C or 273.15 K, it is a given that the volume of  1 mole of ideal gas is 22.71 L.

[tex]\large \textsf{$\therefore$ if 1 mol of CO$_2$ = 22.71 L}\\\\\large \textsf{hence, 0.182 $\times$ 1 mol of CO$_2$ = 22.71 $\times$ 0.182}\\\\\large \textsf{$\implies$ \boxed{\boxed{$volume = 4.133 L of CO$_2}}}[/tex]

Note: The value used for pressure above, 100 kPa (kilopascals), is a standard SI unit (International System of Units), used by most countries around the world.

However, another commonly used value for pressure (though not the preferred SI unit), is 1 atm (atmospheric pressure), which is equivalent to 101.325 kPa.

Using this value, the volume of 1 mole of ideal gas at STP is then 22.41 L. Solving this:

[tex]\large \textsf{if 1 mol of CO$_2$ = 22.41 L}\\\\\large \textsf{$\therefore$ 0.182 $\times$ 1 mol of CO$_2$ = 22.41 $\times$ 0.182}\\\\\large \textsf{$\implies$ \boxed{\boxed{$volume = 4.079 L CO$_2}}}[/tex]

To learn more about Standard Temperature and Pressure Conditions:

https://brainly.com/question/2783971

During this reaction, water is evaporating from the solution at the same time some of the co2 is dissolving into the water. How might these factors affect the results of the experiment? explain each effect and the overall effect.

Answers

The evaporation of water and dissolution of CO2 can affect the results of the experiment in several ways:

Concentration changes: As water evaporates, the concentration of the solute in the remaining solution increases. This can affect the rate of reaction, as the concentration of the reactants is a key factor in determining the rate. Similarly, as CO2 dissolves in the water, the concentration of dissolved CO2 increases, which can affect the pH of the solution.

Mass changes: As water evaporates, the mass of the solution decreases. This can affect the accuracy of the results, as the mass is often used to calculate the amount of product formed.

Temperature changes: Evaporation is an endothermic process, meaning that it requires energy in the form of heat. As a result, the temperature of the solution may decrease during the reaction, which can affect the rate of the reaction.

Overall, the effects of water evaporation and CO2 dissolution will depend on the specific conditions of the experiment, including the starting concentrations of the reactants and the rate of evaporation. In general, these factors can affect the accuracy and precision of the results, and must be carefully controlled or accounted for in order to obtain reliable data.

To know more about evaporation refer to-

https://brainly.com/question/5019199

#SPJ11

What concentration of ethylene glycol is needed to raise the boiling point


of water to 105°C? (K⬇️b = 0. 51°C/m)

Answers

The concentration of ethylene glycol needed to raise the boiling point of water to 105°C is 9.8 mol/kg or 9.80 molal concentration.

To calculate the concentration of ethylene glycol needed to raise the boiling point of water to 105°C, we can use the following formula:

ΔTb = Kb x molality

Where ΔTb is the change in boiling point, Kb is the boiling point elevation constant for water (0.51°C/m), and molality is the number of moles of solute per kilogram of solvent.

First, we need to calculate the ΔTb, which is the difference between the boiling point of the solution (105°C) and the boiling point of pure water (100°C):

ΔTb = 105°C - 100°C = 5°C

Next, we can plug in the values and solve for the molality:

5°C = 0.51°C/m x molality

Therefore;

molality = 5°C / 0.51°C/m

             = 9.8 mol/kg

To know more about boiling point elevation, click below.

https://brainly.com/question/31074906

#SPJ11

How many grams of steam are produced when 675 grams of oxygen gas combust?

2c8h18 (1) + 2502 (g) --> 16co2 (g) + 18h20 (g) (balanced)

Answers

Based on the balanced chemical equation provided, the combustion of 675 grams of oxygen gas (O₂) will produce 275.1 grams of water (H₂O) in the form of steam. Therefore, 275.1 grams of steam are produced when 675 grams of oxygen gas combust.

To determine how many grams of steam are produced when 675 grams of oxygen gas combust, we'll use the balanced equation you provided: 2C₈H₁₈ (l) + 25O₂ (g) --> 16CO₂ (g) + 18H₂O (g).

Step 1: Calculate the molar mass of O₂ and H₂O.
O₂: 16.00 g/mol * 2 = 32.00 g/mol
H₂O: (1.01 g/mol * 2) + 16.00 g/mol = 18.02 g/mol

Step 2: Calculate the moles of oxygen (O₂) in the 675 grams of oxygen gas.
moles of O₂ = 675 g / 32.00 g/mol = 21.09375 mol

Step 3: Use the stoichiometry from the balanced equation to find the moles of H₂O (steam) produced.
(18 mol H₂O / 25 mol O2) * 21.09375 mol O₂ = 15.271125 mol H2O

Step 4: Convert moles of H₂O to grams.
grams of H₂O = 15.271125 mol * 18.02 g/mol = 275.097895 g

So, approximately 275.1 grams of steam are produced when 675 grams of oxygen gas combust.

Learn more about combustion at https://brainly.com/question/23992512

#SPJ11

If 3grams of sodium reacts with 25 grams of sulfuric acid to form sodium sulfate and 1 gram of hydrogen and no sodium is left after the reaction but 9grams of acid remained unreacted how many grams of sodium sulfate were formed

Answers

The balanced chemical equation for the reaction between sodium and sulfuric acid to form sodium sulfate and hydrogen gas is:

2Na + H2SO4 -> Na2SO4 + 2H2

From the given information, we can see that the reaction is limited by the amount of sodium available, since all of the sodium is used up in the reaction.

Therefore, we can use the amount of sodium to determine the amount of sulfuric acid that reacted and the amount of sodium sulfate that was formed.

1. Calculate the amount of sulfuric acid that reacted:

m(Sulfuric acid) = 25 g - 9 g = 16 g

n(Sulfuric acid) = m(Sulfuric acid) / M(Sulfuric acid) = 16 g / 98.08 g/mol = 0.163 mol

2. Calculate the amount of sodium sulfate formed:

Since the mole ratio of Na to Na2SO4 is 2:1, the number of moles of sodium used is:

n(Na) = m(Na) / M(Na) = 3 g / 22.99 g/mol = 0.1305 mol

The amount of sodium sulfate formed is also 0.1305 mol, since the mole ratio of Na to Na2SO4 is 2:1.

m(Na2SO4) = n(Na2SO4) x M(Na2SO4) = 0.1305 mol x 142.04 g/mol = 18.54 g

Therefore, 18.54 grams of sodium sulfate were formed in the reaction.

To know more about hydrogen  refer here

https://brainly.com/question/31018544#

#SPJ11

If 450 ml of water are added to 550 ml of a 0.75 m k2so4 solution, what will the molarity of the diluted solution be?

Answers

To determine the molarity of the diluted solution, we need to use the equation:

M1V1 = M2V2

where M1 is the initial molarity of the solution, V1 is the initial volume of the solution, M2 is the final molarity of the solution, and V2 is the final volume of the solution.

In this case, the initial solution is a 0.75 M K2SO4 solution with a volume of 550 mL, and water is added to make a final volume of 450 mL. We can write:

M1 = 0.75 M

V1 = 550 mL

V2 = 450 mL

We can solve for M2:

M1V1 = M2V2

0.75 M × 550 mL = M2 × 450 mL

M2 = (0.75 M × 550 mL) / 450 mL

M2 = 0.92 M

Therefore, the molarity of the diluted solution is 0.92 M.

To know more about molarity refer here

https://brainly.com/question/31545539#

#SPJ11

Chemical equilibrium is a dynamic process. What does this mean?

1. Nothing is changing.

2. There are multiple reactants and products involved in the chemical reaction.

3. It appears as though nothing is happening, but there is constant change occurring.

4.The reaction has reached completion and stopped reacting.

Answers

Answer: 3. It appears as though nothing is happening, but there is constant change occurring.

Explanation:

equilibrium is the state when the changes cancel each other, and the net change is 0.

think of it like a stalemate in tug of war; both people are pulling, but you wont see anything change, because their forces are equal and in opposite direction :)

Determine the mass of ammonium chloride, NH4Cl, required to prepare 0. 250 L of a 0. 35 M solution of ammonium chloride.

Answers

We need 4.68 g of ammonium chloride (NH₄Cl) to prepare 0.250 L of a 0.35 M solution.

To determine the mass of ammonium chloride (NH₄Cl) required to prepare a 0.250 L (liters) of a 0.35 M (molar) solution, follow these steps:
1. Recall the formula for molarity: M = moles of solute / volume of solution in liters.
2. Rearrange the formula to solve for moles of solute: moles of solute = M x volume of solution in liters.
3. Calculate the moles of NH₄Cl needed: moles of NH₄Cl = 0.35 M x 0.250 L = 0.0875 moles.
4. Determine the molar mass of NH₄Cl by adding the molar masses of its constituent elements: (N = 14.01 g/mol, H = 1.01 g/mol, Cl = 35.45 g/mol): 14.01 + (4 x 1.01) + 35.45 = 53.49 g/mol.
5. Calculate the mass of NH₄Cl required: mass = moles x molar mass = 0.0875 moles x 53.49 g/mol = 4.680125 g.

So, you need 4.68 g of ammonium chloride (NH₄Cl) to prepare 0.250 L of a 0.35 M solution.

To know more about molarity :

https://brainly.com/question/13601876

#SPJ11

1. How many liters of water will be produced if you have 17. 43 grams of ammonia (NH3)? *


(8 Points)


4 NH3 + 502 --> 4 NO + 6H2O


Enter your math answer

Answers

17.43 grams of NH₃ will produce 34.39 liters of water.

The balanced chemical equation is 4 NH₃ + 5O₂ → 4NO + 6H₂O. From the equation, we can see that for every 4 moles of NH₃ reacted, 6 moles of water are produced.

Therefore, to determine the number of moles of water produced, we need to convert the mass of NH₃ given to moles. The molar mass of NH₃ is 17.03 g/mol, so:

17.43 g NH₃ × (1 mol NH₃/17.03 g NH₃) = 1.023 mol NH₃

Using stoichiometry, we can calculate the number of moles of water produced:

1.023 mol NH₃ × (6 mol H₂O/4 mol NH₃) = 1.5345 mol H₂O

Finally, we can convert the number of moles of water to liters using the fact that 1 mole of any gas at standard temperature and pressure (STP) occupies 22.4 L:

1.5345 mol H₂O × (22.4 L/mol) = 34.39 L


To know more about chemical equation, refer here:

https://brainly.com/question/19626681#

#SPJ11

Other Questions
14Find the limit of the rational function a. as x and b. as X- - 00 X + 6 f(x) = +3 + 20 X+6 a. lim x x + 20 (Simplify your answer.) X + 6 b. lim x--00x2 + 20 = (Simplify your answer.) ( 30 POINTS1. What are some of the animals that have gone extinct? How have humans reacted to extinction?2. What is ancient DNA?3. How could scientists bring back an extinct species? How does this relate to genetics?4. Why would it be important to sequence, as much as possible, the genome of extinct species?5. Which research or conservation project discussed in the video did you find most interesting? Why? Use the sentences to answer the question.Kim is such a hardworking and energetic student. She smiled and jumped for joy when she found out she got an A on her algebra test.What is the tone of the sentences?(1 point)Responsesinformativepositivetragicneutral What type of succession would occur after a glacier moved and uncovered new land?. Which sequence of transformations could triangle XYZ havegone through to produce figure XYZ as shown to the right?A Rotation 90 clockwise, translation 4 units up and 3 units right.B. Rotation 90 counterclockwise, translation 3 units up and 4units right.C. Rotation 90 clockwise, reflection across the y-axisD. Rotation 90 counterclockwise, reflection across the y-axis.ZYAX'A The karyotype of a trisomic individual is symbolized as ____. If the mps in an economy is 0. 1, government could shift the aggregate demand curve rightward by $40 billion by. Calculate the [OH-] and pH of the following solutions:a. 0. 105 M NaF. The Ka of HF is 6. 4 x 10-4In this solution is the [HF]=[NaF] based on stoichiometry? To solve 2x + 3 = 5, Sylvia first subtracted 5 from both sides. What did she do wrong? An astronaut weighs 8.00 102 newtons on the surface of Earth. What is the weight of the astronaut 6.37 106 meters above the surface of Earth? Justice has a box of trading cards. There are three types of trading cards in the box, a basketball, a football, and a soccer ball. The probability of picking out a basketball card is 2/5, and the probability of picking out a football card is 1/3. What is the probability Justice will randomly pick out a soccer card? Which type of graphic would best compare the test scores of 12 students?A. A bar graphB. A timelineC. A diagramD. A map How to make friends at a new school? How can you theoretically explain it? 3. What will happen to acceleration of mass spring system if its mass is doubled? 4. A simple pendulum has time period 'T'. What will happen to its time period if it Mustafa, Heloise, and Gia have written more than a combined total of 222222 articles for the school newspaper. Heloise has written 1441 start fraction, 1, divided by, 4, end fraction as many articles as Mustafa has. Gia has written 3223 start fraction, 3, divided by, 2, end fraction as many articles as Mustafa has.Write an inequality to determine the number of articles, mm, Mustafa could have written for the school newspaper. Which BEST completes the chart?xExceptions to the Right to Register to Vote in the State of Georgiaa person who has been judicialy determined to be mentally incompetent?A a person born outside the United States who is a naturalized citizenBa person convicted of a felony who is currently serving a sentenceC. a person dishonorably discharged from any branch of the U.S. militaryx D a person born outside of Georgia, but who is a current resident Why were relations between Russia and the UnitedStates tense in Berlin in 1961?O The Berlin Wall had created new restrictions onmovement. O Germans had banned Western influence in EastBerlin. O US ambassadors were refusing to cross the border. O Khrushchev and Kennedy had held a failed peaceconference. Some parallelograms are squares true or false During a new moon the moon is where in relation to the sun and earth?. helppls thank you ,,,,,,,,,,,,,,,,,,,,,,,,,,,