How could the government enforce ethical standards of scientific
experiments?
A. The government could encourage scientists to make up their own
minds about ethics.
B. The government could take away research funds if ethical
standards are not met.
C. The government could let scientists monitor each other to
encourage ethical behavior.
D. The government could encourage the public to take a stand
against unethical scientists.

Answers

Answer 1

Answer: D. The Government could take away research funds if ethical standards are not met

Answer 2

The government enforce ethical standards of scientific experiments

B. The government could take away research funds if ethical

standards are not met.

Ethical standards are a set of principles established by the founders of the organization to communicate its underlying moral values. This code provides a framework that can be used as a reference for decision making processes.

How does the government control scientific research?

Politicians and bureaucrats control scientific research and research outcomes by selectively funding projects that look for potential disasters, ideally global disasters.

What are the 8 ethical standards?

This analysis focuses on whether and how the statements in these eight codes specify core moral norms (Autonomy, Beneficence, Non-Maleficence, and Justice), core behavioral norms (Veracity, Privacy, Confidentiality, and Fidelity), and other norms that are empirically derived from the code statements.

To learn more about ethical standards, refer

https://brainly.com/question/13205036

#SPJ2


Related Questions

The three‑dimensional structure of a generic molecule is given. Identify the axial and equatorial atoms in the three‑dimensional structure. What is the shape of this molecule?

Answers

Answer:

Explanation:

CHECK THE ATTACHMENT FOR THE COMPLETE QUESTION AND THE DETAILED EXPLANATION

NOTE:

Equatorial atoms are referred to atoms that are attached to carbons in the cyclohexane ring which is found at the equator of the ring.

Axial atoms are atoms that exist in a bond which is parallel to the axis of the ring in cyclohexane

URGENT!! This is timed, PLEASE HELP!
Nitrogen gas can be prepared by passing gaseous ammonia over solid copper (II) oxide at high temperatures, as described by the following balanced equation:
2 NH3(g) + 3 CuO(s) → 1N2(g) + 3 Cu(s) + 3 H2O(g)
How many grams of N2 are formed when 120.51 g of NH3 are reacted with excess CuO?
(Please explain using steps and show the whole process. Make sure the answer is in sig figs)

Answers

Answer:

99.24 gm of nitrogen .

Explanation:

molecular weight of ammonia = 17 , molecular weight of nitrogen = 28.

2 NH₃(g) + 3 CuO(s) → 1N₂(g) + 3 Cu(s) + 3 H₂O(g)

2 x 17 gm                      28 gm

( 34 gm )

34 gm of ammonia forms 28 gms of nitrogen

1 gm of ammonia   forms 28 / 34 gms of nitrogen

120.51 gn of ammonia forms 28 x 120.51 / 34 gms of nitrogen

28 x 120.51 / 34 gms

= 99.24 gms of nitrogen will be formed .

g a solution is made by mixing 500.0 mL of 0.037980.03798 M Na2sO4 Na2sO4 with 500.0 mL of 0.034280.03428 M NaOH NaOH . Complete the mass balance expressions for the sodium and arsenate species in the final solution.

Answers

Answer:

The concentration of the sodium and arsenate ions at the end of the reaction in the final solution

[Na⁺] = 0.05512 M

[HAsO₄²⁻] = 0.00185 M

[AsO₄³⁻] = 0.01714 M

Explanation:

Complete Question

A solution is made by 500.0 mL of 0.03798 M Na₂HAsO₄ with 500.0 mL of 0.03428 M NaOH. Complete the mass balance expressions for the sodium and arsenate species in the final solution.

Na₂HAsO₄ + NaOH → Na₃AsO₄ + H₂O

From the information provided in this question, we can calculate the number of moles of each reactant at the start of the reaction and we then determine which reagent is in excess and which one is the limiting reagent (in short supply and determines the amount of products to be formed)

Concentration in mol/L = (Number of moles) ÷ (Volume in L)

Number of moles = (Concentration in mol/L) × (Number of moles)

For Na₂HAsO₄

Concentration in mol/L = 0.03798 M

Volume in L = (500/1000) = 0.50 L

Number of moles = 0.03798 × 0.5 = 0.01899 mole

For NaOH

Concentration in mol/L = 0.03428 M

Volume in L = (500/1000) = 0.50 L

Number of moles = 0.03428 × 0.5 = 0.01714 mole

Since the NaOH is in short supply, it is evident that it is the limiting reagent and Na₂HAsO₄ is in excess.

Na₂HAsO₄ + NaOH → Na₃AsO₄ + H₂O

0.01899        0.01714        0           0 (At time t=0)

(0.01899 - 0.1714) | 0 → 0.01714    0.01714 (end)

0.00185  | 0 → 0.01714    0.01714 (end)  

Hence, at the end of the reaction, the following compounds have the following number of moles

Na₂HAsO₄ = 0.00185 mole

This means Na⁺ has (2×0.00185) = 0.0037 mole at the end of the reaction and (HAsO₄)²⁻ has 0.00185 mole at the end of the reaction

NaOH = 0 mole

Na₃AsO₄ = 0.01714 moles

This means Na⁺ has (3×0.01714) = 0.05142 mole at the end of the reaction and (AsO₄)³⁻ has 0.01714 mole at the end of the reaction

H₂O = 0.01714 moles

So, at the end of the reaction

Na⁺ has 0.0037 + 0.05142 = 0.05512 mole

(HAsO₄)²⁻ has 0.00185 mole

(AsO₄)³⁻ has 0.01714 mole.

And since the Total volume of the reaction setup is now 500 mL + 500 mL = 1000 mL = 1 L

Hence, the concentration of the sodium and arsenate ions at the end of the reaction is

[Na⁺] = 0.05512 M

[HAsO₄²⁻] = 0.00185 M

[AsO₄³⁻] = 0.01714 M

Hope this Helps!!!

Answer:

[tex]\rm [Na^{+}]= \text{0.055 12 mol/L}[/tex]

[tex]\rm [HAsO_{4}^{2-}] + [AsO_{4}^{3-}] + [H_{2}AsO_{4}^{-}] + [H_{3}AsO_{4}] = \text{0.018 99 mol/L}[/tex]

Explanation:

The overall equation for the reaction is  

Na₂HAsO₄ + NaOH ⟶ Na₃AsO₄ + H₂O

1. Mass balance for Na

All the Na⁺ comes from the Na₂HAsO₄ and the NaOH.

The mass balance equation for Na is  

[tex]\rm c_{Na^{+}} = 2[Na^{+}]_{Na_{2}HAsO_{4}} + [Na^{+}]_{NaOH}[/tex]

At the moment of mixing and before the reaction started, the total volume had doubled, so the concentrations of each component were halved.

[Na₂HAsO₄] = ½ × 0.037 98 =0.018 99 mol·L⁻¹

[NaOH]         = ½ × 0.034 28 = 0.017 14 mol·L⁻¹

[tex]\rm c_{Na^{+}} = 2\times 0.01899 + 0.01714 = 0.03798 + 0.01714\\c_{Na^{+}}= \textbf{0.055 12 mol/L}[/tex]

2. Mass balance for arsenate species

All the arsenate species come from the Na₂HAsO₄.

The reactions involved are

HAsO₄²⁻+ OH⁻ ⇌ AsO₄³⁻ + H₂O

HAsO₄²⁻ + H₂O ⇌ H₂AsO₄⁻ + OH⁻

H₂AsO₄⁻ + H₂O ⇌ H₃AsO₄ + OH⁻

The mass balance equation for arsenate species is

[tex]\rm c_{\text{arsenate}} = [HAsO_{4}^{2-}] + [AsO_{4}^{3-}] + [H_{2}AsO_{4}^{-}] + [H_{3}AsO_{4}][/tex]

At the moment of mixing, the concentration of Na₂HAsO₄ had halved.

[Na₂HAsO₄] = ½ × 0.039 78 = 0.018 99 mol·L⁻¹

[tex]\rm [HAsO_{4}^{2-}] + [AsO_{4}^{3-}] + [H_{2}AsO_{4}^{-}] + [H_{3}AsO_{4}] = \textbf{0.018 99 mol/L}[/tex]

Aqueous sulfuric acid H2SO4 will react with solid sodium hydroxide NaOH to produce aqueous sodium sulfate Na2SO4 and liquid water H2O. Suppose 62. g of sulfuric acid is mixed with 33.8 g of sodium hydroxide. Calculate the minimum mass of sulfuric acid that could be left over by the chemical reaction. Round your answer to 2 significant digits.

Answers

Answer:

Approximately [tex]21\; \rm g[/tex].

Explanation:

[tex]\rm H_2SO_4[/tex] (a diprotic acid) reacts with [tex]\rm NaOH[/tex] (a monoprotic base) at a one-to-two ratio:

[tex]\rm 2\; NaOH\, (s) + H_2SO_4\, (aq) \to Na_2SO_4\; (aq) + 2\; H_2O\, (l)[/tex].

In other words, if [tex]n(\mathrm{NaOH})[/tex] and [tex]n(\mathrm{H_2SO_4})[/tex] represent the number of moles of the two compounds reacted, then:

[tex]\displaystyle \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} = \frac{1}{2}[/tex].

Look up the relative atomic mass data on a modern periodic table:

[tex]\rm H[/tex]: [tex]1.008[/tex].[tex]\rm S[/tex]: [tex]32.06[/tex].[tex]\rm O[/tex]: [tex]15.999[/tex].[tex]\rm Na[/tex]: [tex]22.990[/tex].

Calculate the (molar) formula mass of [tex]\rm H_2SO_4[/tex] and [tex]\rm NaOH[/tex]:

[tex]M(\mathrm{H_2SO_4}) = 2 \times 1.008 + 32.06 + 4 \times 15.999 = 98.072\; \rm g \cdot mol^{-1}[/tex].

[tex]M(\mathrm{NaOH}) = 22.990 + 15.999 + 1.008 = 39.997\; \rm g \cdot mol^{-1}[/tex].

Calculate the number of moles of formula units in that [tex]33.8\; \rm g[/tex] of [tex]\rm NaOH[/tex]:

[tex]\begin{aligned}n(\mathrm{NaOH}) &= \frac{m(\mathrm{NaOH})}{M(\mathrm{NaOH})} \\ &= \frac{33.8\; \rm g}{39.997\; \rm g \cdot mol^{-1}} \approx 0.845\; \rm mol\end{aligned}[/tex].

Apply the ratio [tex]\displaystyle \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} = \frac{1}{2}[/tex] to find the (maximum) number of moles of [tex]\rm H_2SO_4[/tex] that would react with the [tex]33.8\; \rm g[/tex] of [tex]\rm NaOH[/tex]:

[tex]\begin{aligned}n(\mathrm{H_2SO_4}) &= \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} \cdot n(\mathrm{NaOH})\\ &= \frac{1}{2} \times 0.845 \approx 0.4225\; \rm mol\end{aligned}[/tex].

Calculate the mass of that [tex]0.4225\; \rm mol[/tex] of [tex]\rm H_2SO_4[/tex]:

[tex]\begin{aligned}m(\mathrm{H_2SO_4}) &= n(\mathrm{H_2SO_4}) \cdot M(\mathrm{H_2SO_4})\\ &= 0.4225 \; \rm mol \times 98.072\; \rm g \cdot mol^{-1} \approx 41.435\; \rm g \end{aligned}[/tex].

When the maximum amount of [tex]\rm H_2SO_4[/tex] is reacted, the minimum would be in excess. Hence, the minimum mass of

[tex]62\; \rm g - 41.435\; \rm g \approx 21\; \rm g[/tex] (rounded to two significant figures.)

Gravity on Earth is 9.8 m/s2, and gravity on the Moon is 1.6 m/s2.

so if the mass of an object on earth is 40 kilograms what is the mass on the moon.
and how much does it way

Answers

Answer:

Mass is the same but it weights 64 Newtons

Explanation:

First of Mass is the same in any sort of gravity. Now let's calculate weight

W = MG

where W = Weight

M = Mass

G = Gravity

W = (40kg)(1.6)

W = 64

Sorry for the spelling mistakes, hope this helps

Answer:6.61kilo

Explanation: fdfv

Best example of potential energy?

Answers

Answer:

water stored in a dam

Explanation:

when the water is in dam it is ready to move bit is not moving

The best example would be like a truck pared at the top of a hill or like a person at the top of a slide . Thanks hope this helps

A sample of chloroform, CHCl 3 , , was determined to have a molecular mass of 112.3g / (mol) . Its molecular mass is known to be 119.5g / (mol) . Calculate the absolute error and the percent error

Answers

Answer:

Explanation:

in your case ,

Meaured value = 112.3

actual value = 119.5

Absolute error= measured value - actual value

Percent error = [measured value - actual value  / actual value ] x 100

Hope this help you to find the answer

Monel metal is a corrosion-resistant copper-nickel alloy used in the electronics industry. A particular alloy with a density of 8.80 g/cm3 and containing 0.090 % Si by mass is used to make a rectangular plate that is 15.0 cm long, 12.5 cm wide, and 3.50 mm thick and has a 2.50-cm-diameter hole drilled through its center such that the height of the hole is 3.50 mm .
The silicon in the plate is a mixture of naturally occurring isotopes. One of the those isotopes is silicon-30, which has an atomic mass of 29.97376 amu. The percent natural abundance, which refers to the atoms of a specific isotope, of silicon-30 is 3.10%.
Part A What is the volume of the plate?Express the volume numerically in cubic centimeters.
Part B How many silicon-30 atoms are found in this plate?
Express your answer numerically using two significant figures.

Answers

Answer:

Based on the given question, the dimensions of the plate is 15 cm in length, 12.5 cm in width, and 3.50 mm in thickness (0.350 cm). Now the volume of the plate will be,  

V = 15 cm × 12.5 cm × 0.350 cm = 65.62 cm³

A hole of diameter 2.50 cm is drilled through the center of the plate, at the height of 3.50 mm or 0.350 cm. Now the volume of the hole is π(r)²h,  

= 22/7 × (1.25 cm)² × 0.350 cm = 1.72 cm³

Thus, the volume of the plate will be determined by subtracting the volume of plate with the volume of hole, which will be,  

65.62 cm³ - 1.72 cm³ = 63.9 cm³

The density of the alloy is 8.80 g/cm³, therefore, the mass of the alloy can be determined by using the formula, mass = density * volume  

mass = 8.80 g/cm³ × 63.9 cm³ = 562.32 grams

Of the total alloy, 0.090 percent is Si, that is,  

(0.090/100) × 562.32 g = 0.506 grams of Si

The natural abundance of the element is not determined by mass but by the number of atoms it possess. For this Avogadro's number and atomic mass of Si is used. Now the number of atoms of Si present is,  

(0.506 g) (1 mol/28.0855 g) (6.023 × 10²³ atoms /mol) = 1.08 × 10²² Si atoms

Of these Si atoms, 3.10 percent are Si-30 so,  

= (3.10 / 100) × (1.08 × 10²² atoms) / 1000 = 3.34 × 10²⁰ atoms of Si-30. or 3.4 × 10²⁰ atoms

In what unit do we usually measure the force of the earth gravity? Acceleration due to gravity is 9.8/s^2

Answers

Answer:

in short weight

Explanation:

weight is mass x gravitational pull on an object

Identify whether each species functions as a Brønsted-Lowry acid or a Brønsted-Lowry base in this net ionic equation. HF (aq) + SO32- ⇌ F- + HSO3- Brønsted-Lowry _____ Brønsted-Lowry _____ Brønsted-Lowry _____ Brønsted-Lowry _____ In this reaction: The formula for the conjugate _____ of HF is The formula for the conjugate _____ of SO32- is

Answers

Explanation:

A Bronsted-Lowry base is a substance that accepts a proton in the form of a hydrogen (H) atom.

On the other hand;

Bronsted-Lowry acid is the substance that donates the proton.

HF (aq) + SO32- ⇌ F- + HSO3-

In the forward reaction;

Bronsted-Lowry acid : HF

Bronsted-Lowry base: SO32-

In the backward reaction;

Bronsted-Lowry acid : HSO3-

Bronsted-Lowry base: F-

The conjugate base of HF is F-

The conjugate acid of SO32- is HSO3-

A temperature of 50°F is equal to °C.

Answers

Answer:

CONVERT IT:

50°F is equal to 10°C

Answer:

10 degrees Celsius

Explanation:

(50°F − 32) × 5/9 = 10°C

Two scientists study data collected during an experiment and reach different conclusions. How would the scientific community address their disagreement?

Please

Answers

Answer: D. They would device an experiment that could test the two scientists conclusions.

Explanation:

The results of the scientific study must be verified by peer scientists or members of the scientific community to proof whether the research has been conducted produce a valid evidence.

In the given situation, the two scientists had developed different conclusion for the same experiment. This may mean either of the two may have put up an incorrect conclusion.

The scientific community may address this issue by performing the experiment. Every scientific conclusion is based upon the results of the experimental approach.

Answer:d

Explanation:

At 25.0 °C the Henry's Law constant for sulfur hexafluoride (SP) gas in water is 2.4x 10 M/atm Calculate the mass in grams of SFo, gas that can be dissolved in S25. ml. of water at 25.0 C and a SF, partial pressure of 1.90 atm Be sure your answer has the correct number of significant digits.

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The mass is [tex]m = 0.0349 \ g[/tex]

Explanation:

From the question we are told that

   The Henry's Law constant is  [tex]k = 2.4 *10^{10} M/atm[/tex]

   The volume of water is [tex]V = 525 \ ml = 0.525 \ L[/tex]

   The partial pressure is  [tex]P = 1.90 \ atm[/tex]

   The temperature is [tex]T = 25 ^oC[/tex]

Henry's  law is mathematically represented as

       [tex]C = P * k[/tex]

Where C is  the concentration of sulfur hexafluoride(SP)

substituting value

        [tex]C = 1.90 * 2.4*10^{-4}[/tex]

        [tex]C = 4.56*10^{-4} \ M[/tex]

The number of moles of  SP is mathematically represented as

        [tex]n = C * V[/tex]

substituting value

       [tex]n = 0.525 * 4.56*10^{-4}[/tex]

       [tex]n = 2.39 *10^{-4} \ moles[/tex]

The mass of SP that dissolved is

          [tex]m = n * Z[/tex]

Where Z is the molar mass of SP which has a constant value of

           [tex]Z = 146 g/mole[/tex]

So

         [tex]m = 2.394*10^{-4} * 146[/tex]

         [tex]m = 0.0349 \ g[/tex]

Which option describes a similarity and a difference between isotopes of an element? A. same atomic number; different number of protons B. same number of protons; different atomic number C. same atomic number; different mass number D. same mass number; different atomic number E. same number of neutrons; same number of protons

Answers

Answer:

c

Explanation:

For the aqueous reaction dihydroxyacetone phosphate↽−−⇀glyceraldehyde−3−phosphate dihydroxyacetone phosphate↽−−⇀glyceraldehyde−3−phosphate the standard change in Gibbs free energy is ΔG°′=7.53 kJ/molΔG°′=7.53 kJ/mol . Calculate ΔGΔG for this reaction at 298 K298 K when [dihydroxyacetone phosphate]=0.100 M[dihydroxyacetone phosphate]=0.100 M and [glyceraldehyde-3-phosphate]=0.00200 M[glyceraldehyde-3-phosphate]=0.00200 M .

Answers

Answer:

ΔG = -2.17 kJ/mol

Explanation:

ΔG of a reaction at any moment could be obtained thus:

ΔG = ΔG° + RT ln Q

Where ΔG° is standard change in free energy of a particular reaction (7.53kJ/mol for the reaction of the problem, R is gas constant (8.314×10⁻³kJ/molK), T is absolute temperature (298K) and Q is reaction quotient of the reaction.

For the reaction:

dihydroxyacetone phosphate ⇄ glyceraldehyde−3−phosphate

Q is defined as:

Q = [glyceraldehyde−3−phosphate] / [dihydroxyacetone phosphate]

Replacing values in ΔG formula:

ΔG = 7.53kJ/mol + 8.314×10⁻³kJ/molK × 298.15K ln [0.00200M] / [0.100M]

ΔG = -2.17 kJ/mol

A 33.0−g sample of an alloy at 93.00°C is placed into 50.0 g of water at 22.00°C in an insulated coffee-cup calorimeter with a heat capacity of 9.20 J/K. If the final temperature of the system is 31.10°C, what is the specific heat capacity of the alloy? J g·°C

Answers

Answer:

THE SPECIFIC HEAT OF THE ALLOY IS 0.9765 J/g K

Explanation:

Mass of alloy = 33 g

Initial temperature of alloy = 93°C

Mass of water = 50 g

Initail temp. of water = 22 °C

Heat capacity of calorimeter = 9.20 J/K

Final temp. = 31.10 °C

specific heat of alloy = unknown

specific heat capacity of water = 4.2 J/g K

Heat = mass * specific heat * change in temperature = m c ΔT

Heat = heat capcity * chage in temperature = Δ H * ΔT

In calorimetry;

Heat lost by the alloy = Heat gained by water + Heat of the calorimeter

                     mc ΔT = mcΔT + Heat capacity * ΔT

33 * C * ( 93 - 31.10) = 50 * 4.2 * ( 31.10 -22) + 9.20 * ( 31.10 -22)

33 * C * 61.9 = 50 * 4.2 * 9.1 + 9.20 * 9.1

2042.7 C = 1911 + 83,72

C = 1911 + 83.72 / 2042.7

C = 1994.72 /2042.7

C =0.9765 J/g K

The specific heat of the alloy is 0.9765 J/ g K

Which of the following is a chemical property of iron? It

Answers

Answer:

is capable of combining with oxygen to form iron oxide

Which of the following are not created by an arrangement of electric charges
or a current (the flow of electric charges)?
A. An electric field
B. A magnetic field
C. A quantum field
D. A gravitational field

Answers

Answer:

gravitational and quantum ARE NOT, but electric and magnetic ARE.    there is a similar question to this but it's the exact opposite, so don't get confused

need help and quick answer as fast as possible

Answers

yes. arthropod are animals such as insects, crabs, lobsters etc

When you look at an ant up close, using a convex lens, what do you see?

Answers

Answer:

You would be able to see the ants clearly with the unique body parts.

Explanation:

Convex lens is also known as Converging lens. It helps in converging rays of light to become a principal focus which is usually very clear and visible to the eyes. The converging lens when used to view the ant makes the ant appear very visible and the individual is able to see all the unique body parts of the ant. This type of lens is used in individuals who are longsighted.

If 25.8 mL of an AgNO3 solution is needed to precipitate all Cl- ions in a 1570 mg of KCl (forming AgCl), what is the molarity of the AgNO3nsolution?

Answers

Answer:

M=0.816M

Explanation:

Hello,

In this case, we should consider the following reaction:

[tex]AgNO_3+KCl\rightarrow KNO_3+AgCl[/tex]

Thus, by knowing the 1:1 molar ratio of silver nitrate and potassium chloride, we can easily compute the moles of silver nitrate precipitating the 1570 mg of potassium chloride considering its molar mass of 74.5513 g/mol:

[tex]n_{AgNO_3}=1570mgKCl*\frac{1gKCl}{1000mgKCl} *\frac{1molKCl}{74.5513gKCl}*\frac{1molAgNO_3}{1molKCl} \\\\n_{AgNO_3}=0.021molAgNO_3[/tex]

Then, by using the volume of silver nitrate in liters (0.0258 L), we can directly compute the molarity:

[tex]M=\frac{0.021molAgNO_3}{0.0258L}\\ \\M=0.816M[/tex]

Regards.

A maple tree could be studied in many fields of science. What aspects of a maple tree might be studied in chemistry?

Answers

Answer:

Chemical reactions, kinetics, organic chemistry

Explanation:

You might study the chemical reaction, learn about the differences between products and reactants, about delta H and exothermic and endothermic reactions. You may also study Kinetics by studying the rates of reactions with certain chemicals in a maple's enzymatic processes.

Another thing that you might learn about is organic chemistry. The glucose molecules, carbohydrates, lipids, nucleic acids, all have a structure based on the Carbon atom. You can learn about the specific structures of some chemicals that are involved in photosynthesis and simple hydrocarbons that are involved in photosynthetic/bio-synthetic pathways.

There's probably a lot more - but these are the most basic things I could think of.

One proposed mechanism of the reaction of HBr with O2 is given here. HBr + O2 → HOOBr (slow) HOOBr + HBr → 2HOBr (fast) HOBr + HBr → H2O + Br2 (fast) What is the equation for the overall reaction?

Answers

Answer:

4 HBr + O2  →  + 2H2O + 2Br2

Explanation:

Based on the following reaction mechanism:

HBr + O2 → HOOBr (slow)

HOOBr + HBr → 2HOBr (fast)

HOBr + HBr → H2O + Br2 (fast)

The equation for the overall reaction is the sum of the three reactions in which intermediaries of reaction (HOBr and HOOBr are canceled). That is 1 + 2 + 2*(3):

HBr + O2 + HOOBr + HBr + 2HOBr + 2HBr → HOOBr + 2HOBr + 2H2O + 2Br2

4 HBr + O2  →  + 2H2O + 2Br2

Beeing this reaction the equation of the overall reaction.

Consider the following reaction. I– 2 H2O2 (l) 2 H2O (l) + O2 (g) A solution contains 15 mL 0.1 M KI, 15 mL of DI water and 5 mL of 3% H2O2. After the decomposition of H2O2 is complete, you titrate the solution with 0.1 M AgNO3. If the catalyst, I–, is not consumed in the reaction and is completely recovered, what volume of the 0.1 M AgNO3 is required to reach the end point?

Answers

Answer:

Explanation:

The given chemical reaction is:

[tex]2H_2O_{(l)} \to^{I^-}} 2H_2O_{(l)}+O_2_{(g)}[/tex]

From above equation  [tex]I^-[/tex] serves as catalyst which is not consumed by the reaction and also it is completely recovered; as a result to that , the full volume of KI will definitely react with AgNO₃.

Given that :

the volume of potassium iodide [tex]V_{KI} = 15 \ ml[/tex]

the molarity of potassium [tex]M_{KI} = 0.1 \ M[/tex]

the volume of distilled water [tex]V_W = 15 \ mL[/tex]

The volume of 3% [tex]H_2O_2 \ \ V_{H_2O_2} = 5 \ mL[/tex]

Molarity of AgNO₃ [tex]M_{AgNO_3} = 0.1 \ M[/tex]

Let take an integral look with the reaction between KI and AgNO₃; we have

[tex]KI + AgNO_3 \to KNO_3 + AgI[/tex]

At the end point; the moles of KI will definitely be equal to the moles of AgNO₃

So;

[tex]M_{KI}V_{KI}= M_{AgNO_3}V_{AgNO_3} \\ \\ V_{AgNO_3} = \dfrac{M_{KI}V_{KI}}{M_{AgNO_3}} \\ \\ \\ V_{AgNO_3} = \dfrac{ 0.1*15}{0.1}[/tex]

[tex]V_{AgNO_3} = 15 \ ml[/tex]

Thus; the volume of 0.1 M AgNO₃  needed to reach the end point is 15 mL

A sample of carbon dioxide gas at a pressure of 879 mm Hg and a temperature of 65°C, occupies a volume of 14.2 liters. Of the gas is cooled at constant pressure to a temperature of 23°C, the volume of the gas sample will be

Answers

Answer:

The correct answer is 12.43 Liters.

Explanation:

Based on the given question, the volume V₁ occupied by the sample of carbon dioxide gas is 14.2 liters at temperature (T₁) 65 degree C or 65+273 K = 338 K.  

The gas is cooled at a temperature (T₂) 23 degree C or 273+23 K = 296 K

The volume of the gas (V₂) after cooling can be determined by using the formula,  

V₁/T₁ = V₂/T₂

14.2/338 = V₂/296

0.0420 = V₂/296

V₂ = 0.0420 * 296  

V₂ = 12.43 Liters.  

• Briefly discuss the cause of errors in the measurements

Answers

(also called Observational Error) is the difference between a measured quantity and its true value. It includes random error

The following data show the rate constant of a reaction measured at several different temperatures. Temperature (K) Rate Constant (1/s) 310 0.194 320 0.554 330 1.48 340 3.74 350 8.97 Part APart complete Use an Arrhenius plot to determine the activation barrier for the reaction. Express your answer using three significant figures. Ea

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

Part A

    activation barrier for the reaction [tex]E_a = 84 .0 \ KJ/mol[/tex]

Part B

    The frequency plot is  [tex]A = 2.4*10^{13} s^{-1}[/tex]    

Explanation:

From the question we are told that

     at  [tex]T_1 = 300 \ K[/tex]   [tex]k_1 = 5.70 *10^{-2}[/tex]

and  at  [tex]T_2 = 310 \ K[/tex]   [tex]k_2 = 0.169[/tex]

The  Arrhenius plot is mathematically represented as

      [tex]ln [\frac{k_2}{k_1} ] = \frac{E_a}{R} [\frac{1}{T_1} - \frac{1}{T_2} ][/tex]

Where [tex]E_a[/tex] is the activation barrier for the reaction

         R is the gas constant with a value of  [tex]R = 8.314*10^{-3} KJ/mol \cdot K[/tex]

Substituting values

          [tex]ln [\frac{0.169}{6*10^-2{}} ] = \frac{E_a}{8.314*10^{-3}} [\frac{1}{300} - \frac{1}{310} ][/tex]

=>       [tex]E_a = 84 .0 \ KJ/mol[/tex]

The  Arrhenius plot can also be  mathematically represented as

      [tex]k = A * e^{-\frac{E_a}{RT} }[/tex]

Here we can use any value of k from the data table with there corresponding temperature let take  [tex]k_2 \ and \ T_2[/tex]

So substituting values

        [tex]0.169 = A e ^{- \frac{84.0}{8.314*10^{-3} * 310} }[/tex]

=>       [tex]A = 2.4*10^{13} s^{-1}[/tex]    

A boy with pneumonia has lungs with a volume of 1.7 L that fill with 0.070 mol of air when he inhales. When he exhales, his lung volume decreases to 1.3 L. Enter the number of moles of gas that remain in his lungs after he exhales. Assume constant temperature and pressure.

Answers

Answer:

0.053moles

Explanation:

Hello,

To calculate the number of moles of gas remaining in his after he exhale, we'll have to use Avogadro's law which states that the volume of a given mass of gas is directly proportional to its number of moles provided that temperature and pressure are kept constant. Mathematically,

V = kN, k = V / N

V1 / N1 = V2 / N2= V3 / N3 = Vx / Nx

V1 = 1.7L

N1 = 0.070mol

V2 = 1.3L

N2 = ?

From the above equation,

V1 / N1 = V2 / N2

Make N2 the subject of formula

N2 = (N1 × V2) / V1

N2 = (0.07 × 1.3) / 1.7

N2 = 0.053mol

The number of moles of gas in his lungs when he exhale is 0.053 moles

Suppose an industrial quality-control chemist analyzes a sample from a copper processing plant in the following way. He adds powdered iron to a copper(II) sulfate sample from the plant until no more copper will precipitate. He then washes, dries, and weighs the precipitate, and finds that it has a mass of . Calculate the original concentration of copper(II) sulfate in the sample. Round your answer to significant digits.

Answers

Answer:

Concentration of Copper (II) Sulfate in the original sample in mol/L = 0.0035 M

Concentration of Copper (II) Sulfate in the original sample in g/L = 0.56 g/L

Explanation:

Complete Question

Fe(s) + CuSO₄(aq) → Cu(s) + FeSO₄(aq)

Suppose an industrial quality-control chemist analyzes a sample from a copper processing plant in the following way. He adds powdered iron to a 400.mL copper (II) sulfate sample from the plant until no more copper will precipitate. He then washes, dries, and weighs the precipitate, and finds that it has a mass of 89.mg. Calculate the original concentration of copper(II) sulfate in the sample. Round your answer to 2 significant figures.

Solution

Noting that the precipitate is Copper as it is the only solid by-product of this reaction.

89 mg of Copper is produced from this reaction.

We convert this into number of moles for further stoichiometric calculations

Mass of Copper = 89 mg = 0.089 g

Molar mass of Copper = 63.546 amu

Number of moles of Copper produced from the reaction = (0.089/63.546) = 0.0014005602 = 0.001401 mole

From the stoichiometric balance of the reaction,

1 mole of Copper is produced from 1 mole of Copper (II) Sulfate

0.001401 mole of Copper will be produced similarly from 0.001401 mole of Copper (II) Sulfate.

Number of moles of Copper (II) Sulfate in the original sample = 0.001401 mole

Concentration of Copper (II) Sulfate in the original sample in mol/L = (Number of moles) ÷ (Volume in L)

Number of moles = 0.001401 mole

Volume in L = (400/1000) = 0.4 L

Concentration of Copper (II) Sulfate in the original sample in mol/L = (0.001401/0.4) = 0.0035025 mol/L = 0.0035 mol/L to 2 s.f.

Concentration in g/L = (Concentration in mol/L) × (Molar Mass)

Concentration in mol/L = 0.0035025 M

Molar mass of Copper (II) Sulfate = 159.609 g/mol

Concentration of Copper (II) Sulfate in the original sample in g/L = 0.0035025 × 159.609 = 0.559 g/L = 0.56 g/L to 2 s.f

Hope this Helps!!!!

The concentration of the original copper solution is 0.035 M.

The equation of the reaction is;

Fe(s) + CuSO4(aq) -------> FeSO4(aq) + Cu(s)

Number of moles of copper obtained = 89 × 10^-3g/63.5 = 0.0014 moles

Since the reaction is 1:1, the number of moles of copper sulfate that reacted is c.

From the question, we are told that the volume of solution is 400.mL or 0.04L.

Hence, the concentration of the solution is; number of moles /volume

=  0.0014 moles/0.04L = 0.035 M

Learn more: https://brainly.com/question/9352088

Missing parts;

Suppose an industrial quality-control chemist analyzes a sample from a copper processing plant in the following way. He adds powdered iron to a 400.mL copper (II) sulfate sample from the plant until no more copper will precipitate. He then washes, dries, and weighs the precipitate, and finds that it has a mass of 89.mg. Calculate the original concentration of copper(II) sulfate in the sample. Round your answer to 2 significant figures.

An electrochemical cell is constructed with a zinc metal anode in contact with a 0.052 M solution of zinc nitrate and a silver cathode in contact with a 0.0042 M solution of silver(I) nitrate. What is the value of Q to use in the Nernst equation for this cell

Answers

Answer:

Q = 12.38

Explanation:

The Nernst equation is given as; Ecell = E°cell - (2.303RT/nF) log Q  ;where Q is the reaction quotient.

The reaction quotient, Q  in a reaction, is the product of the concentrations of the products divided by the product of the concentrations of the reactants.

In an electrochemical cell, Q is the ratio of the concentration of the electrolyte at the anode to that of the electrolyte at the cathode.

Q = [anode]/[cathode]

therefore , Q = 0.052/0.0042 = 12.38

Other Questions
Which of the following represents an increase in living standards over the past century? Check all that apply. Increased human activities have magnified the pollution of air and water. The purchasing power of a dollar has declined over time due to inflation. Medical breakthroughs enable people to enjoy better healthcare nowadays. A rectangle with an area of 25 square centimetres is rotated and reflected in the coordinate plane. What will be the area of the resulting image? Explain. Please help me quick!!!!!!!!!!!!!!!!! The Cascade Range is also known as the Solve: |x-7| Read this sentence. Jamie attends college and will graduate in one year. Which answer identifies an adverb phrase and the word or words it modifies? Ferdinands employer will match 50% of his $250 monthly contributions to his 401(k). This means that Ferdinands employer will put 50% of $250 = $125 into Ferdinands 401(k) account each month in addition to Ferdinands $250. What a swell benefit You are spending the month of July hiking and biking in the Rocky Mountains, in the western US state of Colorado. Based on concepts, explain why you would typically plan your daily rides and hikes in the morning hours to minimize the chances of being caught in bad weather? Which of the following is the conjugate base of HPO 2?O A. H2P04B. PO 3C. H3PO4O D. HAP04 Which one of the following solids can produce this two-dimensional shape when sliced vertically?Choose 1 answer: Accounting Cycle Review 15 a-eCullumber Corporations trial balance at December 31, 2020, is presented below. All 2020 transactions have been recorded except for the items described below.DebitCreditCash$26,100Accounts Receivable60,000Inventory23,300Land67,200Buildings81,700Equipment41,000Allowance for Doubtful Accounts$470Accumulated DepreciationBuildings25,500Accumulated DepreciationEquipment14,200Accounts Payable19,500Interest Payable0Dividends Payable0Unearned Rent Revenue7,200Bonds Payable (10%)44,000Common Stock ($10 par)28,000Paid-in Capital in Excess of ParCommon Stock5,600Preferred Stock ($20 par)0Paid-in Capital in Excess of ParPreferred Stock0Retained Earnings65,330Treasury Stock0Cash Dividends0Sales Revenue570,000Rent Revenue0Bad Debt Expense0Interest Expense0Cost of Goods Sold380,000Depreciation Expense0Other Operating Expenses36,900Salaries and Wages Expense63,600 Total$779,800$779,800Unrecorded transactions and adjustments:1.On January 1, 2020, Cullumber issued 1,000 shares of $20 par, 6% preferred stock for $23,000.2.On January 1, 2020, Cullumber also issued 1,000 shares of common stock for $24,000.3.Cullumber reacquired 260 shares of its common stock on July 1, 2020, for $46 per share.4.On December 31, 2020, Cullumber declared the annual cash dividend on the preferred stock and a $1.30 per share dividend on the outstanding common stock, all payable on January 15, 2021.5.Cullumber estimates that uncollectible accounts receivable at year-end is $6,000.6.The building is being depreciated using the straight-line method over 30 years. The salvage value is $5,200.7.The equipment is being depreciated using the straight-line method over 10 years. The salvage value is $4,100.8.The unearned rent was collected on October 1, 2020. It was receipt of 4 months rent in advance (October 1, 2020 through January 31, 2021).9.The 10% bonds payable pay interest every January 1. The interest for the 12 months ended December 31, 2020, has not been paid or recorded.(Ignore income taxes.) Select the correct answerHow did Thomas Aquinass idea of natural law influence the lawmakers and philosophers of the Enlightenment?It helped them understand the negative aspects of a constitutional government.BIt helped them reconsider the role of government and the importance of individual rightsucIt helped them realize that people needed fewer rights and a stronger government.It helped them realize that rational thinking couldn't be applied to any type of government.OD What is the value of x? The force of T = 20 N is applied to the cord of negligible mass. Determine the angular velocity of the 20-kg wheel when it has rotated 4 revolutions starting from rest. The wheel has a radius of gyration of kO = 0.3 m. Which best describes abstinence?Saying no to oral sex.Avoidance of sexual intercourse.O Declining to go on a date with another person.Refusal to have sexual intercourse or engage in other sexual activity. Leticia is cutting a board to make a ramp for her skateboard. The ramp will slope from the ground up to a height of 4 feet. The board will make an angle of 25 with the ground. How long should she cut the board for her ramp? *1 point9.46 feet long4.41 feet long8.58 feet long10 feet long The mass of an object is 50 kg. If its weight is 600N on a certain planet. Calculate thegravitational field strength of the planet., the time taken by a student to the university has been shown to be normally distributed with mean of 16 minutes and standard deviation of 2.1 minutes. He walks in once a day during term time, 180 days per year, and leaves home 20 minutes before his first lecture. a. Find the probability that he is late for his first lecture. b. Find the number of days per year he is likely to be late for his first lecture. What is the authors purpose in this biography excerpt enriques journey Factor 16 x2 + 24 x + 9.(16 x + 3)( x + 3)(4 x + 3)(4 x - 3)(4 x + 3) 2