Answer:
Option D.
Step-by-step explanation:
If a line passing through two points, then the equation of line is
[tex](y-y_1)=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
It is given that Line f(x) passes through points (-4, 0) and (-3, 1). So, equation of line f(x) is
[tex](y-0)=\dfrac{1-0}{-3-(-4)}(x-(-4))[/tex]
[tex]y=1(x+4)[/tex]
So, function f(x) is
[tex]f(x)=(x+4)[/tex] ...(1)
Line g(x) passes through points (-4, 0) and (-3, -3). So, equation of line f(x) is
[tex](y-0)=\dfrac{-3-0}{-3-(-4)}(x-(-4))[/tex]
[tex]y=-3(x+4)[/tex]
So, function g(x) is
[tex]g(x)=-3(x+4)[/tex] ...(2)
Using (1) and (2), we get
[tex]g(x)=-3f(x)[/tex] ...(3)
It is given that
[tex]g(x)=kf(x)[/tex] ...(4)
On comparing (3) and (4), we get
[tex]k=-3[/tex]
Therefore, the correct option is D.
What is the simplified value of the exponential expression 27 1/3 ?
1/3
1/9
3
9
Answer:
3
Step-by-step explanation:
27^1/3 = cuberoot(27) = 3
11 — 9y = — 6у +8
solve for y
pleaseee
Answer:
-The value of [tex]y[/tex]:
[tex]y = 1[/tex]
Step-by-step explanation:
-Find the value of [tex]y[/tex]:
[tex]11- 9y = -6y + 8[/tex]
-Add both sides by [tex]6y[/tex] and combine [tex]9y[/tex] and [tex]6y[/tex] together:
[tex]11- 9y + 6y = -6y + 6y+ 8[/tex]
[tex]11 - 3y = 8[/tex]
-Subtract both sides by [tex]11[/tex]:
[tex]11 - 11 - 3y = 8 -11[/tex]
[tex]-3y = -3[/tex]
-Divide both sides by [tex]-3[/tex]:
[tex]\frac{-3y}{-3} = \frac{-3}{-3}[/tex]
[tex]y = 1[/tex]
So the final answer is [tex]y = 1[/tex] .
Any help would be greatly appreciated.
There are 300 raffle tickets.
The prizes are as follows:
First prize - voucher for meal at local restaurant
Second prize - food hamper
Third prize - chocolate cake
4x homemade jams
3x homemade pickles
A prize is won after the first raffle ticket is drawn.
What is the probability of winning a prize when the next ticket is drawn?
Answer: 0.007
Step-by-step explanation:
Suppose that you have a ticket.
We have 3 prizes, and 300 tickets.
After the first tiket is drawn, someone win a prize, so now we have 299 tikets left and 2 prizes left.
Then, for the next draw, you have p = 1/299 of wining a prize.
If you did not win there, the probability for the third price is p = 1/298 (because there are 2 less tickets now)
Then the probability of winning at least one prize is:
P = 1/299 + 1/298 = 0.007
Inflation causes things to cost more, and for our money to buy less (hence your grandparents saying "In my day, you could buy a cup of coffee for a nickel"). Suppose inflation decreases the value of money by 4% each year. In other words, if you have $1 this year, next year it will only buy you $0.96 worth of stuff. How much will $100 buy you in 25 years?
Answer:
Step-by-step explanation:
[tex]100 (0.96)^{25} =[/tex] around 36.04
1960 were polled. 279 of them preferred Rock and Roll. What is the % of these students?
Answer:
14.2% students
Step-by-step explanation:
279 / 1960 = 0.142
0.142 x 100% = 14.2 %
What is the equation of the line perpendicular to y = 2/3x+1that passes through the point (12, -6)?
Answer:[tex]y=-\frac{3}{2} x+12[/tex]
Step-by-step explanation:
Perpendicular lines have inversely proportional slopes. So make the slope negative and switch it to its reciprocal.
2/3x would change into -3/2x
Lets write that down for a starting point for our perpendicular line.
y = -3/2x + b
We were given the x and y value via the coords. x = 12 and y = -6
Now we have -6 = -3/2(12) + b. Multiply -3 and 12 to get -36, then divide by 2 to get -18. Now it's -6 = -18 + b. Solve for b by adding 18 to both sides to get b = 12
In a study investigating the effect of car speed on accident severity, 5000 reports of fatal automobile accidents were examined, and the vehicle speed at impact was recorded for each one. For these 5000 accidents, the average speed was 42 mph and the standard deviation was 15 mph. A histogram revealed that the vehicle speed at impact distribution was approximately normal.
a. Roughly what proportion of vehicle speeds were between 27 and 57 mph?
b. Roughly what proportion of vehicle speeds exceeded 57 mph?
Answer:
(a) Roughly 68% of vehicle speeds were between 27 and 57 mph.
(b) Roughly 16% of vehicle speeds exceeded 57 mph.
Step-by-step explanation:
We are given that in a study investigating the effect of car speed on accident severity, 5000 reports of fatal automobile accidents were examined.
For these 5000 accidents, the average speed was 42 mph and the standard deviation was 15 mph.
Let X = vehicle speed at impact
SO, X ~ Normal([tex](\mu=42,\sigma^{2} = 15^{2}[/tex])
Here, [tex]\mu[/tex] = population average speed = 42 mph
[tex]\sigma[/tex] = standard deviation = 15 mph
Since, the distribution is approximately normal; so the 68-95-99.7 empirical rule states that;
68% of the data values lies within one standard deviation points.95% of the data values lies within two standard deviation points.99.7% of the data values lies within three standard deviation points.(a) Since, it is stated above that 68% of the data values lies within one standard deviation points, that means;
68% data values will lie between [ [tex]\mu-\sigma , \mu+\sigma[/tex] ] , i.e;
[ [tex]\mu-\sigma , \mu+\sigma[/tex] ] = [42 + 15 , 42 - 15]
= [57 , 27]
So, it means that roughly 68% of vehicle speeds were between 27 and 57 mph.
(b) We have observed above that roughly 68% of vehicle speeds were between 27 and 57 mph which leads us to the conclusion that (100% - 68% = 32%) of the data values will be outside this range.
It is stated that of this 32%, half of the data values will be less than 27 mph and half of the data values will be more than 57 mph.
This means that roughly 16% of vehicle speeds exceeded 57 mph.
Eleanor can drive an average of 374 Miles on one tank of gas. How many miles can she drive on 15 tanks of gas
Answer:
5,610 Miles
Step-by-step explanation:
To solve this you would need to multiply the average miles by how many tanks of gas she will use.
374 * 15 = 5,610
So, Eleanor can drive 5,610 miles with 15 tanks of gas.
a cereal box is an example of a
Answer: recantagle
Step-by-step explanation:
A rectangular plot of farmland will be bounded on one side by a river and on the other three sides by a single-strand electric fence. With 1100 m of wire at your disposal, what is the largest area you can enclose, and what are its dimensions?
Answer:
Length = 550 m
Width = 275 m
Area = 151,250 m2
Step-by-step explanation:
One side of the farmland is bounded by the river, so the perimeter we will need to enclose is:
[tex]Perimeter = Length + 2*Width = 1100\ m[/tex]
And the area of the farmland is given by:
[tex]Area = Length * Width[/tex]
From the Perimeter equation, we have that:
[tex]Length = 1100 - 2*Width[/tex]
Using this in the area equation, we have:
[tex]Area = (1100 - 2*Width) * Width[/tex]
[tex]Area = 1100*Width - 2*Width^2[/tex]
Now, to find the largest area, we need to find the vertex of this quadratic equation, and we can do that using the formula:
[tex]Width = -b/2a[/tex]
[tex]Width = -1100/(-4)[/tex]
[tex]Width = 275\ m[/tex]
This width will give the maximum area of the farmland. Now, finding the length and the maximum area:
[tex]Length = 1100 - 2*Width = 1100 - 550 = 550\ m[/tex]
[tex]Area = Length * Width = 550 * 275 = 151250\ m2[/tex]
Round 90.2844097979 to 3 decimals
Answer:
only allow 3 decimals
90.284 is the answer we removed all others except for 3
In a large population, 64% of the people have been vaccinated. If 5 people are randomly selected, what is the probability that AT LEAST ONE of them has been vaccinated? Give your answer as a decimal to 4 places.
Answer:
0.9940
Step-by-step explanation:
P(at least 1) = 1 − P(zero)
P(at least 1) = 1 − (1 − 0.64)⁵
P(at least 1) = 1 − (0.36)⁵
P(at least 1) = 0.9940
The probability that at least one of them has been vaccinated is 0.9939.
What is binomial distribution?
The binomial distribution is the discrete probability distribution that gives only two possible results in an experiment, either success or failure. It helps to check the probability of getting “x” successes in “n” independent trials of a binomial experiment.
For the given situation,
Number of people vaccinated = 64% = 0.64
The formula of binomial distribution is
[tex]P(x:n,p) = nC_{x} p^x (1-p)^{n-x}[/tex]
Here x is the number of successes, x ≤ 1
n is the number of trials, n = 5
p is the probability of a success on a single trial, p = 0.64 and
where, [tex]nC_{x}=\frac{n!}{x!(n-x)!}[/tex]
The probability is [tex]P(X \leq 1)=1-P(X=0)[/tex]
[tex]P(X=0)= 5C_{0} (0.64)^{0} (1-0.64)^{5-0}[/tex]
⇒ [tex]P(X=0)= 1(1) (0.36)^{5}[/tex]
⇒ [tex]P(X=0)= 0.0060[/tex]
Thus, [tex]P(X \leq 1)=1-P(X=0)\\[/tex]
⇒ [tex]P(X \leq 1)=1-0.0060[/tex]
⇒ [tex]P(X \leq 1)=0.9939[/tex]
Hence we can conclude that the probability that at least one of them has been vaccinated is 0.9939.
Learn more about binomial distribution here
https://brainly.com/question/27939234
#SPJ3
tan 12 = 22/x
Please help !!! Last answer says 4.7
Answer:
103.5
Step-by-step explanation:
Multiply x on both sides
xtan12 = 22
Now divide tan12 to isolate x
x = (22) / (tan(12))
Now we know that calculator should be in degree mode because the answer choices do not have the radian mode answer. When your calculator is in Degree mode and you calculate this value you get approximately 103.5
The value of x if tan 12 = 22/x is 103.5
Given the trigonometric expression:
tan 12 = 22/x
We need to get the value of "x"
Cross multiply
x tan12 = 22
x = 22/tan12
x = 22/0.2126
x = 103.529
Hence the value of x if tan 12 = 22/x is 103.5
Learn more here: https://brainly.com/question/25618616
George and Paula are running around a circular track. George starts at the westernmost point of the track, and Paula starts at the easternmost point. The illustration below shows their starting positions and running directions. They start running toward each other at constant speeds. George runs at 9 feet per second. Paula takes 50 seconds to run a lap of the track. George and Paula pass each other after 14 seconds.
After running for 4 minutes, how far east of his starting point is George?
Answer:
George is 43.20 ft East of his starting point.
Step-by-step explanation:
Let Paula's speed be x ft/s
George's speed = 9 ft/s
Note that speed = (distance)/(time)
Distance = (speed) × (time)
George takes 50 s to run a lap of the track at a speed of y ft/s
Meaning that the length of the circular track = y × 50 = 50y ft
George and Paula meet 14 seconds after the start of the run.
Distance covered by George in 14 seconds = 9 × 14 = 126 ft
Distance covered by Paula in 14 seconds = y × 14 = 14y ft
But the sum of the distance covered by both runners in the 14 s before they first meet each other is equal to the length of the circular track
That is,
126 + 14y = 50y
50y - 14y = 126
36y = 126
y = (126/36) = 3.5 ft/s.
Hence, Paula's speed = 3.5 ft/s
Length of the circular track = 50y = 50 × 3.5 = 175 ft
So, in 4 minutes (240 s), with George running at 9 ft/s, he would have ran a total distance of
9 × 240 = 2160 ft.
2160 ft around a circular track of length 175 ft, means that George would have ran a total number of laps (2160/175) = 12.343 laps.
Breaking this into 12 laps and 0.343 of a lap from the starting point. 0.343 of a lap = 0.343 × 175 = 60 ft
So, 60 ft along a circular track subtends an angle θ at the centre of the circle.
Length of an arc = (θ/360°) × 2πr
2πr = total length of the circular track = 175
r = (175/2π) = 27.85 ft
Length of an arc = (θ/360) × 2πr
60 = (θ/360°) × 175
(θ/360°) = (60/175) = 0.343
θ = 0.343 × 360° = 123.45°
The image of this incomplete lap is shown in the attached image,
The distance of George from his starting point along the centre of the circular track = (r + a)
But, a can be obtained using trigonometric relations.
Cos 56.55° = (a/r) = (a/27.85)
a = 27.85 cos 56.55° = 15.35 ft
r + a = 27.85 + 15.35 = 43.20 ft.
Hence, George is 43.20 ft East of his starting point.
Hope this Helps!!!
When a feasible region is bounded on all sides, where will the maximum and minimum values of the objective function occur?
at the center of the feasible region
at the top of the feasible region
anywhere within the feasible region
at the vertices of the feasible region
Answer:
Option 4: at the vertices of the feasible region.
I completed the quiz
Answer:
at the vertices of the feasible region
Step-by-step explanation:
this is the correct answer
hope i helped
US Department of Transportation As part of a study on transportation safety, the US Department of Transportation collected data on the number of fatal accidents per 1000 licenses and the percentage of licensed drivers under the age of 21 in a sample of 42 cities. Data collected over a one-year period are shown in the table.Use regression to investigate the relationship between the number of fatal accidents and the percentage of drivers under the age of 21.Discuss your findings.What conclusions and recommendations can you derive from your analysis?Percent Under 21 Fatal Accidents per 100013 2.96212 0.7088 0.88512 1.65211 2.09117 2.62718 3.838 0.36813 1.1428 0.6459 1.02816 2.80112 1.4059 1.43310 0.0399 0.33811 1.84912 2.24614 2.85514 2.35211 1.29417 4.18 2.1916 3.62315 2.6239 0.8358 0.8214 2.898 1.26715 3.22410 1.01410 0.49314 1.44318 3.61410 1.92614 1.64316 2.94312 1.91315 2.81413 2.6349 0.92617 3.256
Answer:
we can conclude that for every single unit of : x, y would be increased by 0.2871. and intersection of x and y will be through =1.5974it can be concluded that they are strongly positively correlated. There is strong and positive correlation between them. i.e the number of fatal accidents and the drivers under the age of 21Step-by-step explanation:
WITH THE GIVEN DATA
A ) using regression to investigate the relationship between the number of fatal accidents and the percentage of drivers under the age pf 21
to fit into a regression line we must have ∝ and β
where β = [tex]\frac{S_{xy} }{S_{xx} }[/tex] = 0.2871
and ∝ = y - βx = - 1.5974
regression line = ∝ + β * x
insert values into regression line equation
regression line = -1.5974 + 0.2871 * x
we can conclude that for every single unit of : x, y would be increased by 0.2871. and intersection of x and y will be through =1.5974
B ) conclusion and recommendations can you derive from your analysis
it can be concluded that they are strongly positively correlated. There is strong and positive correlation between them. i.e the number of fatal accidents and the drivers under the age of 21
using the correlation coefficient ( r ) = [tex]\frac{S_{xy} }{\sqrt{S_{xx}*S_{xy} } }[/tex] = 0.8394
Answer:
0.8394
Step-by-step explanation:
.
Please help will mark brainliest.
Answer:
parallel lines both have slope 1/3; non-parallel lines both have length 5
Step-by-step explanation:
It generally works well to follow instructions.
A graph of the points shows you that the parallel sides are RA and PT. The difference between the end points of these segments are ...
A - R = (6, 8) -(-3, 5) = (9, 3) = (Δx, Δy)
So, the slope of RA is Δy/Δx = 3/9 = 1/3
And the other difference and slope are ...
P -T = (9, 4) -(-3, 0) = (12, 4) ⇒ Δy/Δx = 4/12 = 1/3
The slope of RA is the same as the slope of PT, so those segments are parallel.
__
The length of segment TR can be found from the differences of the end point coordinates:
R - T = (-3, 5) -(-3, 0) = (0, 5)
Since these points are on the same vertical line, this tells us the segment length is 5.
The other difference of coordinates is ...
A - P = (6, 8) -(9, 4) = (-3, 4)
The distance formula tells us the length of AP is then ...
AP = √((-3)² +4²) = √25 = 5
Non-parallel sides TR and AP have the same lengths, so the trapezoid is isosceles.
I need HELP PLEASE HELP ME
Answer:
Graph 2
Step-by-step explanation:
You can see that all the shaded numbers are above negative 25 in that graph. Hope this helped!
last year we had 250 of employees and due to attrion we lost 12% we only have blank employees left ?
Answer:
220
Step-by-step explanation:
If we lost 12% we still have 100 - 12 = 88% of the employees left. 88% can be written as 0.88. 0.88 * 250 = 220 employees left.
Can someone help me with this worksheet? Will give all my points.
Answer:
Here are the formulas
Cube/Rectangular Prism:
Volume = Length*width*height
Surface area = 2(wl+hl+hw)
Lateral area= Area of vertical faces
Base area = length*width
Regular hexagonal prism:
Volume : (3sqrt3/2)*a^2*h
Surface Area = 6ah+3sqrt(3)a^2
lateral area: 6ah
base area = 3sqrt(3)s^2/2
Triangular prism
Volume: The volume of a triangular prism can be found by multiplying the base times the height.
Surface area: A triangular prism has three rectangular sides and two triangular faces. To find the area of the rectangular sides, use the formula A = lw, where A = area, l = length, and h = height. To find the area of the triangular faces, use the formula A = 1/2bh, where A = area, b = base, and h = height.
Etc.
PLEASE HELP ME!!! (WILL MARK BRAINLIEST!
Answer:
A) 13/20
Step-by-step explanation:
65% in simplest form,
65/100
= 13/20 (Divided by five)
Answer:
[tex]\frac{13}{20}[/tex].
Step-by-step explanation:
We can begin by converting 65% to a fraction over 100. 65% converts to 0.65, or [tex]\frac{65}{100}[/tex].
We can simplify this down. Both 65 and 100 share a common factor of 5, which allows us to produce a new fraction:
[tex]\frac{65}{100} = \frac{13}{20}[/tex]
Therefore, the simplified version is [tex]\frac{13}{20}[/tex].
WILL GIVE BRAINLIEST ANSWER ASAP
Answer:
x = -6
Step-by-step explanation:
-2/3x + 9 = 4/3x - 3
First we need to simplify to where we have x on one side and a constant (number not connected to a variable) on the other side.
Subtract 4/3x from both sides:
-2/3x + 9 - 4/3x = -3
-6/3x + 9 = -3
Now subtract 9 from both sides:
-6/3x + 9 - 9 = -3 - 9
-6/3x = -12
Now turn -6/3 into a whole number to make things more simple:
-6/3 = -2
-2x = -12
Now divide both sides by -2 to get x by itself
-2x/-2 = -12/-2
x = -6
A standard 52-card deck has four 13-card suits: diamonds, hearts, clubs, and spades. The diamonds and hearts are red, and the clubs and spades are black. Each 13-card suit contains cards numbered from 2 to 10, a jack, a queen, a king, and an ace. An experiment consists of drawing 1 card from the standard deck. Find the probability of drawing a black jack of diamonds.
Answer:
0
Step-by-step explanation:
In a suit of 52 cards
The Red Cards are: diamonds and heartsThe Black cards are: clubs and spadesThe experiment consists of drawing 1 card from the standard deck.
Since diamonds are red, there is no black jack of diamonds.
Therefore:
P(drawing a black jack of diamonds)
[tex]=\dfrac{0}{52}\\\\ =0[/tex]
Answers:
In photo below
Explanation:
I got it correct in my test :)
~Help me with this please I will mark as BRANLIEST and give you 55 POINTS! (If you answer correctly)
Answer:
[tex]y=50x+75[/tex]
Step-by-step explanation:
When writing a linear equation from a graph, we need to find two things: the y-intercept (what y is when x is 0) and the slope.
First, let us find the y-intercept.
To do this, we can just look at the graph. When x=0, y=75, so 75 is our y-intercept, which is also known as b.
To find the slope of this line, we will need to look at two points
We already know that (0,75) is a point. From the graph, we can see that (1,125) is also a point on this line.
Now, we can find the slope of this line using the following formula [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\frac{125-75}{1-0} \\\\m=\frac{50}{1} \\\\m=50[/tex]
Now that we have both the y-intercept and slope, we can put them together in the form of [tex]y=mx+b[/tex]
[tex]y=50x+75[/tex]
Answer:
Slope: 50
Equation: y = 50x + 75
Step-by-step explanation:
Take two points:
(2,175)
(3,225)
Find the slope:
225 - 175/3 - 2
50/1 = 50
So we get this equation:
y = 50x + b
Now to find b, insert one of those points from before back in:
175 = 50(2) + b
175 = 100 + b
b = 75
So the equation is:
y = 50x + 75
Which table represents a function?
Answer:
The bottom left table
Step-by-step explanation:
the same x value cannot have different y values
Find the distance between the pair of points: (9,−3) and (0,−10).
Answer:
√130 is the distance between (9,-3) (0,-10)
What’s the correct answer for this?
Answer:
C
Step-by-step explanation:
Measure of Arc FED = 51+79
= 130°
Since the measures of arcs and angles are the same
Hence
<FED = 130°
Divide £2.28 btw eve and amelie in the ratio 9:5 give your answer to the nearest penny Eve gets ? And amelie gets ?
Answer:
Eve gets 1.47 and Amelie gets 0.81
Step-by-step explanation:
the ratio is 9 to 5 so we can say 9x + 5x=2.28
14x=2.28
x=0.16
so eve gets 9x = 9(2.28/14) = 1.47
and amelie gets 5x = 5(2.28/14) = 0.81
What’s the correct answer for this?
Answer:
B. The radius
Step-by-step explanation:
The area of a sector of a circle is ½ r² ∅, where r is the radius and ∅ the angle in radians subtended by the arc at the centre of the circle so we need to know the radius for it
A type of friction that occurs when air pushes against a moving object causing it to negatively accelerate
Answer:
Air resistance
Step-by-step explanation:
Air resistance is a type of friction that occurs when air pushes against a moving object causing it to negatively accelerate
Answer:
Air resistance
Step-by-step explanation:
Air resistance is a type of friction that occurs when air pushes against a moving object causing it to negatively accelerate.