The map below shows major ocean currents in the North Atlantic and North Pacific Oceans. In general, currents flowing toward the
Equator bring cooler waters to some regions, while currents flowing away from the Equator bring warmer waters to other regions.
North
British
Isles
Askan
North Atlantic
Azor
U.S.A
California
Gulf Stream
Loop
n
Canbean
North Equatorial
North Equatorial CC
North Fuatorial
Equator
South Equatorial
Not
South Equatorial
Image courtesy of NOAA
Judging from the map, which region probably has cooler summers than it would without the effect of a nearby ocean current?
A the Central U.S.
B. the British Isles
C. the U.S. East Coast
D. the US West Coast
Answer:
d
Explanation:
the US West Coast region probably has cooler summers than it would without the effect of a nearby ocean current.
what is ocean current ?
ocean current can be defined as the horizontal movement of seawater which is produced by gravity, wind, and water density, it play an major role in the determination of climates of coastal regions.
The movement of ocean water is continuous which can be up three types such as Waves, Tides, Currents
The streams of water which flow continuously on the ocean surface in specific directions are called ocean currents, it affect the temperature of ocean water as Warm ocean currents increase the temperature whereas Cold ocean currents decrease the temperature.
The magnitude of the ocean currents is about few centimeters per second to as much as 4 metres per second and the intensity of the ocean currents generally decreases with increasing depth.
There are two types of ocean currents such as Warm Ocean Currents
and Cold Ocean Currents
For more details ocean current, visit
https://brainly.com/question/21654036
#SPJ2
It's time to get a little more specific. Based on the velocity (Vx) graph for the car and the velocity data in the table, divide the total
motion of the car into rough time periods that tell a different "chapter" of the story for this car trip. In each of these time
periods, the car's velocity will be notably different from the previous period. Enter a brief description of the car's motion in each
period. The first one is done for you. Use it as an example to identify and describe the remaining time periods. Note: You can
define as many periods as you think appropriate.
s
B
1
U X
X х.
Font Sizes
А • А
E
E 를 들
E 3
Numbered list
Time Period
Motion Description
0.2 - 4.6 seconds increasing speed in positive direction
Answer:
0.2 – 4.6 seconds increasing speed in positive direction
4.6 - 7.8 seconds decelerating speed in a positive direction
8 - 17.2 seconds accelerating speed in a negative direction
Explanation:
**Plato** **Edmentum**n~ this question is pretty open ended, so its hard to get it wrong honestly, good luck <3 ~
Answer:
0.2 – 4.6 seconds increasing speed in positive direction
4.6 - 7.8 seconds decelerating speed in a positive direction
8 - 17.2 seconds accelerating speed in a negative direction
Explanation:
A long, circular aluminum rod is attached at one end to a heated wall and transfers heat by convection to a cold fluid. If the diameter of the rod is doubled, by how much would the rate of heat removal change
Complete question is;
A long, circular aluminum rod is attached at one end to a heated wall and transfers heat by convection to a cold fluid. If the diameter of the rod is doubled, by how much would the rate of heat removal change?
Answer:
182.84 %
Explanation:
Formula for rate of heat transfer of an infinite log fin is given as;
q_f1 = (π/2) × (hk)^(½)) × D^(3/2)) × (T_b - T_∞)
Where D is diameter.
Now, if the diameter of the rod is doubled, it means Diameter is now 2D.
Thus;
q_f2 = (π/2) × (hk)^(½)) × (2D^(3/2)) × (T_b - T_∞)
To find how much the rate of heat removal will change, we will calculate as follows;
((q_f2/q_f1) - 1) × 100
Plugging in the relevant expressions, we have;
([[(π/2) × (hk)^(½)) × ((2D)^(3/2)) × (T_b - T_∞)]/[(π/2) × (hk)^(½)) × (D^(3/2)) × (T_b - T_∞)]] - 1) × 100
Upon simplifying, we have;
(((2D)^(3/2))/(D^(3/2)) - 1) × 100
((2^(3/2)) - 1) × 100
This gives;
182.84 %
please answer correctly
Answer:
616000 J.
Explanation:
Bi. Determination of the work done.
Force (F) = 220 N
Distance (s) = 2800 m
Workdone (Wd) =?
Workdone is simply defined as the product of force and the distance moved in the direction of the force. Mathematically, is can be expressed as:
Workdone = Force × distance
Wd = F × s
With the above formula, we can obtain the Workdone as follow:
Force (F) = 220 N
Distance (s) = 2800 m
Workdone (Wd) =?
Wd = F × s
Wd = 220 × 2800
Wd = 616000 J.
Explain the working and principle of perisocope.
Answer:
a periscope use total internal reflection to allow us to see things
the reflection happens at 45°
Explanation:
A car travels 150 kilometers west in 3 hours. What is its average velocity?
Your answer:
150 km/hr
50 km/hr
50 km/hr west
150 km/hr west
Answer:
C= 50km/hr west
Explanation:
150/3= 50
Because it asks for velocity, make sure to include the direction as well.
There is a parallel plate capacitor. Both plates are 4x2 cm and are 10 cm apart. The top plate has surface charge density of 10C/m^2 and the bottom plate has a surface charge density of -10C/m^2. Find the total charge on each plate. Find the electric field at the point exactly midway between the plates. Find the electric potential between the two plates. If an electron was in the middle the two plates, find the force on it.
Answer:
1) The total charge of the top plate is 0.008 C
b) The total charge of the bottom plate is -0.008 C
2) The electric field at the point exactly midway between the plates is 0
3) The electric field between plates is approximately 1.1294 × 10¹² N/C
4) The force on an electron in the middle of the two plates is approximately 1.807 × 10⁻⁷ N
Explanation:
The given parameters of the parallel plate capacitor are;
The dimensions of the plates = 4 × 2 cm
The distance between the plates = 10 cm
The surface charge density of the top plate, σ₁ = 10 C/m²
The surface charge density of the bottom plate, σ₂ = -10 C/m²
The surface area, A = 0.04 m × 0.02 m = 0.0008 m²
1) The total charge of the top plate, Q = σ₁ × A = 0.0008 m² × 10 C/m² = 0.008 C
b) The total charge of the bottom plate, Q = σ₂ × A = 0.0008 m² × -10 C/m² = -0.008 C
2) The electrical field at the point exactly midway between the plates is given as follows;
[tex]V_{tot} = V_{q1} + V_{q2}[/tex]
[tex]V_q = \dfrac{k \cdot q}{r}[/tex]
Therefore, we have;
The distance to the midpoint between the two plates = 10 cm/2 = 5 cm = 0.05 m
[tex]V_{tot} = \dfrac{k \cdot q}{0.05} + \dfrac{k \cdot (-q)}{0.05} = \dfrac{k \cdot q}{0.05} - \dfrac{k \cdot q}{0.05} = 0[/tex]
The electric field at the point exactly midway between the plates, [tex]V_{tot}[/tex] = 0
3) The electric field, 'E', between plates is given as follows;
[tex]E =\dfrac{\sigma }{\epsilon_0 } = \dfrac{10 \ C/m^2}{8.854 \times 10^{-12} \ C^2/(N\cdot m^2)} \approx 1.1294 \times 10^{12}\ N/C[/tex]
E ≈ 1.1294 × 10¹² N/C
The electric field between plates, E ≈ 1.1294 × 10¹² N/C
4) The force on an electron in the middle of the two plates
The charge on an electron, e = -1.6 × 10⁻¹⁹ C
The force on an electron in the middle of the two plates, [tex]F_e[/tex] = E × e
∴ [tex]F_e[/tex] = 1.1294 × 10¹² N/C × -1.6 × 10⁻¹⁹ C ≈ 1.807 × 10⁻⁷ N
The force on an electron in the middle of the two plates, [tex]F_e[/tex] ≈ 1.807 × 10⁻⁷ N
Which two statements below are central ideas in the article, "How Gross Is Your Bathroom"?
a. What you can't see might hurt you.
b. Different numbers of bacteria are hiding on various surfaces around your bathroom.
c. Most bacteria are harmless, and some are even good for you.
d. Your bathroom is filled with germs that you might not know anything about, including
viruses and bacteria.
A cylinder is filled with a liquid of density d upto a height h. If the beaker is at rest ,then the mean pressure on the wall is?
Answer:
h over 2 dg
Explanation:
brainliest!!!!!!!
Which of the following helps prevent and cope with heat-related conditions?
Drinking water
Wear proper clothing
Rest frequently
all of the above
An action which would help in preventing and coping with heat-related conditions is: A. Drinking water.
What is heat?Heat can be defined as a form of energy that is transferred from a physical object (body) to another, as a result of a difference in temperature. Also, heat is a condition of weather that is generally characterized by a high degree of temperature.
This ultimately implies that, heat is most likely to cause dehydration and high body temperature.
In order to prevent and cope with heat-related conditions, you should ensure that you drink water at regular intervals for hydration.
Read more on heat here: brainly.com/question/12072129
help me pls it’s a usa test prep pretty easy
Answer:
Im 99.99999% sure its c
Explanation:
i cant see the pictures too well
Although 0 dB is often referred to as the lower threshold of human hearing, it is important to realize that the human ear is not equally sensitive to all frequencies of sound. In other words, a particular noise may sound louder or softer depending on the frequency of the sound wave being transmitted. Because of this variation, scientists have defined a unit of loudness, called a phon, to represent the intensity of sound waves with a frequency of 1000 Hz. A 60-phon sound is one that is perceived by the human ear to have the same loudness as a sound wave with an intensity of 60 dB and a frequency of 1000 Hz.
Required:
a. At approximately what frequency do most people perceive the least intense sounds? Answer numerically in hertz to two significant figures.
b. Normal conversation has a sound level of about 60 dB. How many times more intense must a 100-Hz sound be compared to a 1000-Hz sound to be perceived as equal to 60 phons of loudness?
Answer:
20 Hz
15.8 times
Explanation:
A
Although the range of frequency for any human's ear is usually said to be between 20 Hz and 20 kHz. And since the question asked for the least intense frequency, that has to be 20 Hz. Essentially the frequency most people perceive the least intense sound is 20 Hz.
B
A 100-Hz sound must be 10^1.2 times or 15.8 times more intense compared to a 1000-Hz sound to be perceived as equal to 60 phons of loudness
Suppose that you connect the terminals of two batteries of different emfs positive to positive and negative to negative (opposing each other) in a circuit. If you wanted to add in a capacitor to charge it from the batteries, would you be able to get more charge onto the capacitor or less charge, than if there was only one battery. (hint: start this problem by aligning the batteries positive to negative, and think of it from conservation of energy perspective).
Answer:
Answer is explained in the explanation section below.
Explanation:
This question is very basic and easy. The answer to this question is:
Answer: If both batteries are connected we would get less amount of charge as compared to connected a single battery.
Reasoning:
If both batteries are connected in a manner of positive terminal to positive terminal and negative terminal to negative terminal then a capacitor is added to charge it from the batteries then, total electromotive force (emf) would decrease.
As a result, the capacitor added would get less amount of charge stored. But capacitor added will get more amount of charge stored when a single battery is connected.
Plzz answer correctly
The force of gravity on a person or object on the surface of a planet is called
A. gravity
ОВ.
B. free fall
OC
c. terminal velocity
D. weight
Answer:
D. Weight
Explanation:
Hope that helps:)
Light of wavelength 425.0 nm in air falls at normal incidence on an oil film that is 850.0 nm thick. The oil is floating on a water layer 1500 nm thick. The refractive index of water is 1.33, and that of the oil is 1.40. The number of wavelengths of light that fit in the oil film is closest to:
Answer:
in oil film λ = 303.57 10⁻⁹ m
in the water film λ = 319.55 10⁻⁹ m
Explanation:
When electromagnetic radiation reaches a material, its propagation is by a process that we call absorption and reflection,
when light reaches a surface it has a mass much greater than the mass of the photons (m = 0), therefore there is an elastic collision where the frequency does not change, due to the speed of light in the material medium changes, therefore the only possibility is that the wavelength in the material changes, to maintain the relationship
v = λ f
in the void we have
c = λ₀ f
we divide the two expression
c / v = λ₀ / λ
the refractive index is
n = c / v
n = λ₀ /λ
λ = λ₀ / n
let's calculate
in oil film
λ = 425 10⁻⁹ / 1.40
λ = 303.57 10⁻⁹ m
in the water film
λ = 425 10⁻⁹ / 1.33
λ = 319.55 10⁻⁹
those wavelengths are in the ultraviolet
Cole drives to school from home, starting from rest and accelerating for 10 minutes as he travels 6.0 km to school.
1) What is Cole's acceleration?
2) What is his velocity when he reaches school?
Explanation:
this is the answer for your question. if you have any doubt.
you can send your doubt to:6369514784(what's app)
How can you tell whether an object is neutral
or charged? What would you have to do to test
that object?
Answer:
The number of electrons that surround the nucleus will determine whether or not it is electrically charged or electrically neutral
Explanation:
A crate rests on a flatbed truck which is initially traveling at 13.6 m/s on a level road. The driver applies the brakes and the truck is brought to a halt in a distance of 38.1 m. If the deceleration of the truck is constant, what is the minimum coefficient of friction between the crate and the truck that is required to keep the crate from sliding
Answer:
0.248
Explanation:
Initial speed u = 13.6
Final speed v = 0
Distance s = 38.1
We have umg = ma
We make u subject of the formula
u = a/g
V² = u² + 2as
a = v²-u²/2s
We substitute the values into the above
a = 0-(13.6)²/2*38.1
a = 184.96/76.2
a = 2.427m/sec
Remember that
u = a/g
u = 2.427/9.8
= 0.2476
This is approximately 0.248
This is the minimum coefficient of friction required to keep the crate from sliding.
A boat is moving in a river with a current that has speed vW with respect to the shore. The boat first moves downstream (i.e. in the direction of the current) at a constant speed, vB , with respect to the water. The boat travels a distance D in a time tOut . The boat then changes direction to move upstream (i.e. against the direction of the current) at a constant speed, vB , with respect to the water, and returns to its original starting point (located a distance D from the turn-around point) in a time tIn .
1) What is tOut in terms of vW, vB, and D, as needed?
2) What is tIn in terms of vW, vB, and D, as needed?
3) Assuming D = 120 m, tIn = 170 s, and vW = 0.3 m/s, what is vB, the speed of the boat with respect to the water?
4) Once again, assuming D = 120 m, tIn = 170 s, and vW = 0.3 m/s, what is tOut, the time it takes the boat to move a distance D downstream?
Answer:
Explanation:
Current has speed vW with respect to the shore and boat has speed vB with respect to water or current so speed of boat with respect to shore
vW + vB .
Distance travelled with respect to shore by boat = D
time ( tout ) = distance / speed with respect to shore
tOut = D / ( vW + vB )
When the boat travels upstream , its velocity with respect to shore
= ( vB - vW ) , vB must be higher .
tin = D / ( vB - vW )
3 ) tin = D / ( vB - vW )
170 = 120 / (vB - 0.3 )
(vB - 0.3 ) = 12 / 17 = .706
vB = 1.006 m / s
4 )
tOut = D / ( vW + vB )
= 120 / ( .3 + 1.006 )
= 92.26 s
Time taken by a body is ratio of the distance traveled by it to the speed.
1)The expression for [tex]t{out}[/tex] is,[tex]t_{out}=\dfrac{D}{v_B+v_W}[/tex]
2)The expression for [tex]t{in}[/tex] is,[tex]t_{in}=\dfrac{D}{v_B-v_W}[/tex]
3) The speed of the boat with respect to the water is 1.006 m/s. 4) The time it takes the boat to move a distance D downstream is 91.9 seconds.What is upstream and downstream speed?
The net speed of the boat is upstream speed. The difference of the speed of the boat is downstream speed.
Given information-
The speed of the boat with respect to shore is [tex]v_w[/tex].
The speed of the boat in downstream with respect to water is [tex]v_B[/tex].
The distance traveled by the boat is [tex]D[/tex] in time [tex]t_{out}[/tex].
Time taken by a body is ratio of the distance traveled by it to the speed.
1) The net speed of the boat is upstream speed.As the distance traveled by the boat is [tex]D[/tex] in time [tex]t_{out}[/tex]. Thus,[tex]t_{out}=\dfrac{D}{v_B+v_W}[/tex]
2) The difference of the speed of the boat is downstream speed.As the distance traveled by the boat is [tex]D[/tex] in time [tex]t_{in}[/tex]. Thus,[tex]t_{in}=\dfrac{D}{v_B-v_W}[/tex]
Now the distance is 120 m, the value of [tex]t_{in}[/tex] is 170 s and [tex]v_W[/tex] 0.3 m/s. Thus,
3) The speed of the boat with respect to the water-Put the values in the formula obtains from the 2nd part of the problem,[tex]170=\dfrac{120}{v_B-0.3}\\v_B-0.3=\dfrac{120}{160} \\v_B=0.706+0.3\\v_B=1.006[/tex]
Hence the speed of the boat with respect to the water is 1.006 m/s.
4) The time it takes the boat to move a distance D downstream-Put the values in the formula obtains from the 1st part of the problem,[tex]t_{out}=\dfrac{120}{1.006+0.3}\\t{out}=\dfrac{120}{1.306} \\t{out}=91.9[/tex]
Hence the time it takes the boat to move a distance D downstream is 91.9 seconds.
Thus,
1)The expression for [tex]t{out}[/tex] is,[tex]t_{out}=\dfrac{D}{v_B+v_W}[/tex]
2)The expression for [tex]t{in}[/tex] is,[tex]t_{in}=\dfrac{D}{v_B-v_W}[/tex]
3) The speed of the boat with respect to the water is 1.006 m/s. 4) The time it takes the boat to move a distance D downstream is 91.9 seconds.Learn more about the upstream and downstream speed here;
https://brainly.com/question/800251
Two students on ice skates stand one behind the other. Student 2 pushes student 1 in the back; both students move away from each other. What law of motion is this. (Newton's laws)
Answer:
forcing in act
Explanation:
Bill is walking to the store and he walks the first 500m in 60s. He then runs 1000m in 90s. After stopping for 45s, he was the remaining 450m to the store in 50s. What is the average velocity for Bills entire
trip?
Answer:
letra A segundo o couculo a divisão e completa
An ordinary ruler is used to measure the area and its error of a rectangle. It is found that their sides are 5.0 cm long and 2.0 cm width. The error in area (in cm) is
Answer:
You need to know the accuracy to which you can read the ruler:
Suppose that you can read the read the ruler to the nearest milimeter
A = L * W your calculated area of the rectangle
A + ΔA = (L + ΔL) * (W + ΔW) = L W + L ΔW + W * ΔL + ΔL ΔA
Or ΔA = L ΔW + W ΔL
Where we have subtracted A = L * W and the term ΔL * ΔA is very small
So (5 + .1) * (2 + .1) - 5 * 2 = .1 * 2 + .1 * 5 = .7 cm^2
Then you report A = 10 cm^2 +- .7 cm^2 including the - sign for completeness
The low-frequency speaker of a stereo set has a surface area of and produces 1W of acoustical power. What is the intensity at the speaker
Answer:
I = [tex]\frac{1}{4\pi \ r^2}[/tex]
we see the intensity decreases with the inverse of the distance squared
Explanation:
Intensity is defined as power per unit area,
I = P / A
in this case we have that the sound is emitted in a spherical form therefore the area is
A = 4 pi r2
therefore the intensity is
I = [tex]\frac{1}{4\pi \ r^2}[/tex]
as we see the intensity decreases with the inverse of the distance squared
Explain the difference in the function of plant and animal cell organelles, including cell membrane, cell wall, nucleus, cytoplasm, mitochondria, chloroplast, and vacuole
Answer:
Plant cell Animal cell
2. Have a cell membrane. 2. Have no chloroplasts.
3. Have cytoplasm. 3. Have only small vacuoles.
4. Have a nucleus. 4. Often irregular in shape.
5. Often have chloroplasts
containing chlorophyll. 5. Do not contain plastids.
Earth’s atmosphere traps energy from the sun. Which is a direct result of the trapping of energy by Earth’s atmosphere?
Answer:
Earth's atmosphere traps energy from the sun. Which is a direct result of the trapping of energy by earth's atmosphere? Earth has moderate temperatures.
Explanation:
what is permittivity
Answer:
Permittivity, also called electric permittivity, is a constant of proportionality that exists between electric displacement and electric field intensity.
Q4. (a) An acre-foot is the volume of water that would cover 1 acre of flat land to a depth of 1
foot. How many gallons are in 1 acre-foot?
Answer:
326,000
Explanation:
One acre-foot equals about 326,000 gallons, or enough water to cover an acre of land, about the size of a football field, one foot deep. An average California household uses between one-half and one acre-foot of water per year for indoor and outdoor use.
Cars A and B are racing each other along the same straight road in the following manner: Car A has a head start and is a distance DA beyond the starting line at t=0. The starting line is at x=0. Car A travels at a constant speed vA. Car B starts at the starting line but has a better engine than Car A, and thus Car B travels at a constant speed vB, which is greater than vA?
The question is incomplete. Here is the complete question.
Cars A nad B are racing each other along the same straight road in the following manner: Car A has a head start and is a distance [tex]D_{A}[/tex] beyond the starting line at t = 0. The starting line is at x = 0. Car A travels at a constant speed [tex]v_{A}[/tex]. Car B starts at the starting line but has a better engine than Car A and thus Car B travels at a constant speed [tex]v_{B}[/tex], which is greater than [tex]v_{A}[/tex].
Part A: How long after Car B started the race will Car B catch up with Car A? Express the time in terms of given quantities.
Part B: How far from Car B's starting line will the cars be when Car B passes Car A? Express your answer in terms of known quantities.
Answer: Part A: [tex]t=\frac{D_{A}}{v_{B}-v_{A}}[/tex]
Part B: [tex]x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}[/tex]
Explanation: First, let's write an equation of motion for each car.
Both cars travels with constant speed. So, they are an uniform rectilinear motion and its position equation is of the form:
[tex]x=x_{0}+vt[/tex]
where
[tex]x_{0}[/tex] is initial position
v is velocity
t is time
Car A started the race at a distance. So at t = 0, initial position is [tex]D_{A}[/tex].
The equation will be:
[tex]x_{A}=D_{A}+v_{A}t[/tex]
Car B started at the starting line. So, its equation is
[tex]x_{B}=v_{B}t[/tex]
Part A: When they meet, both car are at "the same position":
[tex]D_{A}+v_{A}t=v_{B}t[/tex]
[tex]v_{B}t-v_{A}t=D_{A}[/tex]
[tex]t(v_{B}-v_{A})=D_{A}[/tex]
[tex]t=\frac{D_{A}}{v_{B}-v_{A}}[/tex]
Car B meet with Car A after [tex]t=\frac{D_{A}}{v_{B}-v_{A}}[/tex] units of time.
Part B: With the meeting time, we can determine the position they will be:
[tex]x_{B}=v_{B}(\frac{D_{A}}{v_{B}-v_{A}} )[/tex]
[tex]x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}[/tex]
Since Car B started at the starting line, the distance Car B will be when it passes Car A is [tex]x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}[/tex] units of distance.
The distance traveled by the car A and car B should be equal to the as they meet at the same position.
The time car B will catch the car A after is,
[tex]\dfrac{D_A}{v_B-v_A}[/tex]
How to calculate the distance traveled by body?The distance is the product of the speed of the body and the time taken to travel the distance.
Given information-
Car A has a head start and is a distance DA beyond the starting line at,
[tex]t=0[/tex]
Car A travels at a constant speed [tex]v_A[/tex].
Car B travels at a constant speed [tex]v_B[/tex].
The distance is the product of the speed of the body and the time taken to travel the distance.
The position equation from the motion for car A can be given as,
[tex]x_A=v_At+D_A[/tex]
The position equation from the motion for car B can be given as,
[tex]x_B=v_Bt[/tex]
The distance traveled by the car A and car B should be equal to the as they meet at the same position. Thus,
[tex]x_A=x_B[/tex]
Put the values,
[tex]v_At+D_A=v_Bt\\v_At-v_Bt=-D_A\\t(v_B-v_A)=D_A\\t=\dfrac{D_A}{v_B-v_A}[/tex]
Hence the time car B will catch the car A after is,
[tex]\dfrac{D_A}{v_B-v_A}[/tex]
Learn more about the speed of the object here;
https://brainly.com/question/4931057
The ancient Egyptians used the stars to _____.
predict annual flooding
make their calendar
harvest their crops
choose their pharaoh
Answer:
predict annual flooding
Answer:
I'm pretty sure it is b make their calander