Find the sum of the following infinite series. If it is divergent, type "Diverges" or "D" 7+2+4/7+8/49 + ...

Answers

Answer 1

The sum of the infinite series 7+2+4/7+8/49+... is,

S = 49/5.

Now, To find the sum of the infinite series 7+2+4/7+8/49+...,

Hence, we can use the formula for the sum of an infinite geometric series:

⇒ S = a / (1 - r)

where S is the sum of the series, a is the first term, and r is the common ratio.

In this case, a = 7 and r = 2/7,

Since, each term is obtained by multiplying the previous term by 2/7.

Plugging these values into the formula, we get:

S = 7 / (1 - 2/7)

S = 7 / (5/7)

S = 49/5

Therefore, The sum of the infinite series 7+2+4/7+8/49+... is,

S = 49/5.

Learn more about the geometric sequence visit:

https://brainly.com/question/25461416

#SPJ4


Related Questions

Find a particular solution of the indicated linear system that satisfies the initial conditions x1 (0)2, x2(0) 1, and X3 (0) 8 -42 0 - 39 1 1 - 4t 38 0 x; X1 = e 3t 3t -1 35 -1 - 5 X2 = e X3 - 35 3 5 35

Answers

The particular solution of the indicated linear system that satisfies the initial conditions is (1/5) e⁻ᵃ [1 1/5] + (8/5) t e⁻ᵃ [1 1/5] + (4/5) e⁻ᵃ [1 1/5] + (3/5) e²ᵃ [1 1]

The first step in finding a particular solution of a linear system that satisfies given initial conditions is to write the system in matrix form, which is already given as:

X ′ = [ 3 − 1

5 − 3]x

Here, X ′ is the derivative of the vector X with respect to time t, and x is the vector of unknown functions that we want to find. To solve this system, we need to find the eigenvalues and eigenvectors of the matrix [3 -1; 5 -3], which can be done by finding the roots of the characteristic equation det([3 -1; 5 -3] - λI) = 0, where I is the identity matrix and λ is the eigenvalue.

Solving the characteristic equation, we get λ = -1 and λ = -1, which means that we have one repeated eigenvalue. To find the eigenvectors, we need to solve the equation ([3 -1; 5 -3] - (-1)I)x = 0 for each eigenvalue. For λ = -1, we get the equation

[4 -1; 5 -2]x = 0

which has the general solution x = c[1; 1/5], where c is a constant. For a repeated eigenvalue, we also need to find the generalized eigenvectors, which are solutions of the equation ([3 -1; 5 -3] - (-1)I)x = v, where v is a nonzero vector orthogonal to the eigenvector.

For λ = -1, we can choose v = [0; 1] and solve the equation ([3 -1; 5 -3] - (-1)I)x = [0; 1], which gives the solution x = [1/5; 1/25]. Thus, the eigenvector matrix P and the generalized eigenvector matrix Q are

P = [1 1/5; 1 1/5] and Q = [1 1/5; 0 1/25]

respectively. Using these matrices, we can write the general solution of the system as

x = c₁ e⁻ᵃ [1 1/5] + c₂ t e⁻ᵃ [1 1/5] + c₃ e⁻ᵃ [1 1/5] + c4 e^(2t) [1 1]

where c₁, c₂, c₃, and c4 are constants determined by the initial conditions.

Now, we can use the given initial conditions x(0) = [1 1] to find the values of c₁, c₂, c₃, and c4. Substituting t = 0 and x = [1 1] into the general solution, we get

[1 1] = c₁ [1 1/5] + c₂ (0) [1 1/5] + c₃ [1 1/5] + c4 [1 1]

which simplifies to

c₁ + c₃ + c4 = 1

c₁ + (1/5)c₃ + c4 = 1

Using the given initial conditions x'(0) = [2 4], we can also find the values of c₂ and c₃ by differentiating the general solution and substituting t = 0 and x' = [2 4]. This gives us the equations

x'(0) = [-1 0]c₁ + [-1/5 + 1]c₂ + [-1/5]c₃ + [2 2]c4 = [2 4]

Simplifying this equation, we get

c₁ - (1/5)c₃ + 2c4 = 2

c₂ + 2c4 = 4

We now have a system of four equations in four unknowns, which can be solved using algebraic manipulation. Solving for c₁, c₂, c₃, and c4, we get

c₁ = 1/5

c₂ = 8/5

c₃ = 4/5

c4 = 3/5

Substituting these values back into the general solution, we get the particular solution that satisfies the given initial conditions:

x = (1/5) e⁻ᵃ [1 1/5] + (8/5) t e⁻ᵃ [1 1/5] + (4/5) e⁻ᵃ [1 1/5] + (3/5) e²ᵃ [1 1]

To know more about linear system here

https://brainly.com/question/21404414

#SPJ4

Complete Question:

Find a particular solution of the indicated linear system that satisfies the given initial conditions.

X ′ = [ 3 − 1

          5 − 3]x

x_1 = e^(2t) [1    1]

x_2 = e^(-2t) [ 1    5]

Max Z = 2x1 + 3x 2 st : X 1 + 2x 256 2x1 + x 258 + X1, X 220 What is the optimal solution (Maximum value for Z) for the following linear programming problem. (7/100) a. 25/3 b. 32/3 C. 35/7 d. 44/5

Answers

The matrix which represents R with respect to standard coordinates is -

[tex]\left[\begin{array}{ccc}cos(17)^{o} &sin(17)^{o}&0\\-sin(17)^{o}&cos(17)^{o}&0\\0&0&1\end{array}\right][/tex]

Given is that R : R → R* be the rotation with the properties. The axis of rotation is the line L, spanned and oriented by the vector v = (3,-1,3). R is rotated about L through the angle t = 17 according to the Right Hand Rule

We have θ = 17°.

The given cartesian vector is -

3i - j + 3k

We can write the matrix as -

[tex]\left[\begin{array}{ccc}cos(17)^{o} &sin(17)^{o}&0\\-sin(17)^{o}&cos(17)^{o}&0\\0&0&1\end{array}\right][/tex]

So, the matrix which represents R with respect to standard coordinates is -

[tex]\left[\begin{array}{ccc}cos(17)^{o} &sin(17)^{o}&0\\-sin(17)^{o}&cos(17)^{o}&0\\0&0&1\end{array}\right][/tex]

To solve more questions on vectors, visit the link-

https://brainly.com/question/29740341

#SPJ4

Find the radius of convergence and interval of convergence of the series

[infinity]
Σ 5(-1)^n nx^n
n=1R= .....Find the interval, I, of convergence of the series. (Enter your answer using interval notation.) I = .....

Answers

The interval of convergence is:
I = (-1, 1)
So, the radius of convergence is:
R = 1


To find the radius of convergence and interval of convergence of the given series, we'll use the Ratio Test. The given series is:

Σ (from n=1 to infinity) 5(-1)^n nx^n

Let's consider the absolute value of the general term and apply the Ratio Test:

L = lim (n -> infinity) | (5(-1)^(n+1) (n+1)x^(n+1)) / (5(-1)^n nx^n) |

L = lim (n -> infinity) | ((-1)(n+1)x) / n |

Now, let's find the limit:

L = |-x| lim (n -> infinity) | (n+1) / n |

The limit is 1 as n goes to infinity. Therefore:

L = |-x|

For the Ratio Test, if L < 1, the series converges. So:

|-x| < 1

This inequality gives us the interval of convergence:

-1 < x < 1

Thus, the interval of convergence is:

I = (-1, 1)

The radius of convergence (R) is the distance from the center of the interval to either endpoint:

R = (1 - (-1)) / 2 = 2 / 2 = 1

So, the radius of convergence is:

R = 1

visit here to learn more about interval of convergence:

brainly.com/question/14394994

#SPJ11

The convergence range is I = [-1/5, 1/5)

We employ the ratio test to determine the radius of convergence:

lim┬(n→∞)⁡|5(-1)nx| = lim(n)|x(n+1)/n| = lim(n)|(n+1)/n| = n (n+1)x(n+1)|/|5(-1)n nx|

As a result, R = 1/5 is the radius of convergence.

Test the endpoints x = -1/5 and x = 1/5 to determine the interval of convergence:      

     

The series changes to: when x = -1/5

Σ 5(-1)^n n(-1/5)^n = Σ (-1)^n n/5^n

Since n/5n is decreasing and this alternate series has diminishing terms, it converges according to the alternating series test. Therefore, the interval of convergence includes x = -1/5.

The series changes to: when x = 1/5.

Σ 5(-1)^n n(1/5)^n = Σ (n/5)^n

Since this series is positive, we can perform the ratio test:

lim┬(n→∞)⁡|(n+1)/5|^(n+1)/(n/5)"n" = lim(n)(n+1).^{n+1}/n^n/5 =

When x = 1/5, the series diverges, according to the ratio test.

To learn more about the radius of convergence refer to the link below:

brainly.com/question/17019250

#SPJ4

   

A recent study of the hourly wages of maintenance crew members for the major airlines showed that the average wage was $20.50 per hour with a standard deviation of $3.50. Assume the distribution of hourly wages follows a normal probability distribution. If you wish to be an airline that pays its maintenance crew members in the top 10% of hourly wages, what is the minimum hourly wage you will need to pay? Show your answer to two decimal places

Answers

The minimum hourly wage that the airline needs to pay to be in the top 10% of hourly wages is $25.58 per hour (rounded to two decimal places).

Since the hourly wages of maintenance crew members follows a normal distribution, we can use the z-score formula to find the minimum hourly wage needed to be in the top 10% of wages:

z = (x - μ) / σ

where z is the z-score corresponding to the top 10% of wages, μ is the mean hourly wage of $20.50, σ is the standard deviation of $3.50, and x is the minimum hourly wage we need to pay.

To find the z-score for the top 10%, we look up the corresponding z-score from the standard normal distribution table or use a calculator with the inverse normal function. The z-score for the top 10% is approximately 1.28.

When the values are substituted into the formula, we get:

1.28 = (x - 20.50) / 3.50

Solving for x, we get:

x = 1.28 * 3.50 + 20.50

x = 25.58

To learn more about normal distribution, refer:-

https://brainly.com/question/29509087

#SPJ11

A drug is tested in batches of 15 as it comes off a production line. It is estimated that 8% of the drug is defective. Determine the probability that in a batch: (i) None is defective; (ii) More than one is defective.

Answers

Therefore, the probability that more than one drug in a batch is defective is 0.347.

To solve this problem, we can use the binomial probability distribution. Let X be the number of defective drugs in a batch of 15. Then, X follows a binomial distribution with parameters n = 15 and p = 0.08.
(i) To determine the probability that none of the drugs in a batch is defective, we need to find P(X = 0). This can be calculated using the binomial probability formula:
P(X = 0) = (15 choose 0) × [tex]0.08^0[/tex] × [tex]0.92^{15}[/tex] = 0.327
Therefore, the probability that none of the drugs in a batch is defective is 0.327.
(ii) To determine the probability that more than one drug in a batch is defective, we need to find P(X > 1). This can be calculated using the binomial probability formula and some algebra:
P(X > 1) = 1 - P(X <= 1)
         = 1 - P(X = 0) - P(X = 1)
         = 1 - [(15 choose 0) × [tex]0.08^0[/tex] × [tex]0.92^{15}[/tex] + (15 choose 1) × [tex]0.08^1[/tex] × [tex]0.92^{14}[/tex]]
         = 0.347

Learn more about algebra here:

https://brainly.com/question/13715639

#SPJ11

Solve each problem. 9) The price P of a certain computer system decreases immediately after its introduction and then increases. If the price P is estimated by the formula P = 13012 - 2500t + 6900, where t is the time in months from its introduction, find the time until the minimum price is reached. A) 12.5 months B) 38,5 months C) 19.2 months D) 9.6 months

Answers

The time until the minimum price is reached is D)9.6 months

To find the time until the minimum price is reached, we need to find the value of t that minimizes the function P(t) = 130t^2 - 2500t + 6900.

One way to do this is to take the derivative of P(t) with respect to t, and set it equal to zero to find the critical point(s):

P'(t) = 260t - 2500 = 0

t = 2500/260 = 9.6 months

So the critical point is at t = 9.6 months. To check that this is a minimum, we can take the second derivative of P(t):

P''(t) = 260

Since P''(t) is positive for all t, we know that the critical point at t = 9.6 months is a minimum.

Therefore, the answer is D) 9.6 months.

Learn more about functions using derivatives: https://brainly.com/question/23819325

#SPJ11

consider the same biased coin as the previous problem. what is the probability that in 12 flips, at least 10 of the flips are heads?

Answers

The probability that at least 10 out of 12 flips are heads is 0.5845, or about 58.45%.

The probability of getting a head on a single flip of the biased coin is 0.6, and the probability of getting a tail is 0.4.

To find the probability that at least 10 out of 12 flips are heads, we need to add the probabilities of getting 10, 11, or 12 heads. We can calculate these probabilities using the binomial probability formula:

P(X=k) = (n choose k)[tex]\times[/tex] [tex]p^k[/tex] [tex]\times[/tex] [tex](1-p)^{(n-k)[/tex]

where X is the random variable representing the number of heads in n flips, k is the number of heads we want to calculate the probability for, p is the probability of getting a head on a single flip, and (n choose k) is the binomial coefficient, which represents the number of ways to choose k heads out of n flips.

Using this formula, we can calculate the probability of getting 10 heads in 12 flips as:

P(X=10) = (12 choose 10) [tex]\times 0.6^10 \time 0.4^2 = 0.232[/tex]

The probability of getting 11 heads in 12 flips is:

P(X=11) = (12 choose 11) [tex]\times 0.6^{11} \times0.4^1 = 0.2835[/tex]

The probability of getting 12 heads in 12 flips is:

P(X=12) = (12 choose 12) [tex]\times 0.6^{12} \times 0.4^0 = 0.069[/tex]

Therefore, the probability of getting at least 10 heads in 12 flips is:

P(X>=10) = P(X=10) + P(X=11) + P(X=12) = 0.232 + 0.2835 + 0.069 = 0.5845

So, the probability that at least 10 out of 12 flips are heads is 0.5845, or about 58.45%.

To learn more about probability visit: https://brainly.com/question/30034780

#SPJ11

Find the absolute maximum and absolute minimum values of fon the given interval. f(t) = t - √t - 1 [-1,5] absolute minimum value absolute maximum value

Answers

The absolute maximum value of f(t) on the interval [-1,5] is 3

To find the absolute maximum and absolute minimum values of the function f(t) = t - √(t-1) on the interval [-1,5], we need to first find the critical points and endpoints of the interval.

Taking the derivative of f(t), we get:

f'(t) = 1 - 1/2(t-1)[tex]^{(-1/2)[/tex]

Setting this equal to zero and solving for t, we get:

1 ([tex]\frac{-1}{2}[/tex]) (t-1)([tex]\frac{-1}{2}[/tex])  = 0

[tex]\frac{1}{2}[/tex](t-1)([tex]\frac{-1}{2}[/tex])  = 1

(t-1)([tex]\frac{-1}{2}[/tex]) = 2

t-1 = 1/4

t = 1.25

The critical point is at t = 1.25.

Now, we need to check the function at the endpoints and the critical point to determine the absolute maximum and absolute minimum values.

f(-1) = -1 - √(-1-1) = -2

f(5) = 5 - √(5-1) = 3

f(1.25) = 1.25 - √(1.25-1) ≈ 0.354

Therefore, the absolute maximum value of f(t) on the interval [-1,5] is 3, which occurs at t=5, and the absolute minimum value of f(t) on the interval is approximately 0.354, which occurs at t = 1.25.

For similar question on absolute maximum:

https://brainly.com/question/29030328

#SPJ11

5. Suppose a ball is dropped from a height of 250 ft. Its position at time t is s(t)=-10 + 250. Find the time t when the instantaneous velocity of the ball equals it's average velocity.

Answers

To find the time t when the instantaneous velocity of the ball equals its average velocity, we need to use the formula for average velocity:
average velocity = (change in position) / (change in time)
We can also find the instantaneous velocity by taking the derivative of the position function s(t):
instantaneous velocity = s'(t)
Let's find the average velocity over a certain time interval. Let's say we want to find the average velocity over the interval from t = 0 to t = 5 seconds. Then the change in position would be:
change in position = s(5) - s(0) = (-10 + 250) - (-10 + 250) = 0
And the change in time would be:
change in time = 5 - 0 = 5 seconds
So the average velocity over this time interval is:
average velocity = 0 / 5 = 0 ft/s
Now let's find the instantaneous velocity at time t. Taking the derivative of s(t), we get:
s'(t) = -10
So the instantaneous velocity is a constant -10 ft/s, regardless of the time t.
To find the time t when the instantaneous velocity equals the average velocity, we set these two equal to each other:
s'(t) = average velocity
-10 = 0
This equation has no solution, which means the instantaneous velocity never equals the average velocity. Therefore, there is no time t when this occurs.

For more questions like Average Velocity visit the link below:

https://brainly.com/question/862972

#SPJ11

Questions (1) (3 marks) An open box (i.e., with no top) with a square base is to be constructed. The total surface area of the box i.e., bottom and 4 equal sides) is 300 cm2. Find the dimensions of the box for which the volume of the box is maximized.

Answers

The dimensions of the box for which the volume is maximized are  2√15 cm and 5√15 cm.

Let's denote the side length of the square base by "x" and the height of the box by "h". Then, the total surface area of the box is:

S = [tex]x^{2}[/tex] + 4xh

We know that S = 300, so we can write:

[tex]x^{2}[/tex] + 4xh = 300

To maximize the volume of the box, we need to find the values of x and h that satisfy this equation and give us the largest possible value for V, the volume of the box.

The volume of the box is given by:

V = [tex]x^{2}[/tex]h

To find the maximum value of V, we can use the method of Lagrange multipliers. We want to maximize V subject to the constraint that S = 300, so we define the Lagrangian function:

L(x, h, λ) = [tex]x^{2}[/tex]h + λ([tex]x^{2}[/tex] + 4xh - 300)

To find the maximum of V, we need to solve the system of equations:

∂L/∂x = 2xh + 2λx + 4λh = 0

∂L/∂h = [tex]x^{2}[/tex] + 4λx = 0

∂L/∂λ = [tex]x^{2}[/tex] + 4xh - 300 = 0

Solving these equations, we get:

h = 5x/2

[tex]x^{2}[/tex] = 60

Substituting h = 5x/2 and [tex]x^{2}[/tex] = 60 into the equation for the volume, we get:

V = [tex]x^{2}[/tex]h = (60)(5x/2) = 150x

So, to maximize the volume, we need to find the value of x that maximizes V. Since [tex]x^{2}[/tex] = 60, we have x = √60 = 2√15. Substituting this value into the equation for h, we get:

h = 5x/2 = 5(2√15)/2 = 5√15

Therefore, the dimensions of the box for which the volume is maximized are:

length of the side of the square base = 2√15 cm

height of the box = 5√15 cm.

To learn more about volume here:

https://brainly.com/question/10838727

#SPJ4

Directions: Write your answers on this document and bring your solutions with you to class at the appointed time. Two problems will be graded for correctness and the rest for completeness. 1. Suppose X and Y are randomly chosen positive integers satisfying X^2 +Y^2 < 13. Find the expected value of XY.

Answers

The expected value of XY = 2.25. So, the expected value of XY for the given condition is 2.25.

To solve this problem, we need to first find all the possible pairs of positive integers (X, Y) that satisfy X^2 + Y^2 < 13.

We can do this by listing out all the possible values of X and Y that satisfy this inequality:

(X,Y) = (1,1), (1,2), (2,1), (2,2), (1,3), (3,1), (2,3), (3,2)

Now, we can calculate the value of XY for each of these pairs:

(1,1): XY = 1
(1,2): XY = 2
(2,1): XY = 2
(2,2): XY = 4
(1,3): XY = 3
(3,1): XY = 3
(2,3): XY = 6
(3,2): XY = 6

Next, we need to find the probability of choosing each of these pairs. Since X and Y are randomly chosen positive integers, the probability of choosing any particular pair is 1/8 (since there are 8 possible pairs in total).

Now we can find the expected value of XY:

E(XY) = (1/8)(1) + (1/8)(2) + (1/8)(2) + (1/8)(4) + (1/8)(3) + (1/8)(3) + (1/8)(6) + (1/8)(6)
E(XY) = 3

Therefore, the expected value of XY is 3.

Remember to bring your solutions with you to class at the appointed time. Two problems will be graded for correctness and the rest for completeness.

To find the expected value of XY for randomly chosen positive integers X and Y satisfying X^2 + Y^2 < 13, we first need to identify the possible (X,Y) pairs that meet the condition.

The possible pairs are:
(1,1), (1,2), (2,1), and (2,2)

Now, let's calculate the products XY for each pair:
(1*1), (1*2), (2*1), and (2*2) which result in 1, 2, 2, and 4.

To find the expected value of XY, we need to find the average of these products:
(1+2+2+4)/4 = 9/4 = 2.25

So, the expected value of XY for the given condition is 2.25.

To learn more about expected value, click here:

brainly.com/question/29093746

#SPJ11

Card Probability
A standard deck of cards consists of 52 cards.
The deck is broken into 4 suits:
1. Hearts (red)
2. Spades (black)
3. Diamonds (red)
4. Clubs (black)
Each suit is made up of 13 cards. These cards are normally ranked in the following
order from lowest to highest.
2, 3, 4, 5, 6, 7, 8, 9, 10,J,Q,K, A

What the probability of drawing a spades with an even number

Answers

Answer:

Step-by-step explanation:

count all the the numbers and add the j,q,k,a together then figure out how many even numbers there are and put the total of all the numbers so it would be like 5/13 if your looking for a fraction, thats just for one suit if you need all the suits together then it would be 20/52

What is the mean of the following distribution of scores: 2, 3, 7, 6, 1, 4, 9, 5, 8, 2?
-5
-4
-3.7
-4.7

Answers

Answer:

The mean of the following scores is the sum of the numbers divided by the amount of terms,

The set is equal to 47, divided by the amount of numbers (10) = 4.7

Answer = 4.7

Find f. f"(t) = sec(t) (sec(t) + tan(t)), TT Esta (%) - -

Answers

The value of f(t) is tan(t)  + sec(t)  + c.

What is integration?

Calculating areas, volumes, and their extensions requires the use of integrals, which are the continuous equivalent of sums. One of the two basic operations in calculus, along with differentiation, is integration, which is the process of computing an integral.

Here, we have

Given: f'(t) = sec(t) (sec(t) + tan(t))....(1)

We have to find the value f(t).

We take the integral of equation(1) and we get

∫f'(t) = ∫sec²(t)dt + ∫sec(t)tan(t)dt

We let

u = sec(t)

sec(t)tan(t)dt = du

∵ ∫sec²(x)dx = tan(x) + c

∫f'(t) = tan(t) + ∫1 du

f(t)  = tan(t)  + u + c

We substitute the value of u =  sec(t)

f(t) =  tan(t)  + sec(t)  + c

Hence, the value of f(t) is tan(t)  + sec(t)  + c.

To learn more about the integration from the given link

https://brainly.com/question/27419605

#SPJ1

Find two positive numbers r and y that maximize Q=r’y if x+y=2?

Answers

The only solution that satisfies the given conditions is r = 0, y = 2, and Q = r'y = 0.

To find the two positive numbers r and y that maximize Q=r'y, we need to use the Lagrange multiplier method. Let's define a Lagrangian function L(r, y, λ) as follows:
L(r, y, λ) = r'y + λ(x + y - 2)
where λ is the Lagrange multiplier. We need to find the values of r, y, and λ that maximize L(r, y, λ).
Taking partial derivatives of L with respect to r, y, and λ, we get:
∂L/∂r = y
∂L/∂y = r + λ
∂L/∂λ = x + y - 2
Setting these partial derivatives equal to zero, we get:
y = 0 (this is not a valid solution as we need positive numbers)
r + λ = 0
x + y - 2 = 0
From the second equation, we get r = -λ. Substituting this into the first equation, we get y = 0. Substituting r and y into the third equation, we get x = 2.

Learn more about derivatives here:

https://brainly.com/question/21491488

#SPJ11

1. If f(x) = (3x-2)/(2x+3), then f'(x) =

Answers

Answer:

[tex]f'(x)= \frac{13}{(2x+3)^2}\\[/tex]

Step-by-step explanation:

[tex]f(x)= \frac{3x-2}{2x+3} \\[/tex]

[tex]f'(x)=\frac{dy}{dx} = \frac{d}{dx}(\frac{3x-2}{2x+3})\\ f'(x)= \frac{(2x+3)\frac{d}{dx}(3x-2)-(3x-2)\frac{d}{dx}(2x+3) }{(2x+3)^{2} } \\f'(x)= \frac{(2x+3)(3)-(3x-2)(2)}{(2x+3)^{2} } \\[/tex]

[tex]f'(x)= \frac{6x+9-6x+4}{(2x+3)^{2} }\\ f'(x)= \frac{13}{(2x+3)^2}\\[/tex]

If u = ❬–7, –4❭ and v = ❬–16, 28❭ with an angle θ between the vectors, are u and v parallel or orthogonal?

Answers

the vectors u and v are neither parallel nor orthogonal.

What is Orthogonal?

In mathematics, two vectors are said to be orthogonal if they are perpendicular to each other, which means that they meet at a right angle. More generally, in a Euclidean space of any number of dimensions, two vectors are orthogonal if their dot product is zero. This means that the cosine of the angle between them is zero, which implies that the angle between them is 90 degrees (or pi/2 radians). Orthogonal vectors are important in various areas of mathematics, including linear algebra, calculus, and geometry.

The magnitudes of u and v can be found using the Pythagorean theorem:

[tex]||u|| = \sqrt{((-7)^2 + (-4)^2)} = \sqrt{(49 + 16)} = \sqrt{(65)}\\v = \sqrt{((-16)^2 + 28^2)} = \sqrt{(256 + 784)} = \sqrt{(1040)}[/tex]

Now we can calculate the dot product of u and v:

u · v = (-7)(-16) + (-4)(28) = 112

Putting it all together, we get:

[tex]112 = \sqrt{65} \sqrt{1040} cos(\theta)\\cos(\theta) = 112 / (\sqrt{65} \sqrt{1040})\\cos(\theta) = 0.926[/tex]

Since the cosine of the angle θ is positive and greater than zero, we can conclude that the angle is acute and the vectors u and v are not orthogonal.

So, in summary, the vectors u and v are neither parallel nor orthogonal.

Learn more about  Orthogonal, by the following link.

https://brainly.com/question/1952076

#SPJ1

Answer:

The vectors are orthogonal because u⋅v = 0.

Step-by-step explanation:

o7

Find f: f"(x) = 8x³ + 5, f(1) = 0, f'(1) = 8

Answers

The value of f(x) is [tex]f(x) =\frac{2}{5}x^5+\frac{5}{2}x^{2} +x-\frac{39}{10}[/tex]

Differential Equation:

The equation in which the derivative of the given function is included is known as the differential equation. We have to find out a particular solution to the given ODE. We will use the power rule of integration to solve this question.

We have the function :

f"(x) = [tex]8x^3+5[/tex]

Integrate on both sides with respect to x.

[tex]f'(x) = 8\int\limits x^3dx + \int\limits 5dx\\\\f'(x) = 2x^4+5x+C_1[/tex]

Integrate on both sides with respect to x.

[tex]f(x) = 2\int\limitsx^4dx+5\int\limits xdx+\int\limits C_1dx\\\\f(x) = \frac{2}{5}x^5+\frac{5}{2}x^2+C_1x+C_2\\ \\[/tex]

f'(1) = 8

 8 = 2 + 5 + [tex]C_1[/tex]

[tex]C_1=0[/tex]

f(1) =0

[tex]0 = \frac{2}{5} +\frac{5}{2}+1+C_2\\ \\C_2=-\frac{39}{10\\}\\[/tex]

[tex]f(x) =\frac{2}{5}x^5+\frac{5}{2}x^{2} +x-\frac{39}{10}[/tex]

Learn more about Differential equation at:

https://brainly.com/question/31583235

#SPJ4

5. The pre-image triangle ABC is reflected across a line to form the image triangle A′B′C′. Which of the following describes the line of reflection?
A. It is a horizontal line.
B. It rises from left to right.
C. It is a vertical line.
D. It falls from left to right.

Answers

Answer:

B

Step-by-step explanation:

It has to reflect from one side to the other therefor left to right.

Answer:

B

Step-by-step explanation:

Both of them are congruent, meaning that they are the same but are reflected.

In an election, suppose that 40% of voters support a new tax on fast food. If we poll 206 of these voters at random, the probability distribution for the proportion of the polled voters that support a new tax on fast food can be modeled by the normal distibution pictured below. Complete the boxes accurate to two decimal places

Answers

The probability distribution for the proportion of the 206 polled voters that support a new tax on fast food can be modeled by a normal distribution with a mean of 0.40 and a standard deviation of 0.0341 (rounded to four decimal places).

To answer your question, we need to find the mean and standard deviation for the normal probability distribution representing the proportion of polled voters that support a new tax on fast food.

1. Calculate the mean (µ):
The mean of the proportion can be found using the formula µ = p, where p is the proportion of voters that support the tax. In this case, p = 0.40. So, µ = 0.40.

2. Calculate the standard deviation (σ):
The standard deviation for a proportion can be calculated using the formula σ = √[p(1-p)/n], where n is the number of voters polled. In this case, n = 206.
σ = √[0.40(1-0.40)/206] = √[0.24/206] = √0.001165 = 0.0341 (rounded to 4 decimal places)

3. Complete the boxes with mean and standard deviation values:
Mean (µ): 0.40
Standard Deviation (σ): 0.0341

The probability distribution for the proportion of the 206 polled voters that support a new tax on fast food can be modeled by a normal distribution with a mean of 0.40 and a standard deviation of 0.0341 (rounded to four decimal places).

Learn more about probability distribution:

brainly.com/question/14210034

#SPJ11

Evaluate the integral: S8 1 x^-2/3dx

Answers

The value of the integral is 9. To evaluate the integral: ∫[1,8] [tex]x^{(-2/3)}[/tex] dx

We can use the power rule of integration. Specifically, we have:

∫ [tex]x^{(-2/3)}[/tex] dx = 3[tex]x^{(1/3)}[/tex] / (1/3) + C = 9[tex]x^{(1/3)}[/tex] + C

where C is the constant of integration.

Applying this formula to the given integral, we have:

∫[1,8] [tex]x^{(-2/3)}[/tex] dx = [9x^(1/3)] [1,8] = 9([tex]8^{(1/3)}[/tex] - [tex]1^{(1/3)}[/tex]= 9(2 - 1) = 9

Therefore, the value of the integral is 9.

Learn more about “ integration  “ visit here;

https://brainly.com/question/14502499

#SPJ4

Let f(x) = \log_{3}(x) and g(x) = 3^x


What is the value of

f ( g ( f ( f ( f ( g ( 27 ) ) ) ) ) )

IT IS NOT 3 OR 3^9

Answers

The numeric value of the composition of the functions is given as follows:

f ( g ( f ( f ( f ( g ( 27 ) ) ) ) ) ) = 1.

How to calculate the numeric value of a function or of an expression?

To calculate the numeric value of a function or of an expression, we substitute each instance of any variable or unknown on the function by the value at which we want to find the numeric value of the function or of the expression presented in the context of a problem.

The functions for this problem are given as follows:

f(x) = log3(x).[tex]g(x) = 3^x[/tex]

We obtain the numeric values from the inside out, hence:

[tex]g(27) = 3^{27}[/tex][tex]f(g(27)) = \log_{3}{(3^{27})} = 27.[tex]f(f(g(27))) = \log_{3}{27} = 3.[/tex] (as 3³ = 27).f(f(f(g(27)))) = log3(3) = 1. (as 3¹ = 3).g(f(f(f(g(27))))) = [tex]3^1[/tex] = 3.f(g(f(f(f(g(27)))))) = [tex]\log_3{3}[/tex] = 1.

Learn more about the numeric values of a function at brainly.com/question/28367050

#SPJ1

function A,b, and c are linear. shown below are the graph function A in standard (x,y) coordinate pane, a table of 5 ordered pairs belonging to function B, and an equation for function C. Arrange the functions in order of their rates of change from least to greates.

Answers

function A,b, and c are linear. shown below are the graph function A in standard (x,y) coordinate pane, a table of 5 ordered pairs belonging to function B, and an equation for function C. Arrange the functions in order of their rates of change from least to greates.

An offshore oil well located at a point W that is 5 km from the closest point A on a straight shoreline. Oil is to be piped from W to a shore point B that is 8 km from A by piping it on a straight line underwater from W to some shore point P between A and B and then on to B via pipe along the shoreline. If the cost of laying pipe is P10,000,000/km underwater and P5,000,000/km over land, where should the point P be located to minimize the cost of laying the pipe?

Answers

To minimize the cost of laying the pipe, point P should be located approximately 2.7 km from point A.

1. Let x be the distance from A to P.
2. Use the Pythagorean theorem to find the distance from W to P: WP = √((5 km)² + x²).


3. The underwater distance is WP, and the overland distance is (8 - x) km.


4. Calculate the total cost: C = P10,000,000(WP) + P5,000,000(8 - x).


5. Differentiate C with respect to x: dC/dx = P10,000,000(1/2)(1/√(25 + x²)(2x)) - P5,000,000.


6. Set dC/dx = 0 to find the minimum cost: x ≈ 2.7 km.


7. Point P is approximately 2.7 km from point A along the shoreline.

To know more about Pythagorean theorem click on below link:

https://brainly.com/question/14930619#

#SPJ11

Let (S, *) be a magma with both a left identity element e and a right identity element f. Give a very short proof that e = f.justifying the steps. (Hint: there are only 2 or 3 steps, depending on how you write them.)

Answers

e = f because of the steps included

Which set of side lengths form a right triangle? Responses 3 ft, 6 ft, 5 ft 3 ft, 6 ft, 5 ft 15 m, 20 m, 25 m 15 m, 20 m, 25 m 7 cm, 8 cm, 10 cm 7 cm, 8 cm, 10 cm 10 in., 41 in., 40 in.

Answers

The set of side lengths that form a right triangle are: .15 m, 20 m, 25 m.

What is Pythagorean theorem?

A fundamental rule of geometry known as the Pythagorean theorem asserts that the square of the length of the hypotenuse, the longest side in a right triangle, is equal to the sum of the squares of the lengths of the other two sides.

When the lengths of the other two sides of a right triangle are known, the Pythagorean theorem is used to determine the length of the third side. It is also used to determine whether a set of three side lengths, like in the previous question, constitutes a right triangle. In mathematics, physics, and engineering, the Pythagorean theorem is used to solve a variety of vector and force-related problems as well as to compute distances, areas, and volumes.

The Pythagoras Theorem is given as:

a² + b² = c²

For the given values of side lengths we have:

a. 10² = 7² + 8² No true

b. 25² = 15² + 20². True

c. 10² + 40² = 41² Not true

d. 5² = 3² + 6². Not True

Hence. the side lengths that form a right triangle are: .15 m, 20 m, 25 m.

Learn more about Pythagoras Theorem here:

https://brainly.com/question/21926466

#SPJ1

1. t = 1 Determine all values of t for which the curve given parametrically by x = 2t3 213 - 3+4, y = 31' + 2+2 – 4t 2. t = 4 9 has a vertical tangent?

Answers

The values of t for which the curve has a vertical tangent are t=1 and t=-1. Note that t=4/9 is not one of these values, so the given information about t=4/9 is not relevant to this question.

To determine all values of t for which the given curve has a vertical tangent, we need to find the values of t where the derivative of y with respect to x (dy/dx) is undefined (i.e., where the slope of the tangent line is vertical or infinite).

Using the chain rule, we can find that:

dy/dx = (dy/dt)/(dx/dt) = (6t - 8t)/(6t^2 - 6) = -2(t-4)/(t^2-1)

To have a vertical tangent, we need dy/dx to be undefined, which means the denominator (t^2-1) must be equal to zero. Therefore, we have:

t^2 - 1 = 0
(t-1)(t+1) = 0
t = 1 or t = -1

Know  more about tangent here:

https://brainly.com/question/19064965

#SPJ11


A plating company has two silver plating systems with variances σ12 and σ22. You, as the manager, desired to compare the variability in the silver plating done by System-1 with that done by System-2. An independent random sample of size n1= 12 of the System-1 yields s1 = 0. 038 mil and sample of size n2= 10 of System-2 yields s2 = 0. 042 mil. We need to decide whether σ12= σ22 with α = 0. 5. What is the estimated F value that can be used with Table A-6? (Hint: Since A-6 table has limited data, how can arrange √1 and√?)

Answers

From the F-table the critical value of [tex]\frac{\alpha }{2}[/tex] at the degrees of freedom of :

[tex]F_\frac{\alpha }{2}, _d_f_1,_d_f_2=3.91[/tex]

The decision rule

=> Fail to reject the null hypothesis

The first sample size [tex]n_1=12[/tex]

The first sample standard deviation is [tex]s_1=0.038[/tex]

The second sample size is [tex]n_2=10[/tex]

The first sample standard deviation is [tex]s_2=0.042[/tex]

The significance level is [tex]\alpha =0.05[/tex]

The null hypothesis is [tex]H_0:\sigma^2_1=\sigma^2_2[/tex]

The alternative hypothesis is [tex]H_0:\sigma^2_1\neq \sigma^2_2[/tex]

The test statistics is mathematically represented as:

[tex]F_c_a_l=\frac{s^2_1}{s^2_2}[/tex]

[tex]F_c_a_l=\frac{0.038^2}{0.042^2}[/tex]

[tex]F_c_a_l=0.81859[/tex]

The first degree of freedom is :

[tex]df_1=n_1-1=12-1=11[/tex]

The second degree of freedom is :

[tex]df_2=n_2-1=10-1=9[/tex]

From the F-table the critical  value of [tex]\frac{\alpha }{2}[/tex] at the degrees of freedom of :

[tex]df_1=11[/tex] and [tex]df_2=9[/tex]

[tex]F_\frac{\alpha }{2}, _d_f_1,_d_f_2=3.91[/tex]

The decision rule

Fail to reject the null hypothesis

The conclusion

This no sufficient evidence to conclude that there is a difference between the two variance.

Learn more about F-value at:

https://brainly.com/question/13527898

#SPJ4

Suppose that a data set has been partitioned into two clusters, C1 and C2, with centroids C1 = (7, 1) and c2 = (8, 2), respectively. Clusters C1 has been assigned the points = p1 = (6,3) p2 = (3,8) p3 = (5,9) and cluster C2 the points p4 = (10,7) p5 = (3, 2) Calculate the within-cluster variation of the given partitioning.

Answers

To Calculate the total within-cluster variation by summing the squared distances for both clusters.

- Total within-cluster variation: 138 + 54 = 192

The within-cluster variation of the given partitioning is 192.

To calculate the within-cluster variation of the given partitioning, we need to find the sum of squared distances of each point from its respective centroid.

For cluster C1:

- Distance from p1 to C1 = sqrt((6-7)^2 + (3-1)^2) = sqrt(2)

- Distance from p2 to C1 = sqrt((3-7)^2 + (8-1)^2) = sqrt(74)

- Distance from p3 to C1 = sqrt((5-7)^2 + (9-1)^2) = sqrt(68)

Sum of squared distances for cluster C1 = (sqrt(2))^2 + (sqrt(74))^2 + (sqrt(68))^2 = 2 + 74 + 68 = 144

For cluster C2:

- Distance from p4 to C2 = sqrt((10-8)^2 + (7-2)^2) = sqrt(53)

- Distance from p5 to C2 = sqrt((3-8)^2 + (2-2)^2) = sqrt(29)

Now,

Calculate the sum of squared distances within each cluster.

- Sum of squared distances for C1: 5 + 65 + 68 = 138

- Sum of squared distances for C2: 29 + 25 = 54

Now

Calculate the total within-cluster variation by summing the squared distances for both clusters.

- Total within-cluster variation: 138 + 54 = 192

The within-cluster variation of the given partitioning is 192.

Learn more about Variation:

brainly.com/question/13977805

#SPJ11

If a country has a crude birth rate of 24 per 1,000 and a crude death rate of 8 per 1,000, the natural annual percent increase of its population is0.6%1.6%3%16%32%

Answers

The  natural annual percent of  increase of its population is 1.6%, under the given condition that in the given country possess a crude birth rate of 24 per 1,000 and crude death rate of 8 per 1,000.

Then the correct option is Option B.

For the purpose of evaluating the natural annual percent of increase in a population we have to  subtract crude death rate from  crude birth rate and then dividing by 10.

So for the given case,

the natural annual percent of increase in the population would be

((24-8)/10)

= 1.6%

The  natural annual percent of  increase of its population is 1.6%, under the given condition that in the given country possess a crude birth rate of 24 per 1,000 and crude death rate of 8 per 1,000.



To learn more about birth rate

https://brainly.com/question/18658773

#SPJ4

The complete question

If a country has a crude birth rate of 24 per 1,000 and a crude death rate of 8 per 1,000, the natural annual percent increase of its population is

a) 0.6%

b)1.6%

c) 3%

d)16%

e) 32%

Other Questions
If 0 < x < 2, find the sum of all solutions to the equation 2cos^2(x)-7 cos(x)-4=0.Show how to do it on a ti-84 if possible. According to the Current Population Survey (Internet Release date: September 2004), 42% of females between the ages of 18 and 24 years lived at home in 2003. (Unmarried college students living in a dorm are counted as living at home). Suppose a survey is administered today to 425 randomly selected females between the age of 18 and 24 years and 204 respond that they live at home. 1. Does this define a binomial distribution? Justify your answer 2. If so, can you use the normal approximation to binomial distribution? Justify your answer and state what the mean and standard deviation of the normal approximation are. 3. Using the binomial probability distribution, what is the probability that at least 204 of the respondents living at home under the assumption that the true percentage is 42%? 4. Using the normal approximation to binomial, what is the probability that at least 204 of the respondents living at home under the assumption that the true percentage is 42%? There are four forces in nature. Which one allows you to close a door by pushing on it? Remote commands can be sent to smart computer groups.a) Trueb) False Sending the child to school has several benefits for the child and family, including socialization for the child beyond the immediate family, respite for parents, and promotion of a sense of normalization in the family. How does sacrifice work to prevent a person from leaving 5) Analysis: According to historian Tomas Summers Sandoval Jr., "It's hard to find a family that wasnt affected by the Vietnam War inside the barrios of the southwest at that time... What does that mean for the community as a whole when war was such a part of their life?"What does that suggest to you about Latinos and the Vietnam war? Which depends upon steam heat for effective penetration of biological tissues? You manage a firm. You expect the firm to have profits of $100,000 this year and $90,000 next year. The real interest rate is 5%. What is the discounted present value of your firm's stream of profits? Line p contains the points (-2 -5) and (3,25) write the equation of the line that is parallel to line p and passes through the point (-1,-9). Nigeria Amateur Volleyball Association was formed in what year A car insurance expires when the total mileage exceeds a(event A) or the total cost of repairs exceeds b(event B) "whichever comes first" Another car insurance expires at event A and event B "whichever occurs later" the time distribution of event A and event B are exponential with parameters lambda1 and lambda2 resp.a)Find the distribution of the expiration time of first insurance.b) Find the distribution of the expiration time of second insurance.c)Calculate the expected values of the expiration time for the both type of insurance.If lambda 1 and lambda 2 and all other provisions of these it to be same,would it be reasonable to pay for the second insurance twice as much as for the first? In the 1960s through the 1980s, millions of women in the U.S. joined the labor force. When a large number of people enter the labor force like this, it tends to a. increase the labor force participation rate and increase the unemployment rate in the short run. b. reduce the labor force participation rate and increase the unemployment rate in the short run.c. increase the labor force participation rate and reduce the unemployment rate in the short run. d. reduce the labor force participation rate and reduce the unemployment rate in the short run. Find the derivative of the function: g(x) = Sx 0 1+t dt macrs year 1 year 2 year 3 year 4 year 5 year 6 depreciation rate 20% 32% 19.2% 11.52% 11.52% 5.76% a company invests $27,562 in new machinery, which was depreciated using the five-year macrs schedule shown above. if the company sold the machinery immediately after the end of year 3 for $13,065, what is the after-tax salvage value from the sale, given a tax rate of 38%? enter your answer in dollars and round to the nearest dollar. A survey of 500 randomly selected high school students determined that 288 played organized sports, (a) What is the probability that a randomly selected high school student plays organized sports? (b) Interpret this probability. 28. Volunteer? In a survey of 1100 female adults (18 years of age or older), it was determined that 341 volunteered at least once in the past year. (a) What is the probability that a randomly selected adult female volunteered at least once in the past year? (b) Interpret this probability. Which country gained independence from a large empire in 1832?A) GreeceB) ItalyC) RussiaD) Spain What conditions and tissues favor ketogenesis? Ketolysis? Find the critical value or values of based on the given information. H0: = 8.0/ H1: 8.0 n = 10 = 0.1 in an electromagnetic wave, the electric and magnetic fields are oriented such that they are group of answer choices parallel to one another and perpendicular to the direction of wave propagation. parallel to one another and parallel to the direction of wave propagation. perpendicular to one another and parallel to the direction of wave propagation. perpendicular to one another and perpendicular to the direction of wave propagation.