Find the largest number. The process of finding the maximum value (i.e., the largest of a group of values) is used frequently in computer applications. For example, an app that determines the winner of a sales contest would input the number of units sold by each salesperson. The sales person who sells the most units wins the contest. Write pseudocode, then a C# app that inputs a series of 10 integers, then determines and displays the largest integer. Your app should use at least the following three variables:
Counter: Acounter to count to 10 (i.e., to keep track of how many nimbers have been input and to determine when all 10 numbers have been processed).
Number: The integer most recently input by the user.
Largest: The largest number found so far.

Answers

Answer 1

Answer:

See Explanation

Explanation:

Required

- Pseudocode to determine the largest of 10 numbers

- C# program to determine the largest of 10 numbers

The pseudocode and program makes use of a 1 dimensional array to accept input for the 10 numbers;

The largest of the 10 numbers is then saved in variable Largest and printed afterwards.

Pseudocode (Number lines are used for indentation to illustrate the program flow)

1. Start:

2. Declare Number as 1 dimensional array of 10 integers

3. Initialize: counter = 0

4. Do:

4.1 Display “Enter Number ”+(counter + 1)

4.2 Accept input for Number[counter]

4.3 While counter < 10

5. Initialize: Largest = Number[0]

6. Loop: i = 0 to 10

6.1 if Largest < Number[i] Then

6.2 Largest = Number[i]

6.3 End Loop:

7. Display “The largest input is “+Largest

8. Stop

C# Program (Console)

Comments are used for explanatory purpose

using System;

namespace ConsoleApplication1

{

   class Program

   {

       static void Main(string[] args)

       {

           int[] Number = new int[10];  // Declare array of 10 elements

           //Accept Input

           int counter = 0;

           while(counter<10)

           {

               Console.WriteLine("Enter Number " + (counter + 1)+": ");

               string var = Console.ReadLine();

               Number[counter] = Convert.ToInt32(var);

               counter++;                  

           }

           //Initialize largest to first element of the array

           int Largest = Number[0];

           //Determine Largest

           for(int i=0;i<10;i++)

           {

               if(Largest < Number[i])

               {

                   Largest = Number[i];

               }

           }

           //Print Largest

           Console.WriteLine("The largest input is "+ Largest);

           Console.ReadLine();

       }

   }

}


Related Questions

A 10-mm-diameter Brinell hardness indenter produced an indentation 1.55 mm in diameter in a steel alloy when a load of 500 kg was used. Calculate the Brinell hardness (in HB) of this material. Enter your answer in accordance to the question statement HB

Answers

Answer:

HB = 3.22

Explanation:

The formula to calculate the Brinell Hardness is given as follows:

[tex]HB = \frac{2P}{\pi D\sqrt{D^{2}- d^{2} } }[/tex]

where,

HB = Brinell Hardness = ?

P = Applied Load in kg = 500 kg

D = Diameter of Indenter in mm = 10 mm

d = Diameter of the indentation in mm = 1.55 mm

Therefore, using these values, we get:

[tex]HB = \frac{(2)(500)}{\pi (10)\sqrt{10^{2}- 1.55^{2} } }[/tex]

HB = 3.22

there is usually a positive side and a negative side to each new technological improvement?

Answers

Answer:

positive sides:

low cost improves production speedless timeeducational improvements

negative sides:

unemployment lot of space required increased pollution creates lots of ethical issues

While having a discussion about O-rings at the bottom of filters, Technician A says that the Automotive Filter Manufacturers Council recommends that the filter O-ring be lubricated with oil after installing the filter. Technician B says that the filter O-ring should be lubricated before installation. Who is correct

Answers

Answer:

Technician B is correct

Explanation:

O- rings are used with oil transmission filters to avoid transmission failures but some people use  lip seals as well. either of them is  inserted onto the outer part of the transmission system i.e it is inserted/found in-between Transmission filters and the transmission systems and it main purpose is to avoid leaks and transmission failure in the short and long term.

0-rings should be lubricated before installation this is because the o-rings are usually super tight when installing and would require lubrication to ease the installation process else the rubber might get ruptured and this would lead to instant transmission failure.

For the pipe-fl ow-reducing section of Fig. P3.54, D 1 5 8 cm, D 2 5 5 cm, and p 2 5 1 atm. All fl uids are at 20 8 C. If V 1 5 5 m/s and the manometer reading is h 5 58 cm, estimate the total force resisted by the fl ange bolts.

Answers

Answer:

The total force resisted by the flange bolts is  163.98 N

Explanation:

Solution

The first step is to find  the pipe cross section at the inlet section

Now,

A₁ = π /4 D₁²

D₁ =  diameter of the pipe at the inlet section

Now we insert 8 cm for D₁ which gives us A₁ = π /4 D (8)²

=50.265 cm² * ( 1 m²/100² cm²)

= 5.0265 * 10^⁻³ m²

Secondly, we find cross section area of  the pipe at the inlet section

A₂ = π /4 D₂²

D₂ =  diameter of the pipe at the inlet section

Now we insert 5 cm for D₁ which gives us A₁ = π /4 D (5)²

= 19.63 cm² * ( 1 m²/100² cm²)

= 1.963 * 10^⁻³ m²

Now,

we write down the conversation mass relation which is stated as follows:

Q₁ = Q₂

Where Q₁ and Q₂ are both the flow rate at the exist and inlet.

We now insert A₁V₁ for Q₁ and A₂V₂ for Q₂

So,

V₁ and V₂ are defined as the velocities at the inlet and exit

We now insert 5.0265 * 10^⁻³ m² for A₁ 5 m/s for V₁ and 1.963 * 10^⁻³ m² for A₂

= 5.0265  * 5 = 1.963 * V₂

V₂ = 12.8 m/s

Note: Kindly find an attached copy of the part of the solution to the given question below

Water vapor initially at 3.0 MPa and 300°C (state 1) is contained within a piston- cylinder. The water is cooled at constant volume until its temperature is 200°C (state 2). The water is then compressed isothermally to a state where the pressure is 2.5 MPa (state 3).a. Locate states 1, 2, and 3 on a T-v and P-v diagram.b. Determine the specific volume at all three states.c. Calculate the compressibility factor Z at state 1 and comment.d. Find the quality (if applicable) at all three states.

Answers

Answer:

a. T-V and P-V diagram are included

b. State 1: Specific volume = 0.0811753 m³/kg

State 2: Specific volume = 0.0811753 m³/kg

State 3: Specific volume = 0.0804155 m³/kg

c. Z = 51.1

d. Quality for state 1 = 100%

Quality for state 2 = 63.47%

Quality for state 3 = 100%

Explanation:

a. T-V and P-V diagram are included

b. State 1: Water vapor

P₁ = 3.0 MPa = 30 bar

T₁ = 300°C = 573.15

Saturation temperature = 233.86°C Hence the steam is super heated

Specific volume = 0.0811753 m³/kg

State 2:

Constant volume formula is P₁/T₁ = P₂/T₂

Specific volume = 0.0811753 m³/kg

T₂ = 200°C = 473.15

Therefore, P₂ = P₁/T₁ × T₂ = 3×473.15/573.15 = 2.4766 MPa

At T₂ water is mixed water and steam and the [tex]v_f[/tex] = 0.00115651 m³/kg

[tex]v_g[/tex] = 0.127222 m³/kg

State 3:

P₃ = 2.5 MPa

T₃ = 200°C

Isothermal compression P₂V₂ = P₃V₃

V₃ = P₂V₂ ÷ P₃ = 2.4766 × 0.0811753/2.5 = 0.0804155 m³/kg

Specific volume = 0.0804155 m³/kg

2) Compressibility factor is given by the relation;

[tex]Z = \dfrac{PV}{RT} = \dfrac{3\times 10^6 \times 0.0811753 }{8.3145 \times 573.15} = 51.1[/tex]

Z = 51.1

3) Gas quality, x, is given by the relation

[tex]x = \dfrac{Mass_{saturated \, vapor}}{Total \, mass} = \dfrac{v - v_f}{v_g - v_f}[/tex]

Quality at state 1 = Saturated quality = 100%

State 2 Vapor + liquid Quality

Gas quality = (0.0811753 - 0.00115651)/ (0.127222-0.00115651) = 63.47%

State 3: Saturated vapor, quality = 100%.

Given in the following v(t) signal.
a. Find the first 7 harmonics of the Fourier series function in cosine form.
b. Plot one side spectrum
c. Find the first 7 harmonics of the Fourier series function in exponential form.
d. Plot two side spectrum Given in the following v(t) signal.

Answers

Answer:

Check the v(t) signal referred to in the question and the solution to each part in the files attached

Explanation:

The detailed solutions of parts a to d are clearly expressed in the second file attached.

A float valve, regulating the flow of water into a reservoir, is shown in the figure. The spherical float (half of the sphere is submerged) is 0.1553 m in diameter. AOB is the weightless link carrying the float at one end, and a valve at the other end which closes the pipe through which flows into the reservoir. The link is mounted on a frictionless hinge at O, and the angle AOB is 135o. The length of OA is 253 mm and the distance between the center of the float and the hinge is 553 mm. When the flow is stopped AO will be vertical. The valve is to be pressed on to the seat with a force of 10,53 N to be completely stop the flow in the reservoir. It was observed that the flow of water is stopped, when the free surface of water in the reservoir is 353 mm below the hinge at O. Determine the weight of the float sphere.

Answers

Answer:

  9.29 N . . . . weight of 0.948 kg sphere

Explanation:

The sum of torques on the link BOA is zero, so we have ...

  (right force at A)(OA) = (up force at B)(OB·sin(135°))

Solving for the force at B, we have ...

  up force at B = (10.53 N)(253 mm)/((553 mm)/√2) ≈ 6.81301 N

This force is due to the difference between the buoyant force on the float sphere and the weight of the float sphere. Dividing by the acceleration due to gravity, it translates to the difference in mass between the water displaced and the mass of the sphere.

  ∆mass = (6.81301 N)/(9.8 m/s^2) = 0.695205 kg

__

The center of the sphere of diameter 0.1553 m is below the waterline by ...

  (553 mm)cos(45°) -(353 mm) = 38.0300 mm

The volume of the spherical cap of radius 155.3/2 = 77.65 mm and height 77.65+38.0300 = 115.680 mm can be found from the formula ...

  V = (π/3)h^3(3r -h) = (π/3)(115.680^2)(3·77.65 -115.68) mm^3 ≈ 1.64336 L

So the mass of water contributing to the buoyant force is 1.64336 kg. For the net upward force to correspond to a mass of 0.695305 kg, the mass of the float sphere must be ...

  1.64336 kg -0.695205 kg ≈ 0.948 kg

The weight of the float sphere is then (9.8 m/s^2)·(0.948 kg) = 9.29 N

The weight of the 0.948 kg float sphere is about 9.29 N.

The Rappahannock River near Warrenton, VA, has a flow rate of 3.00 m3/s. Tin Pot Run (a pristine stream) discharges into the Rappahannock at a flow rate of 0.05 m3/s. To study mixing of the stream and river, a conserva- tive tracer is to be added to Tin Pot Run. If the instruments that can mea- sure the tracer can detect a concentration of 1.0 mg/L, what minimum concentration must be achieved in Tin Pot Run so that 1.0 mg/L of tracer can be measured after the river and stream mix? Assume that the 1.0 mg/L of tracer is to be measured after complete mixing of the stream and Rappa- hannock has been achieved and that no tracer is in Tin Pot Run or the Rap- pahannock above the point where the two streams mix. What mass rate (kg/d) of tracer must be added to Tin Pot Run?

Answers

Find the given attachments for complete explanation

A wall in a house contains a single window. The window consists of a single pane of glass whose area is 0.11 m2 and whose thickness is 4 mm. Treat the wall as a slab of the insulating material Styrofoam whose area and thickness are 11 m2 and 0.20 m, respectively. Heat is lost via conduction through the wall and the window. The temperature difference between the inside and outside is the same for the wall and the window. Of the total heat lost by the wall and the window, what is the percentage lost by the window

Answers

Answer:

Explanation:

Given that,

The area of glass [tex]A_g[/tex] = [tex]0.11m^2[/tex]

The thickness of the glass [tex]t_g=4mm=4\times10^-^3m[/tex]

The area of the styrofoam [tex]A_s=11m^2[/tex]

The thickness of the styrofoam [tex]t_s=0.20m[/tex]

The thermal conductivity of the glass [tex]k_g=0.80J(s.m.C^o)[/tex]

The thermal conductivity of the styrofoam  [tex]k_s=0.010J(s.m.C^o)[/tex]

Inside and outside temperature difference is ΔT

The heat loss due to conduction in the window is

[tex]Q_g=\frac{k_gA_g\Delta T t}{t_g} \\\\=\frac{(0.8)(0.11)(\Delta T)t}{4.0\times 10^-^3}\\\\=(22\Delta Tt)j[/tex]

The heat loss due to conduction in the wall is

[tex]Q_s=\frac{k_sA_s\Delta T t}{t_g} \\\\=\frac{(0.010)(11)(\Delta T)t}{0.20}\\\\=(0.55\Delta Tt)j[/tex]

The net heat loss of the wall and the window is

[tex]Q=Q_g+Q_s\\\\=\frac{k_gA_g\Delta T t}{t_g}+\frac{k_sA_s\Delta T t}{t_g}\\\\=(22\Delta Tt)j +(0.55\Delta Tt)j \\\\=(22.55\Delta Tt)j[/tex]

The percentage of heat lost by the window is

[tex]=\frac{Q_g}{Q}\times 100\\\\=\frac{22\Delta T t}{22.55\Delta T t}\times 100\\\\=97.6 \%[/tex]

An insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains 4 kg of an ideal gas at 750 kPa and 48°C, and the other part is evacuated. The partition is now removed, and the gas expands into the entire tank. Determine the final temperature and pressure in the tank. (Round the final answers to the nearest whole number.)

Answers

Answer:

The final temperature and pressure in the insulated rigid tank are [tex]48\,^{\circ}C[/tex] and [tex]375\,kPa[/tex].

Explanation:

An ideal gas is represented by the following model:

[tex]P\cdot V = \frac{m}{M}\cdot R_{u} \cdot T[/tex]

Where:

[tex]P[/tex] - Pressure, measured in kilopascals.

[tex]V[/tex] - Volume, measured in cubic meters.

[tex]m[/tex] - Mass of the ideal gas, measured in kilograms.

[tex]M[/tex] - Molar mass, measured in kilograms per kilomole.

[tex]T[/tex] - Temperature, measured in Kelvin.

[tex]R_{u}[/tex] - Universal constant of ideal gases, equal to [tex]8.314\,\frac{kPa\cdot m^{3}}{kmol\cdot K}[/tex]

As tank is rigid and insulated, it means that no volume deformations in tank, heat and mass interactions with surroundings occur during expansion process. Hence, final pressure is less that initial one, volume is doubled (due to equal partitioning) and temperature remains constant. Hence, the following relationship can be derived from model for ideal gases:

[tex]\frac{P_{1}\cdot V_{1}}{T_{1}} = \frac{P_{2}\cdot V_{2}}{T_{2}}[/tex]

Now, final pressure is cleared:

[tex]P_{2} = P_{1}\cdot \frac{T_{2}}{T_{1}}\cdot \frac{V_{1}}{V_{2}}[/tex]

[tex]P_{2} = (750\,kPa)\cdot 1 \cdot \frac{1}{2}[/tex]

[tex]P_{2} = 375\,kPa[/tex]

The final temperature and pressure in the insulated rigid tank are [tex]48\,^{\circ}C[/tex] and [tex]375\,kPa[/tex].

: Explain why testing can only detect the presence of errors, not their absence?

Answers

Answer:

The goal of the software is to observe the software behavior to meet its requirement expectation. In software engineering, validating software might be harder since client's expectation may be vague or unclear.

Explanation:

In contouring, it is necessary to measure position and not velocity for feedback.
a. True
b. False

In contouring during 2-axis NC machining, the two axes are moved at the same speed to achieve the desired contour.
a. True
b. False

Job shop is another term for process layout.
a. True
b. False

Airplanes are normally produced using group technology or cellular layout.
a. True
b. False

In manufacturing, value-creating time is greater than takt time.
a. True
b. False

Answers

Answer:

(1). False, (2). True, (3). False, (4). False, (5). True.

Explanation:

The term ''contouring'' in this question does not have to do with makeup but it has to deal with the measurement of all surfaces in planes. It is a measurement in which the rough and the contours are being measured. So, let us check each questions again.

(1). In contouring, it is necessary to measure position and not velocity for feedback.

ANSWER : b =>False. IT IS NECESSARY TO MEASURE BOTH FOR FEEDBACK.

(2). In contouring during 2-axis NC machining, the two axes are moved at the same speed to achieve the desired contour.

ANSWER: a=> True.

(3). Job shop is another term for process layout.

ANSWER: b => False

JOB SHOP IS A FLEXIBLE PROCESS THAT IS BEING USED during manufacturing process and are meant for job Production. PROCESS LAYOUT is used in increasing Efficiency.

(4). Airplanes are normally produced using group technology or cellular layout.

ANSWER: b => False.

(5). In manufacturing, value-creating time is greater than takt time.

ANSWER: a => True.

In a hydroelectric power plant, water enters the turbine nozzles at 800 kPa absolute with a low velocity. If the nozzle outlets are exposed to atmospheric pressure of 100 kPa, determine the maximum velocity (m/s) to which water can be accelerated by the nozzles before striking the turbine blades.

Answers

Answer:

The answer is VN =37.416 m/s

Explanation:

Recall that:

Pressure (atmospheric) = 100 kPa

So. we solve for the maximum velocity (m/s) to which water can be accelerated by the nozzles

Now,

Pabs =Patm + Pgauge = 800 KN/m²

Thus

PT/9.81 + VT²/2g =PN/9.81  + VN²/2g

Here

Acceleration due to gravity = 9.81 m/s

800/9.81 + 0

= 100/9.81 + VN²/19.62

Here,

9.81 * 2= 19.62

Thus,

VN²/19.62 = 700/9.81

So,

VN² =1400

VN =37.416 m/s

Note: (800 - 100) = 700

Answer:

[tex]V2 = 37.417ms^{-1}[/tex]

Explanation:

Given the following data;

Water enters the turbine nozzles (inlet) = 800kPa = 800000pa.

Nozzle outlets = 100kPa = 100000pa.

Density of water = 1000kg/m³.

We would apply, the Bernoulli equation between the inlet and outlet;

[tex]\frac{P_{1} }{d}+\frac{V1^{2} }{2} +gz_{1} = \frac{P_{2} }{d}+\frac{V2^{2} }{2} +gz_{2}[/tex]

Where, V1 is approximately equal to zero(0).

Z[tex]z_{1} = z_{2}[/tex]

Therefore, to find the maximum velocity, V2;

[tex]V2 = \sqrt{2(\frac{P_{1} }{d}-\frac{P_{2} }{d}) }[/tex]

[tex]V2 = \sqrt{2(\frac{800000}{1000}-\frac{100000}{1000}) }[/tex]

[tex]V2 = \sqrt{2(800-100)}[/tex]

[tex]V2 = \sqrt{2(700)}[/tex]

[tex]V2 = \sqrt{1400}[/tex]

[tex]V2 = 37.417ms^{-1}[/tex]

Hence, the maximum velocity, V2 is 37.417m/s

Technician A says that one planetary gear set can provide gear reduction, overdrive, and reverse. Technician B says that most transmissions today use compound (multiple) planetary gear sets. Which technician is correct?

Answers

Answer:

Both technician A and technician B are correct

Explanation:

A planetary gearbox consists of a gearbox with the input shaft and the output shaft that is aligned to each other. It is used to transfer the largest torque in the compact form. A planetary gearbox has a compact size and low weight and it has high power density.

One planetary gear set can provide gear reduction, overdrive, and reverse. Also, most transmissions today use compound (multiple) planetary gears set.

So, both technician A and technician B are correct.

At an axial load of 22 kN, a 15-mm-thick × 40-mm-wide polyimide polymer bar elongates 4.1 mm while the bar width contracts 0.15 mm. The bar is 270-mm long. At the 22-kN load, the stress in the polymer bar is less than its proportional limit. Determine Poisson’s ratio.

Answers

Answer:

The Poisson's Ratio of the bar is 0.247

Explanation:

The Poisson's ratio is got by using the formula

Lateral strain / longitudinal strain

Lateral strain = elongation / original width (since we are given the change in width as a result of compession)

Lateral strain = 0.15mm / 40 mm =0.00375

Please note that strain is a dimensionless quantity, hence it has no unit.

The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.

Longitudinal strain = 4.1 mm / 270 mm = 0.015185

Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247

The Poisson's Ratio of the bar is 0.247

Please note also that this quantity also does not have a dimension

g A rectangular bar of length L has a slot in the central half of its length. The bar has width b, thickness t, and elastic modulus E. The slot has width b/3. The overall length of the bar is L = 570 mm, and the elastic modulus of the material is 77 GPa. If the average normal stress in the central portion of the bar is 200 MPa, calculate the overall elongation δ of the bar.

Answers

Answer:

the overall elongation δ of the bar is  1.2337 mm

Explanation:

From the information given :

According to the principle of superposition being applied to the axial load P of the system; we have:

[tex]\delta = \delta_{AB} +\delta_{BC} + \delta_{CD}[/tex]    

where;

δ = overall elongation

[tex]\delta _{AB}[/tex] = elongation of bar AB

[tex]\delta _{BC}[/tex] = elongation of  bar BC

[tex]\delta _{CD} =[/tex]  elongation of bar CD]

If we replace; [tex]\dfrac{PL}{AE}[/tex] for  δ  and bt for area;

we have:

[tex]\delta = \dfrac{P_{AB}L_{AB}}{(b_{AB}t)E} +\dfrac{P_{BC}L_{BC}}{(b_{BC}t)E}+\dfrac{P_{CD}L_{CD}}{(b_{CD}t)E}[/tex]

where ;

P = load

L = length of the bar

A = area of the cross-section

E = young modulus of elasticity

Let once again replace:

P for [tex]P_{AB}, P_{BC} , P_{CD}[/tex]  (since load in all member of AB, BC and CD will remain the same )

[tex]\dfrac{L}{4}[/tex] for [tex]L_{AB}[/tex],  

[tex]\dfrac{L}{2}[/tex] for [tex]L_{BC}[/tex] and

[tex]\dfrac{L}{4}[/tex] for [tex]L_{CD}[/tex]

[tex]2\dfrac{b}{3}[/tex] for  [tex]b_{BC}[/tex]

b for  [tex]b_{CD}[/tex]

[tex]\delta = \dfrac{P (\dfrac{L}{4})}{btE}+ \dfrac{P (\dfrac{L}{2})}{2 \dfrac{b}{3}tE}+\dfrac{P (\dfrac{L}{4})}{btE}[/tex]

[tex]\delta = \dfrac{PL}{btE}[\dfrac{1}{4}+ \dfrac{1}{2}*\dfrac{3}{2}+ \dfrac{1}{4}][/tex]

[tex]\delta = \dfrac{5}{4}\dfrac{PL}{btE} --- \ (1)[/tex]

The stress in the central portion can be calculated as:

[tex]\sigma = \dfrac{P}{A}[/tex]

[tex]\sigma = \dfrac{P}{\dfrac{2}{3}bt}[/tex]

[tex]\sigma = \dfrac{3P}{2bt}[/tex]

So; Now:

[tex]\delta = \dfrac{5}{4}* \dfrac{2 * \sigma}{3}*\dfrac{L}{E}[/tex]

[tex]\delta= \dfrac{5}{4}* \dfrac{2 * 200}{3}*\dfrac{570}{77*10^3 \ MPa}[/tex]

δ = 1.2337 mm

Therefore, the overall elongation δ of the bar is  1.2337 mm

You are standing at the edge of the roof of the engineering building, which is H meters high. You see Professor Murthy, who is h meters tall, jogging towards the building at a speed of v meters/second. You are holding an egg and want to release it so that it hits Prof Murthy squarely on top of his head. What formulas describes the distance from the building that Prof Murthy must be when you release the egg?

Answers

Answer:

s = v√[2(H - h)/g]

This formula describes the distance from the building that Prof Murthy must be when you release the egg

Explanation:

First, we need to find the time required by the egg to reach the head of Professor. For that purpose, we use 1st equation of motion in vertical form:

Vf = Vi + gt

where,

Vf = Velocity of egg at the time of hitting head of the Professor

Vi = initial velocity of egg = 0 m/s  (Since, egg is initially at rest)

g = acceleration due to gravity

t = time taken by egg to come down

Therefore,

Vf = 0 + gt

t = Vf/g   ----- equation (1)

Now, we use 3rd euation of motion for Vf:

2gs = Vf² - Vi²

where,

s = height dropped = H - h

Therefore,

2g(H - h) = Vf²

Vf = √[2g(H - h)]

Therefore, equation (1) becomes:

t = √[2g(H - h)]/g

t = √[2(H - h)/g]

Now, consider the horizontal motion of professor. So, the minimum distance of professor from building can be found out by finding the distance covered by the professor in time t. Since, the professor is running at constant speed of v m/s. Therefore:

s = vt

s = v√[2(H - h)/g]

This formula describes the distance from the building that Prof Murthy must be when you release the egg

Air, at a free-stream temperature of 27.0°C and a pressure of 1.00 atm, flows over the top surface of a flat plate in parallel flow with a velocity of 12.5 m/sec. The plate has a length of 2.70 m (in the direction of the fluid flow), a width of 0.65 m, and is maintained at a constant temperature of 127.0°C. Determine the heat transfer rate from the top of the plate due to forced convection.

Answers

Answer:

Explanation:

Given that:

V = 12.5m/s

L= 2.70m

b= 0.65m

[tex]T_{ \infty} = 27^0C= 273+27 = 300K[/tex]

[tex]T_s= 127^0C = (127+273)= 400K[/tex]

P = 1atm

Film temperature

[tex]T_f = \frac{T_s + T_{\infty}}{2} \\\\=\frac{400+300}{2} \\\\=350K[/tex]

dynamic viscosity =

[tex]\mu =20.9096\times 10^{-6} m^2/sec[/tex]

density = 0.9946kg/m³

Pr = 0.708564

K= 229.7984 * 10⁻³w/mk

Reynolds number,

[tex]Re = \frac{SUD}{\mu} =\frac{\ SUl}{\mu}[/tex]

[tex]=\frac{0.9946 \times 12.5\times 2.7}{20.9096\times 10^-^6} \\\\Re=1605375.043[/tex]

we have,

[tex]Nu=\frac{hL}{k} =0.037Re^{4/5}Pr^{1/3}\\\\\frac{h\times2.7}{29.79\times 10^-63} =0.037(1605375.043)^{4/5}(0.7085)^{1/3}\\\\h=33.53w/m^2k[/tex]

we have,

heat transfer rate from top plate

[tex]\theta _1 =hA(T_s-T_{\infty})\\\\A=Lb\\\\=2.7*0.655\\\\ \theta_1=33.53*2.7*0.65(127/27)\\\\ \theta_1=5884.51w[/tex]

what is called periodic function give example? Plot the output which is started with zero degree for one coil rotating in the uniform magnetic field and name it. How can you represent this output as the periodic function?

Answers

Answer:

A periodic function is a function that returns to its value over a certain period at regular intervals an example is the wave form of flux density (B) = sin wt

Explanation:

A periodic function is a function that returns to its value over a certain period at regular intervals an example is the wave form of flux density (B) = sin wt

attached to the answer is a free plot of the output starting with zero degree for one coil rotating in a uniform magnetic field

B ( wave flux density ) = Bm sinwt  and w = 2[tex]\pi[/tex]f = [tex]\frac{2\pi }{T}[/tex] rad/sec

two opposite poles repel each other​

Answers

Answer:

South Pole and South Pole or North Pole and North Pole.

Choose two consumer services careers and research online to determine what kinds of professional organizations exist for these professions. Write a paragraph describing the purpose of the organization, the requirements for joining, and the benefits of membership.

Answers

Bank loan facilitator, and hospital emergency care specialist are the two consumer or customer services careers.

Bank loan facilitator is a consumer service facilitator who ask and provide people loan in emergency, for the purpose of education, treatment, family events, and for other reasons. For bank loan facilitator the professional organizations should be banking and finance sector. The purpose of these organizations is to help people in financial matter seeking benefit by getting interest from customers. The requirements for joining of the employee must include strong convincing power for the employee, time management, strong and tactful communication skills. Benefits of membership of the customers can help them to seek loans on need basis on lower interest. Hospital emergency care specialist provides help to the staff and the customers in medical emergency. These professionals are necessary for the hospital, clinics, and rehabilitation centers. Purpose of the organization is to provide medical care to the patients. The requirements for joining of the employee includes ability to give information to patients and staff during emergency conditions, facilitating ambulance to rescue patients from their homes, and from other areas, providing medicine, medical equipment, and other facilities to the patients and other medical staff necessary for treatment. Benefits of membership in clinical or hospital settings can help the patient in frequent visits for treatment, concession in laboratory tests, and medication.

Learn more about customer:

https://brainly.com/question/13735743

The uniform sign has a weight of 1500 lb and is supported by the pipe AB, which has an inner radius of 2.75 in. and anouter radius of 3.00 in. If the face of the sign is subjected to a uniform wind pressure of p = 150lb/ft2, determine the state of stress at points C and D. Show the results on a differential volume element located at each of these points. Neglect the thickness of the sign, and assume that it is supported along the outside edge of the pipe.The uniform sign has a weight of 1500 lb and is supported bythe pipe AB, which has an inner radius of 2.75 in. and anouter radius of 3.00 in.. If the face of the sign issubjected to a uniform wind pressure of p = 150lb/ft2, determine the state of stress at pointsC and D. Show the results on a differentialvolume element located at each of these points. Neglect the thickness of the sign, and assume that it issupported along the outside edge of the pipe.

Answers

Answer:

See explanation

Explanation:

See the document for the complete FBD and the introductory part of the solution.

Static Balance ( Sum of Forces = 0 ) in all three directions

                 ∑[tex]F_G_X = W - G_x = 0[/tex]

                 [tex]G_X = W = 1500 lb[/tex]

                 ∑[tex]F_G_Y = P - G_Y = 0[/tex]

                 [tex]G_Y = P = -10,800 lb[/tex]

                ∑[tex]F_G_Z = - G_Z = 0[/tex]

Where, ( [tex]G_X, G_Y, G_Z[/tex] ) are internal forces at section ( G ) along the defined coordinate axes.

Static Balance ( Sum of Moments about G = 0 ) in all three directions

              [tex]M_G = r_O_G x F_O[/tex]

Where,

              r_OG: The vector from point O to point G

              F_OG: The force vector at point O

- The vector ( r_OG ) and ( F_OG ) can be written as follows:

              [tex]r_O_G = [ -( 3 + \frac{H}{2} ) i + (\frac{r_o}{12})j - ( \frac{r_o}{12} + \frac{L}{2})k ] \\\\r_O_G = [ -( 6 ) i + (0.25)j - (6)k ] \\[/tex]

              [tex]F_O_G = [ ( W ) i + ( P ) k ]\\\\F_O_G = [ (1500) i - ( 10,800 ) k ] lb[/tex]

           

- Then perform the cross product of the two vectors ( r_OG ) and ( F_OG ):

     [tex]( M_G_X )i + (M_G_Y)j+ (M_G_Z)k = \left[\begin{array}{ccc}i&j&k\\-6&0.25&-6\\1500&-10,800&0\end{array}\right] \\\\\\( M_G_X )i + (M_G_Y)j+ (M_G_Z)k = -( 6*10,800 ) i - ( 6*1500 ) j + [ ( 10,800*6) - ( 0.25*1500) ] k\\\\( M_G_X )i + (M_G_Y)j+ (M_G_Z)k = - (64,800)i - (9,000)j + (64,425)k[/tex]

- The internal torque ( T ) and shear force ( V ) that act on slice ( G ) are due to pressure force ( P ) as follows:

             [tex]T = P*[\frac{L}{2}] = (10,800)*(6) = 64,800 lb.ft[/tex]

             [tex]V = P = -10,800 lb[/tex]

- For the state of stress at point "C" we need to determine the the normal stress along x direction ( σ_x ) and planar stress ( τ_xy ) as follows:-

             σ_x = [tex]-\frac{G_x}{A} - \frac{M_G_Y. z*}{I_Y_Y} + \frac{M_G_Z. y*}{I_Z_Z}[/tex]

Where,

          A: The area of pipe cross section

          [tex]A = \pi * [ ( \frac{r_o}{12})^2 - ( \frac{r_i}{12})^2 ] = \pi * [ ( \frac{3}{12})^2 - ( \frac{2.75}{12})^2 ] = 0.03136 ft^2[/tex]

          z*: The distance of point "C" along z-direction from central axis ( x )

     

          [tex]z*= [\frac{r_i}{12} ] = [\frac{2.75}{12} ] = 0.22916 ft[/tex]

         I_YY: The second area moment of pipe along and about "y" axis:

         [tex]I_Y_Y = \frac{\pi }{4} * [ (\frac{r_o}{12})^4 - (\frac{r_i}{12})^4 ]=\frac{\pi }{4} * [ (\frac{3}{12})^4 - (\frac{2.75}{12})^4 ] \\\\I_Y_Y = 0.00090 ft^4[/tex]

         y*: The distance of point "C" along y-direction from central axis ( x )

         [tex]y* = 0[/tex]

- The normal stress ( σ_x ) becomes:

          σ_x = [tex][-\frac{1500}{0.03136} - \frac{-9,000*0.22916}{0.00090} + \frac{64,425*0}{0.00090} ] * (\frac{1}{12})^2 = 15.5 ksi[/tex]

- The planar stress is ( τ_xy ) is a contribution of torsion ( T ) and shear force ( V ):

           τ_xy = [tex]- \frac{T.c}{J} + \frac{V.Q}{I.t}[/tex]

Where,

           c: The radial distance from central axis ( x ) and point "C".

           [tex]c = \frac{r_i}{12} = \frac{2.75}{12} = 0.22916 ft[/tex]

          J: The polar moment of inertia of the annular cross section of pipe:

          [tex]J = \frac{\pi }{2}* [ ( \frac{r_o}{12})^4 - ( \frac{r_i}{12})^4 ] = \frac{\pi }{2}* [ ( \frac{3}{12})^4 - ( \frac{2.75}{12})^4 ] = 0.00180 ft^4[/tex]

          Q: The first moment of area for point "C" = semi-circle

       

          [tex]Q = Y_c*A_c = \frac{4*( r_m)}{3\pi } * \frac{\pi*( r_m)^2 }{2} = \frac{2. ( r_m)^3}{3} \\\\Q = \frac{2. [ ( \frac{r_o}{12})^3 - ( \frac{r_i}{12})^3] }{3} = \frac{2. [ ( \frac{3}{12})^3 - ( \frac{2.75}{12})^3] }{3} = 0.00239ft^3[/tex]

          I: The second area moment of pipe along and about "y" axis:

         [tex]I_Y_Y = \frac{\pi }{4} * [ (\frac{r_o}{12})^4 - (\frac{r_i}{12})^4 ]=\frac{\pi }{4} * [ (\frac{3}{12})^4 - (\frac{2.75}{12})^4 ] \\\\I_Y_Y = 0.00090 ft^4[/tex]    

                       

         t: The effective thickness of thin walled pipe:

         [tex]t = 2* [ \frac{r_o}{12} - \frac{r_i}{12} ] = 2* [ \frac{3}{12} - \frac{2.75}{12} ] = 0.04166 ft[/tex]

- The planar stress is ( τ_xy ) becomes:

        τ_xy =  [tex][ - \frac{-64,800*0.22916}{0.0018} + \frac{-10,800*0.00239}{0.0009*0.04166} ] * [ \frac{1}{12}]^2 = 52.4 ksi[/tex]

- The principal stresses at point "C" can be determined from the following formula:-

       σ_x = 15.55 ksi,  σ_y = 0 ksi , τ_xy = 52.4 ksi

       σ_1 =[tex]\frac{sigma_x+sigma_y}{2} + \sqrt{(\frac{sigma_x+sigma_y}{2})^2 + (tow_x_y)^2 }[/tex]

       σ_2 = [tex]\frac{sigma_x+sigma_y}{2} - \sqrt{(\frac{sigma_x+sigma_y}{2})^2 + (tow_x_y)^2 }[/tex]

        σ_1 = [tex]\frac{15.55+0}{2} + \sqrt{(\frac{15.55+0}{2})^2 + (52.4)^2 } = 60.75 ksi[/tex]

        σ_2 =[tex]-\sqrt{\left(\frac{15.55+0}{2}\right)^2\:+\:\left(52.4\right)^2\:}+\frac{15.55+0}{2} = -45.20 ksi[/tex]

- The angle of maximum plane stress ( θ ):

       θ = [tex]0.5*arctan ( \frac{tow_x_y}{\frac{sigma_x-sigma_y}{2} } )= 0.5*arctan*( \frac{52.4}{7.8} ) = 40.8 deg[/tex]

Note: The plane stresses at point D are evaluated using the following procedure given above. Due to 5,000 character limit at Brainly, i'm unable to post here.

Two blocks of rubber (B) with a modulus of rigidity G = 14 MPa are bonded to rigid supports and to a rigid metal plate A. Knowing that c = 80 mm and P = 46 kN, determine the smallest allowable dimensions a and b of the blocks if the shearing stress in the rubber is not to exceed 1.4 MPa and the deflection of the plate is to be at least 7 mm.

Answers

Answer:

a = 0.07m or 70mm

b = 0.205m or 205mm

Explanation:

Given the following data;

Modulus of rigidity, G = 14MPa=14000000Pa.

c = 80mm = 0.08m.

P = 46kN=46000N.

Shearing stress (r) in the rubber shouldn't exceed 1.4MPa=1400000Pa.

Deflection (d) of the plate is to be at least 7mm = 0.007m.

From shearing strain;

[

[tex]Modulus Of Elasticity, E = \frac{d}{a} =\frac{r}{G}[/tex]

Making a the subject formula;

[tex]a = \frac{Gd}{r}[/tex]

Substituting into the above formula;

[tex]a = \frac{14000000*0.007}{1400000}[/tex]

[tex]a = \frac{98000}{1400000}[/tex]

[tex]a = 0.07m or 70mm[/tex]

a = 0.07m or 70mm.

Also, shearing stress;

[tex]r = \frac{P}{2bc}[/tex]

Making b the subject formula;

[tex]b = \frac{P}{2cr}[/tex]

Substituting into the above equation;

[tex]b = \frac{46000}{2*0.08*1400000}[/tex]

[tex]b = \frac{46000}{224000}[/tex]

[tex]b = 0.205m or 205mm[/tex]

b = 0.205m or 205mm

Which statements describe how the Fed responds to high inflation? Check all that apply.

It charges banks more interest.
It pays banks less interest.
It sells more securities.
It decreases the money supply.
It increases the money supply.

Answers

Answer:
• it charges banks more interest
• it sells more securities
• it decreases the money supply

In response to high inflation, the Fed charges banks more interests and pays the banks less interests. It also sells not securities.

Answer:

Answer:

• it charges banks more interest

• it sells more securities

• it decreases the money supply

Explanation:

hope this help edge 21

An amplifier which needs a high input resistance and a high output resistance is : Select one: a. A voltage amplifier b. None of these c. A transresistance amplifier d. A current amplifier e. A transconductance amplifier Clear my choice

Answers

Answer:

None of these

Explanation:

There are different types of amplifiers, and each has different characteristics.

Voltage amplifier needs high input and low output  resistance.Current amplifier needs Low Input and High Output  resistance.Trans-conductance amplifier Low Input and High Output resistance.Trans-Resistance amplifier requires High Input and Low output  resistance.

Therefore, the correct answer is "None of these "

A small grinding wheel is attached to the shaft of an electric motor which has a rated speed of 4200 rpm. When the power is turned on, the unit reaches its rated speed in 5 s, and when the power is turned off, the unit coasts to rest in 70 s. Assume uniformly accelerated motion. determine the number of revolutions that the motor executes
(a) in reaching its rated speed,
(b) in coating to rest.

Answers

Answer:

a) [tex]\ddot n = 50400\,\frac{rev}{min^{2}}[/tex], b) [tex]n = 2450\,rev[/tex]

Explanation:

a) The acceleration experimented by the grinding wheel is:

[tex]\ddot n = \frac{4200\,\frac{rev}{min} - 0 \,\frac{rev}{min} }{\frac{5}{60}\,min }[/tex]

[tex]\ddot n = 50400\,\frac{rev}{min^{2}}[/tex]

Now, the number of revolutions done by the grinding wheel in that period of time is:

[tex]n = \frac{(4200\,\frac{rev}{min} )^{2}-(0\,\frac{rev}{min} )^{2}}{2\cdot \left(50400\,\frac{rev}{min^{2}} \right)}[/tex]

[tex]n = 175\,rev[/tex]

b) The acceleration experimented by the grinding wheel is:

[tex]\ddot n = \frac{0 \,\frac{rev}{min} - 4200\,\frac{rev}{min} }{\frac{70}{60}\,min }[/tex]

[tex]\ddot n = -3600\,\frac{rev}{min^{2}}[/tex]

Now, the number of revolutions done by the grinding wheel in that period of time is:

[tex]n = \frac{(0\,\frac{rev}{min} )^{2} - (4200\,\frac{rev}{min} )^{2}}{2\cdot \left(-3600\,\frac{rev}{min^{2}} \right)}[/tex]

[tex]n = 2450\,rev[/tex]

4. In its natural state, a soil weighs 2800 lb/cy, while in the loose and compacted states, it weighs 2500 lb/cy and 3300 lb/cy, respectively. a. Find the load and shrinkage factors for this soil. b. How many trucks loads with a capacity of 5 lcy/truck would be required to haul 750,000 ccy of this soil to a project

Answers

Answer:

a. load factor = 0.893

shrinkage factor = 0.848

b. Number of Trucks loads = 113,585 Trucks loads

Explanation:

Here, we start by identifying the factors as given in the question.

γn = 2800 lb/cy

γloose = 2500 lb/cy

and γcompacted = 3300 lb/cy

a. Mathematically,

Load factor = γloose/γn = 2500/2800 = 0.893

Shrinkage factor = γn/γcompacted = 2800/3300 = 0.848

b. To find the number of trucks loads with a capacity of 5 lcy/truck, we use the mathematical formula as follows;

ρlcy = 5

Load factor × Shrinkage factor = ρloose/γn × γn/γcompacted = ρlcy/ρccy

0.893 × 0.848 = 5/ρccy

ρccy =5/(0.893 × 0.848) = 6.603

The number of truck loads = 750,000/6.603 = 113,584.7 which is approximately 113,585 trucks loads

Compressed Air In a piston-cylinder device, 10 gr of air is compressed isentropically. The air is initially at 27 °C and 110 kPa. After being compressed, the air is at 450 °C. Determine
(a) the final pressure in [MPa],
(b) the increase in total internal energy in [kJ], and
(c) the total work required in [kJ].
Note that for air R-287 J/kg.K and c.-716.5 J/kg.K, and ?-

Answers

Answer:

(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ

Explanation:

Solution

Recall that:

A 10 gr of air is compressed isentropically

The initial air is at = 27 °C, 110 kPa

After compression air is at = a450 °C

For air,  R=287 J/kg.K

cv = 716.5 J/kg.K

y = 1.4

Now,

(a) W efind the pressure on [MPa]

Thus,

T₂/T₁ = (p₂/p₁)^r-1/r

=(450 + 273)/27 + 273) =

=(p₂/110) ^0.4/1.4

p₂ becomes  2390.3 kPa

So, p₂ = 2.39 MPa

(b) For the increase in total internal energy, is given below:

ΔU = mCv (T₂ - T₁)

=(10/100) (716.5) (450 -27)

ΔU =3030 J

ΔU =3.03 kJ

(c) The next step is to find the total work needed in kJ

ΔW = mR ( (T₂ - T₁) / k- 1

(10/100) (287) (450 -27)/1.4 -1

ΔW = 3035 J

Hence, the total work required is = 3.035 kJ

Solid spherical particles having a diameter of 0.090 mm and a density of 2002 kg/m3 are settling in a solution of water at 26.7C. The volume fraction of the solids in the water is 0.45. Calculate the settling velocity and the Reynolds number.

Answers

Answer:

Settling Velocity (Up)= 2.048*10^-5 m/s

Reynolds number Re = 2.159*10^-3

Explanation:

We proceed as follows;

Diameter of Particle = 0.09 mm = 0.09*10^-3 m

Solid Particle Density = 2002 kg/m3

Solid Fraction, θ= 0.45

Temperature = 26.7°C

Viscosity of water = 0.8509*10^-3 kg/ms

Density of water at 26.7 °C = 996.67 kg/m3

The velocity between the interface, i.e between the suspension and clear water is given by,

U = [ ((nf/ρf)/d)D^3] [18+(1/3)D^3)(1/2)]

D = d[(ρp/ρf)-1)g*(ρf/nf)^2]^(1/3)

D = 2.147

U = 0.0003m/s (n = 4.49)

Up = 0.0003 * (1-0.45)^4.49 = 2.048*10^-5 m/s

Re=0.09*10^-3*2.048*10^-5*996.67/0.0008509 = 2.159*10^-3

You are tasked with designing a thin-walled vessel to contain a pressurized gas. You are given the parameters that the inner diameter of the tank will be 60 inches and the tank wall thickness will be 5/8" (0.625 inches). The allowable circumferential (hoop) stress and longitudinal stresses cannot exceed 30 ksi.
(1) What is the maximum pressure that can be applied within the tank before failure? = psi(2) If you had the opportunity to construct a spherical tank having an inside diameter of 60 inches and a wall thickness of 5/8" (instead of the thin-walled cylindrical tank as described above), what is the maximum pressure that can be applied to the spherical tank? = psi

Answers

Answer:

Explanation:

For cylinder

Diameter d = 60 inches

thickness t = 0.625 inches

circumferential (hoop) stress = 30 ksi

[tex]hoop \ \ stress =\sigma_1=\frac{P_1d}{2t}\\\\\sigma_1=30ksi\\\\30000=\frac{P_1\times 60}{2\times0.625}\\\\P_1=624psi[/tex]

[tex]longitudinal \ \ stress =\sigma_2=\frac{P_2d}{2t}\\\\\sigma_2=30ksi\\\\30000=\frac{P_2\times 60}{4\times0.625}\\\\30000=\frac{P_2\times 60}{2.5}\\\\75000=P_2\times60\\\\P_2=\frac{75000}{60} \\\\P_1=1250psi[/tex]

Therefore maximum pressure without failure is P₁ = 625 psi

ii) For Sphere

[tex]\sigma_1=\sigma_2=\frac{Pd}{4t} \\\\P=\frac{30000\times 4 \times 0.625}{60} \\\\=\frac{75000}{60}\\\\=1250\ \ psi[/tex]

Other Questions
What are the differences and similarities between secondary and post-secondary education? Write a composition describing your birthday party. Which of the following is equivalent to RootIndex 5 StartRoot 13 cubed EndRoot? 132 1315 13 Superscript five-thirds 13 Superscript three-fifths what is the answer to this please?-3(x+2)+5x = -9 Find the slope of the line through (2, -3) and (-4, 3). Dusan is a member of the Tonda LLC, and all members have equal interests in capital and profits. The LLC has made an optional adjustment-to-basis election. Dusan's interest is sold to Adele for $35,000. The balance sheet of the LLC immediately before the sale shows the following: Basis FMV Cash $40,000 $40,000 Depreciable assets 80,000 100,000 $120,000 $140,000 Dusan, capital $30,000 $35,000 Randal, capital 30,000 35,000 Thom, capital 30,000 35,000 Erin, capital 30,000 35,000 $120,000 $140,000 a. How much is the 754 adjustment? b. What is the amount of Adele's basis in the acquired interest? c. Which partner receives deductions related to the step-up? Software that interprets commands from the keyboard and mouse is also know as the The birds shown above have beaks with three different shapes and sizes. These genetic variations in the beak each appeared initially due to Pearson Motors has a target capital structure of 45% debt and 55% common equity, with no preferred stock. The yield to maturity on the company's outstanding bonds is 10%, and its tax rate is 40%. Pearson's CFO estimates that the company's WACC is 14.50%. What is Pearson's cost of common equity Use the identity (x^2+y^2)^2=(x^2y^2)^2+(2xy)^2 to determine the sum of the squares of two numbers if the difference of the squares of the numbers is 5 and the product of the numbers is 6. What is another way to write 25 without using the multiplication sign? In simple terms describe diffraction, refraction and reflection. Give examples for each. Please Help Quick ASAP HurryWhich word best completes the sentence?Select the word from the drop-down menu that best completes the sentence.A few good rules and procedures would keep this team from devolving intoA. anarchyB. FatedC. mediocreD. Tragedy queda lejos el hospital a. no queda cerca b. no queda lejos At which point does warm air begin to rise before colliding with cold air? PLSSS HELPPP MEEE WITH THIS QUESTIONNNNN NO GUESSING PLSSSSWhich process is shown in the plant cell below?A= cell growthB= cell reproductionC= metamorphosisD= photosynthesis Andre has a bowl of chocolates where 70% of them are milk chocolate and the remaining 30% arewhite chocolate. The bowl contains a total of 20 chocolates. If he pulls two chocolates randomly fromthe bowl without replacement, which of the following is closest to the probability that they are bothwhite chocolate?1) 15.4%2) 12.0%3) 9.0%4) 7.9% 5. A square room is covered by a number of whole rectangular slabs of sides 60cm and42cm.a) Find the area of the slab.(2 marks) the first car costs $90 to rent, and because of its fuel consumption rate, theres an additional cost of $0.50 per kilometers driven. How much is it for 500 kilometers Solve for n.2/3 (1 + n ) = -1/2n