Answer:
4
Step-by-step explanation:
[tex] \because \: f(4) = 2 \\ \therefore \: {f}^{ - 1} (f(4)) = {f}^{ - 1} (2) \\ \therefore \: 4 = {f}^{ - 1} (2) \\ \huge \red{ \boxed{{f}^{ - 1} (2) = 4}}[/tex]
Answer:
4 four
Step-by-step explanation:
hope it helps you
ADDITIONAL 100 POINTS PLS HELP ASAP follow up question ( first question on log )
Answer:
Hello!
I believe this is what you are looking for:
x=3
33=27
32=9
S=Surface area
V=Volume
L=Length
R=Radius
I hope this helped. If not, please let me know. I will try my best again. :)
Step-by-step explanation:
What’s the correct answer for this question? Select all that Apply
Answer:
B and G
Step-by-step explanation:
Square and rectangle
The cost of a circular table is directly proportional to the square of the radius. A circular table with a radius of 50cm costs £60. What is the cost of a circular table with a radius of 75cm? Show all your working
Answer:
£135 is the correct answer.
Step-by-step explanation:
Let C be the cost of table.
And let R be the radius of table.
Cost of table is directly proportional to square of radius.
As per question statement:
[tex]C\propto R^{2}[/tex] or
[tex]C=a\times R^2 ....... (1)[/tex]
where [tex]a[/tex] is the constant to remove the [tex]\propto sign[/tex].
It is given that
[tex]C_1 =[/tex] £60 and [tex]R_1 = 50\ cm[/tex]
[tex]C_2 = ?[/tex] when [tex]R_2= 75\ cm[/tex]
Putting the values of [tex]C_1[/tex] and [tex]R_1[/tex] in equation (1):
[tex]60=a \times 50^2 ....... (2)[/tex]
Putting the values of [tex]C_2[/tex] and [tex]R_2[/tex] in equation (1):
[tex]C_2=a \times 75^2 ....... (3)[/tex]
Dividing equation (2) by (3):
[tex]\dfrac{60}{C_2}= \dfrac{a \times 50^2}{a \times 75^2}\\\Rightarrow \dfrac{60}{C_2}= \dfrac{50^2}{75^2}\\\Rightarrow \dfrac{60}{C_2}= \dfrac{2^2}{3^2}\\\Rightarrow \dfrac{60}{C_2}= \dfrac{4}{9}\\\Rightarrow C_2 = 15 \times 9 \\\Rightarrow C_2 = 135[/tex]
So, £135 is the correct answer.
I will give brainiest to the first to answer. The what
of the following set of data is 5.
13, 7, 9, 5, 2, 3, 5, 4, 10, 12
Answer:
it is the mode.
Step-by-step explanation:
i. e 5 is the most occuring number in the set of data listed above
What is the volume of a cone with a height of 27 cm
and a radius of 13 cm? Round your answer to the
nearest tenth.
V=
Answer: V=4778.4 cm³
Step-by-step explanation:
[tex]V=\pi r^2\frac{h}{3}[/tex] is the formula for volume. Since we are given the height and radius, we can directly plug it into the equation
[tex]V=\pi (13)^2(\frac{27}{3})[/tex]
[tex]V=169\pi (9)[/tex]
[tex]V=1521\pi[/tex]
[tex]V=4778.4cm^3[/tex]
3. The difference between two numbers is 5
Answer:
The difference of two numbers is 5 and the difference of their reciprocals is 1/10. find the no.s
Step-by-step explanation:
⇒ x(x-5) = 50
⇒ x2 - 5x - 50 = 0
⇒ x2 - 10x + 5x - 50 = 0
⇒ x (x - 10) + 5 (x - 10) = 0
⇒ (x+5) (x-10) = 0
⇒ (x+5) (x-10) = 0
⇒ x = -5 or 10
⇒ x = 10 (x = -5 , rejected)
Two positive, consecutive, odd integers have a product of 143.
Complete the equation to represent finding x, the greater integer.
x(x –
) = 143
What is the greater integer?
Step-by-step explanation:
x and x+2 are the numbers
x(x+2)=143
x²+2x-143=0
x²+13x-11x-143=0
x(x+13)- 11(x+13)=0
(x+13). (x-11)=0
x+13=0. x=-13
x-11=0. x=11
A classic counting problem is to determine the number of different ways that the letters of "misspell" can be arranged. Find that number.
Answer:
10,080 different ways that the letters of "misspell" can be arranged.
Step-by-step explanation:
Number of arrangents of the letters of a word:
A word has n letters.
The are m repeating letters, each of them repeating [tex]r_{0}, r_{1}, ..., r_{m}[/tex] times
So the number of distincts ways the letters can be arranged is:
[tex]N_{A} = \frac{n!}{r_{1}! \times r_{2}! \times ... \times r_{m}}[/tex]
In this question:
Misspell has 8 letters, with s and l repeating twice.
So
[tex]N_{A} = \frac{8!}{2!2!} = 10080[/tex]
10,080 different ways that the letters of "misspell" can be arranged.
Sarah wants to refurbish her shop.
She is quoted £2500 for the refurbishment, with a 20% discount to be taken off.
What is the final cost of the refurbishment after the discount?
Answer:
2000
Step-by-step explanation:
2500 / 100 = 25 (1%)
25 X 20 =500 (20%)
2500 - 500 =2000
Please help! Correct answer only, please! Consider the matrix shown below: Find the determinant of the matrix Q. A. -67 B. -65 C. 65 D. 67
Answer: d) 67
Step-by-step explanation:
[tex]determinant\ \left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&j\end{array}\right] = a\cdot det\left[\begin{array}{cc}e&f\\h&j\end{array}\right] -\ b\cdot det\left[\begin{array}{cc}d&f\\g&j\end{array}\right] +\ c\cdot det\left[\begin{array}{cc}d&e\\g&h\end{array}\right][/tex]
[tex]determinant\ \left[\begin{array}{ccc}2&3&4\\-3&2&1\\5&-1&6\end{array}\right] \\\\\\= 2\cdot det\left[\begin{array}{cc}2&1\\-1&6\end{array}\right] -\ 3\cdot det\left[\begin{array}{cc}-3&1\\5&6\end{array}\right] +\ 4\cdot det\left[\begin{array}{cc}-3&2\\5&-1\end{array}\right]\\\\\\=2[2(6)-1(-1)]-3[-3(6)-1(5)]+4[3(-1)-2(5)]\\\\\\=2(13)-3(-23)+4(-7)\\\\\\=26+69-28\\\\\\=\large\boxed{67}[/tex]
Do You Understand?
D
4.
1. Essential Question How does an equation
show the relationship between variables and
other quantities in a situation?
Answer:
An equation is basically a way to show a relationship of variables (x,y,a,b, etc) and numbers.
Step-by-step explanation:
Answer:
Shown by explanation.
Step-by-step explanation:
An equation shows a relationship between variables and other factors by defining the variables that are dependent and independent and how these dependent variables are related to the independent variables, this is usually as a result of a prescribed experiment where the relationship of this variables are investigated.
Also remember conditions that favour this experiment must be taken into consideration. And the experiment must always be performed under such conditions.
The functions r and s are defined as follows. r(x)=2x-1 s(x)=-2x^2-2 Find the value of s(r(-4)).
Answer:
s(r(-4)) = -164
Step-by-step explanation:
r(x) = 2x - 1
s(x) = -2x^2 - 2
r(-4) = 2(-4) - 1 = -8 - 1 = -9
s(r(-4)) = s(-9) = -2(-9)^2 - 2 = -2*81 - 2 = -162 - 2 = -164
Hope this helps!
A rectangular field has an area of 1,764 m(squared). The width of the field is 13 m more than the length. What is the perimeter of the field?
Answer:
170m
Step-by-step explanation:
The answer to the above question is letter d which is 170 m. To get the 170 m, kindly check the below solution:
x^2 + 13x = 1764 so x = -49 and 36, we take 36 as its the positive value. And the other side is 49. Now use 2(l+b) to find perimeter. You get (36+49)*2 = 170
Which data collection method would provide an unbiased sample?
Answer:
The best data collection method or sampling method to provide an unbiased sample is the random sampling method.
Step-by-step explanation:
There are 5 popular known sampling methods or data collection methods.
1) Random Sampling
In random sampling, each member of the population would have an equal chance of being surveyed. One of the best ways to use random sampling is to give all the members of the population numbers and then use computer to generate random numbers and pick the members of the population with those random numbers.
2) Systematic sampling is easier than random sampling. In systematic sampling, a particular number, n, is counted repeatedly and each of the nth member is picked to be sampled.
3) Convenience Sampling
This is the worst sampling technique. It is also the easiest. In Convenience sampling, the surveyor just picks the first set of members of the population that they find and surveys.
4) Stratified Sampling
Stratified sampling divides the population into groups called strata. A sample is taken from each of these strata using either random, systematic, or convenience sampling.
5) Cluster sampling
Cluster Sampling divides the population into groups which are called clusters or blocks. The clusters are selected randomly, and some members or every element/member in the selected clusters is surveyed.
Hope this Helps!!!
For circle O, and m∠ABC = 55°. In the figure, ∠ and ∠ have measures equal to 35°.
Answer:
In the figure ∠ABO and ∠BCO have measures equal to 35°.
Step-by-step explanation:
Measure of arc AD = 180-measure of arc CD= 180-125 =55
m<AOB= 55 ( measure of central angle is equal to intercepted arc)
<OAB= 90 degrees (Tangent makes an angle of 90 degrees with the radius)
In triangle AOB ,
< AB0 = 180-(90+55)= 35 degrees( angle sum property of triangle)
In triange BOC ,< BOC=125 ,
m<, BCO=35 degrees
Answer:
∠ABO and ∠BCO
Step-by-step explanation:
If the size of the sample to be used in a particular test of attributes has not been determined by utilizing statistical concepts, but the sample has been chosen in accordance with random selection procedures
A) No inferences can be drawn from the sample.
B) The auditor has committed a nonsampling error.
C) The auditor may or may not achieve the desired risk of assessing control risk too low.
D) The auditor will have to evaluate the results by reference to the principles of discovery sampling.
E) The auditor may or may not achieve the desired
Answer:
C) The auditor may or may not achieve the desired risk of assessing control risk too low.
Step-by-step explanation:
In a concept of risk sampling, if the sample size is chosen randomly in accordance with random selection procedures, the auditor may or may not achieve the desired risk of assessing risk too low. In other words the auditor may or may not achieve desired precision. This is because a samole chosen randomly may not represent the true population.
This depends largely on the sample size. If the sample size selected is too small, the allowance for sampling risk will be larger than what is required because it will lead to a large standard error of the mean
The equation h = 7m + 8 models the growth of a plant after it was put into a flowerbed. If
m is the number of months since it was planted and h is the plant's height in
centimeters, which statement is valid?
The vertical axis on a graph would
represent the number of months the plant
has been in the flowerbed.
The height of the plant is the dependent
variable.
The domain of the function represents the
height of the plant.
The variable m could be represented as
f(h).
Answer:
2
Step-by-step explanation:
the vertical axis would be h, the plant's height, and the horizontal axis would be m, the number of months. This would make statement 2 the only valid statement.
statement 1: Incorrect, as the vertical axis is the height
statement 2: correct, as h depends on m
statement 3: incorrect, as the domain is the horizontal and represents the number of months
statement 4: incorrect, as h = f(m)
Solve for y=x squared -18 solve for x
Step-by-step explanation:
[tex]y = {x}^{2} - 18 \\ y + 18 = {x}^{2} \\ square \: root \: both \: sides \: \\ \sqrt{y + 18} = \sqrt{ {x}^{2} } [/tex]
[tex]x = \sqrt{y + 18} [/tex]
Answer:
√y + 18 = x
Step-by-step explanation:
Let us solve it now.
y = x² - 18
Take -18 to the left side
y + 18 = x²
Now remove the square of x
√y + 18 = x
Which is equivalent to 8−+3
8
x
-
y
+
3
x
?
Answer:
DIDNT UNDERSTAND THE QUESTION PROPERLY BRO..
KEEP THE QUESTION AGAIN
what is the least common denominator of 4 7/9 and 2 2/3
Answer:
9
Equivalent Fractions with the LCD
4 7/9 = 43/9
2 2/3 = 24/9
For the denominators (9, 3) the least common multiple (LCM) is 9.
Therefore, the least common denominator (LCD) is 9.
4 7/9 = 43/9 × 1/1 = 43/9
2 2/3 = 8/3 × 3/3 = 24/9
Hope this helps :)
The least common denominator of 4 7/9 and 2 2/3 is 9.
Given data:
To find the least common denominator (LCD) of 4 7/9 and 2 2/3, we need to first convert both fractions to their equivalent forms with a common denominator.
The given fractions are:
4 7/9 = 4 + 7/9
2 2/3 = 2 + 2/3
To find a common denominator, we need to find the least common multiple (LCM) of the denominators 9 and 3, which is 9.
Now, let's convert the fractions to their equivalent forms with a denominator of 9:
4 7/9 = (4 * 9)/9 + (7/9) = 36/9 + 7/9 = 43/9
2 2/3 = (2 * 9)/9 + (2/3) = 18/9 + 2/3 = 20/9
The fractions 4 7/9 and 2 2/3 are now expressed with a common denominator of 9.
Hence, the least common denominator (LCD) of 4 7/9 and 2 2/3 is 9.
To learn more about least common denominator click :
https://brainly.com/question/24510622
#SPJ2
What is the final step in solving the inequality –2(5 – 4x) < 6x – 4?
Answer:
work is shown and pictured
Answer: x<3
Step-by-step explanation:
A recent survey found that 86% of employees plan to devote at least some work time to follow games during the NCAA Men's Basketball Tournament. A random sample of 100 employees was selected. What is the probability that less than 80% of this sample will devote work time to follow games?
Answer:
4.18% probability that less than 80% of this sample will devote work time to follow games
Step-by-step explanation:
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In this question, we have that:
[tex]p = 0.86, n = 100[/tex]
So
[tex]\mu = 0.86, s = \sqrt{\frac{0.86*0.14}{100}} = 0.0347[/tex]
What is the probability that less than 80% of this sample will devote work time to follow games?
This is the pvalue of Z when X = 0.8. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.8 - 0.86}{0.0347}[/tex]
[tex]Z = -1.73[/tex]
[tex]Z = -1.73[/tex] has a pvalue of 0.0418
4.18% probability that less than 80% of this sample will devote work time to follow games
A certain manufactured product is supposed to contain 23% potassium by weight. A sample of 10 specimens of this product had an average percentage of 23.2 with a standard deviation of 0.2. If the mean percentage is found to differ from 23, the manufacturing process will be recalibrated.
a. State the appropriate null and alternate hypotheses.
b. Should the process be recalibrated? Explain.
c. Compute the P-value.
Answer:
(a) Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 23%
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] [tex]\neq[/tex] 23%
(b) We conclude that the mean percentage is different from 23 and the manufacturing process will be re-calibrated.
(c) P-value is 0.6%.
Step-by-step explanation:
We are given that a certain manufactured product is supposed to contain 23% potassium by weight.
A sample of 10 specimens of this product had an average percentage of 23.2 with a standard deviation of 0.2.
Let [tex]\mu[/tex] = mean percentage of potassium by weight.
(a) Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 23% {means that the mean percentage is equal to 23 and the manufacturing process will not be re-calibrated}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] [tex]\neq[/tex] 23% {means that the mean percentage is different from 23 and the manufacturing process will be re-calibrated}
The test statistics that would be used here One-sample t-test statistics as we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean percentage = 23.2
s = sample standard deviation = 0.2
n = sample of specimens = 10
So, the test statistics = [tex]\frac{23.2-23}{\frac{0.2}{\sqrt{10} } }[/tex] ~ [tex]t_9[/tex]
= 3.162
The value of t test statistic is 3.162.
Since, in the question we are not given with the level of significance so we assume it to be 5%. Now, at 5% significance level the t table gives critical value of -2.262 and 2.262 at 9 degree of freedom for two-tailed test.
(b) Since our test statistic doesn't lie within the range of critical values of t, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region due to which we reject our null hypothesis.
Therefore, we conclude that the mean percentage is different from 23 and the manufacturing process will be re-calibrated.
(c) The P-value of the test statistics is given by;
P-value = P( [tex]t_9[/tex] > 3.162) = 0.006 or 0.6%
(a) Null Hypothesis, [tex]H_o:\mu[/tex]: = 23%
Alternate Hypothesis, [tex]H_A:\mu\neq[/tex] : 23%
(b) We conclude that the mean percentage is different from 23 and the manufacturing process will be re-calibrated.
(c) P-value is 0.6%.
What is a null hypothesis?The hypothesis that there is no significant difference between specified populations, any observed difference being due to sampling or experimental error.
We are given that a certain manufactured product is supposed to contain 23% potassium by weight.
A sample of 10 specimens of this product had an average percentage of 23.2 with a standard deviation of 0.2.
Let = mean percentage of potassium by weight.
(a) Null Hypothesis, [tex]H_o:\mu[/tex]: = 23% {means that the mean percentage is equal to 23 and the manufacturing process will not be re-calibrated}
Alternate Hypothesis, [tex]H_A:\mu\neq[/tex]: 23% {means that the mean percentage is different from 23 and the manufacturing process will be re-calibrated}
The test statistics that would be used here One-sample t-test statistics as we don't know about population standard deviation;
[tex]TS=\dfrac{X-\mu}{\frac{s}{\sqrt{n}}}[/tex] ~ [tex]t_{n-1}[/tex]
where, = sample mean percentage = 23.2
s = sample standard deviation = 0.2
n = sample of specimens = 10
So, the test statistics = [tex]\dfrac{23.2-23}{\frac{0.2}{\sqrt{10}}}[/tex] ~ [tex]t_g[/tex]
= 3.162
The value of t test statistic is 3.162.
Since, in the question we are not given with the level of significance so we assume it to be 5%. Now, at 5% significance level the t table gives critical value of -2.262 and 2.262 at 9 degree of freedom for two-tailed test.
(b) Since our test statistic doesn't lie within the range of critical values of t, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region due to which we reject our null hypothesis.
Therefore, we conclude that the mean percentage is different from 23 and the manufacturing process will be re-calibrated.
(c) The P-value of the test statistics is given by;
P-value = P( [tex]t_g[/tex] > 3.162) = 0.006 or 0.6%
Hence ,
(a) Null Hypothesis, [tex]H_o:\mu[/tex]: = 23%
Alternate Hypothesis, [tex]H_A:\mu\neq[/tex] : 23%
(b) We conclude that the mean percentage is different from 23 and the manufacturing process will be re-calibrated.
(c) P-value is 0.6%.
To know more about null hypothesis follow
https://brainly.com/question/15980493
If a function f(x) is defined as 3x2 + x + 2, what is the value of Lim h-0 f(x+h)-f(x)/h? A. 3x + 1 B. 3x + 2 C. 6x + 1 D. 6x + 2
Answer:
[tex] f(x+h) = 3(x+h)^2 +(x+h) +2= 3(x^2 +2xh+h^2) +x+h+2[/tex]
[tex]f(x+h) = 3x^2 +6xh +3h^2 +x+h+2= 3x^2 +6xh +x+h+ 3h^2 +2[/tex]
And replacing we got:
[tex] lim_{h \to 0} \frac{3x^2 +6xh +x+h+ 3h^2 +2 -3x^2 -x-2}{h}[/tex]
And if we simplfy we got:
[tex] lim_{h \to 0} \frac{6xh +h+ 3h^2 }{h} =lim_{h \to 0} 6x + 1 +3h [/tex]
And replacing we got:
[tex]lim_{h \to 0} 6x + 1 +3h = 6x+1[/tex]
And the bet option would be:
C. 6x + 1
Step-by-step explanation:
We have the following function given:
[tex] f(x) = 3x^2 +x+2[/tex]
And we want to find this limit:
[tex] lim_{h \to 0} \frac{f(x+h) -f(x)}{h}[/tex]
We can begin finding:
[tex] f(x+h) = 3(x+h)^2 +(x+h) +2= 3(x^2 +2xh+h^2) +x+h+2[/tex]
[tex]f(x+h) = 3x^2 +6xh +3h^2 +x+h+2= 3x^2 +6xh +x+h+ 3h^2 +2[/tex]
And replacing we got:
[tex] lim_{h \to 0} \frac{3x^2 +6xh +x+h+ 3h^2 +2 -3x^2 -x-2}{h}[/tex]
And if we simplfy we got:
[tex] lim_{h \to 0} \frac{6xh +h+ 3h^2 }{h} =lim_{h \to 0} 6x + 1 +3h [/tex]
And replacing we got:
[tex]lim_{h \to 0} 6x + 1 +3h = 6x+1[/tex]
And the bet option would be:
C. 6x + 1
Answer:
6x+1
Step-by-step explanation:
Plato :)
Evaluate x - 2y when x = 5 and y = 5.
Determine whether the ordered pair satisfies the equation.
x - 2y = -5; (5,5)
Yes, the ordered pair satisfies the equation.
No, the ordered pair does not satisfy the equation.
Answer:
For the first question we just plug in the values so we get 5 - 2 * 5 = -5.
Again, for the second one we'll plug in the values and see if it's a true statement. 5 - 2 * 5 = -5 and -5 = -5 so the answer is yes.
Can someone please help me with this question the first one
What is the square root of 100?
Answer:
10
Step-by-step explanation:
Answer:
10
Step-by-step explanation:
Square root is finding what number times what gets your goal.
10 x 10 = 100 so 100 squared is 10.
5 x 5 = 25 so 25 squared is 5.
4 x 4 = 16 so 15 squared is 4.
You get it? :)
Have a nice day!
There are 1760 yards in one mile about how many miles will a runner have to run
Answer:
3
I used to be an olimpic runner and I ran the 400 all the time and I did cross country
Directions and Analysis
Task 1: Completing the Square
Look at the quadratic equation below.
2x^2-12x-16=0
This is not an equation that could be easily solved by factoring. Instead, you are going to use the method of completing the square to solve this equation. Follow each step in this task to complete the square and solve the equation.
a. To complete the square, the coefficient of the x2 term must be 1. Divide both sides of the equation by a value and rewrite the equation to meet this criteria.
Type your response here:
b. Rewrite the resulting equation so the constant term is on the right side of the equation and the variable terms are on the left.
Type your response here:
c. Identify the coefficient of the x term in the previous equation. Then divide it by half and square the result. What is the result?
Type your response here:
d. Add the value you identified in part c to both sides of the equation from part b and simplify the right side. Remember that when solving equations, whatever is done to one side of the equation must also be done to the other side the equation: that is why you must add the value to both sides.
Type your response here:
e. Notice that the left side of the equation now represents a perfect square quadratic expression. Use this fact to rewrite the left side of the previous equation as the square of a linear term and create a new equation.
Type your response here:
f. You have now completed the square. Starting with the result from part e, solve the equation for x. Show your work.
Type your response here:
g. Now that you know how to complete the square to solve a quadratic equation, solve the equation 3x^2 – 3x − 6 = 0. Show your work.
Type your response here:
Answer:
a. [tex]x^2-6x-8=0[/tex]
b. [tex]x^2-6x=8[/tex]
c.
[tex]\frac{1}{2}[/tex] (Coefficient of x) = [tex]\frac{-6}{2}=-3[/tex]
Also, [tex](-3)^2=9[/tex]
d. [tex]x^2-6x+9=17[/tex]
e. [tex](x-3)^2=17[/tex]
f, g. [tex]x=3\pm \sqrt{17}[/tex]
Step-by-step explanation:
Given: [tex]2x^2-12x-16=0[/tex]
To solve: the given equation
Solution:
a.
[tex]2x^2-12x-16=0[/tex]
Coefficient of [tex]x^2=2[/tex]
Divide both sides by 2
[tex]x^2-6x-8=0[/tex]
b.
[tex]x^2-6x=8[/tex]
c.
Coefficient of x = -6
[tex]\frac{1}{2}[/tex] (Coefficient of x) = [tex]\frac{-6}{2}=-3[/tex]
Also, [tex](-3)^2=9[/tex]
d.
Add 9 to both sides of the equation: [tex]x^2-6x=8[/tex]
[tex]x^2-6x+9=8+9\\x^2-6x+9=17[/tex]
e.
[tex]x^2-6x+9=17\\x^2-2(3)x+3^2=17\\(x-3)^2=17\,\,\left \{ \because (a-b)^2=a^2+b^2-2ab \right \}[/tex]
f.
[tex](x-3)^2=17\\x-3=\pm \sqrt{17}\\x=3\pm \sqrt{17}[/tex]
g.
[tex]x=3\pm \sqrt{17}[/tex]
Find the constant of variation k for the direct variation 3x+5y=0
Answer:
-3/5
Step-by-step explanation:
3x+5y=0
Subtract 3x from each side
3x+5y-3x=0-3x
5y = -3x
Divide each side by 5
5y/5 = -3x/5
y = -3/5 x
A direct variation is y = kx
y = -3/5 x
The constant of variation is -3/5