Answer:
Elastic potential energy is the potential energy stored by stretching or compressing an elastic object by an external force such as the stretching of a spring. It is equal to the work done to stretch the spring which depends on the spring constant k and the distance stretched.
Hope this helps :)
-ilovejiminssi♡
uppose that the terminal speed of a particular sky diver is 150 km/h in the spread-eagle position and 320 km/h in the nosedive position. Assuming that the diver's drag coefficient C does not change from one position to the other, find the ratio of the effective cross-sectional area A in the slower position to that in the faster position (Aslower / Afaster).
Answer:
4.55
Explanation:
The terminal speed of a diver is given by:
[tex]v_t=\sqrt{\frac{2mg}{C\rho A} } \\\\Where\ m=mass\ of \ driver,d=acceleration\ due\ to\ gravity,C=drag\ \\coefficient,A=cross\ sectional\ Area.\\\\Therefore:\\\\A=\frac{2mg}{C \rho v_t^2} \\\\For\ area\ with\ terminal\ speed\ in\ spread\ angle\ position(v_s):\\\\A_s=\frac{2mg}{C \rho v_s^2} \\\\For\ area\ with\ terminal\ speed\ in\ nose\ dive\ position(v_n):\\\\A_n=\frac{2mg}{C \rho v_n^2}\\\\Therefore\ since\ g,m,C,\rho\ are\ constant:\\\\[/tex]
[tex]\frac{A_s}{A_n}= \frac{\frac{2mg}{C \rho v_s^2}}{\frac{2mg}{C \rho v_n^2}}\\\\\frac{A_s}{A_n}= \frac{v_n}{v_s} \\\\v_n=320\ km/h,v_s=150\ km/h\\\\\frac{A_s}{A_n}=\frac{320^2}{150^2} =4.55[/tex]
who has brown hair and brown eyes but is a boy
Answer:
I have strawberry blonde/brown hair blue eyes and a girl lol
Explanation:
Four electrons and one proton are at rest, all at an approximate infiitne distance away from each other. This original arrangment of the four particles is defined as having zero electrical potential energy No work is required to bring one electron from infitinty to a location defined as the origin, while the other three particles remain at infiniuty. This is because no voltage exists near the origin until the first electron arrives. (a) Now, with the first electron remaining fixed at the origin, how much work is required to bring one of the remaining electrons from infinity to the coordinate (0 m, 2.00 m)? The other three particles remain at infinity. If this second electron was subsequently released, how fast would it be traveling once it returned to infinity? (b) Nļw, considering the two electrons fixed 2.00 m apart, how much work is required to bring the third electron from infinity to the coordinate (3.00 m, 0 m)? The other two particles remain at infinity. If this third electron was subsequently released, how fast would it be traveling once it returned to infinity? (c) Now considering the three fixed electrons at the coordinates described above. How much work is required to bring the last electron from infinity to the coordinate (3.00 m, 4.00 m)? If this forth electron was subsequently released, how fast would it be traveling once it returned to infinity? (d) Now considering the three fixed electrons at the coordinates described above. Finally, how much work is required to bring the proton from infinity to a coordinate of (1.00 m, 1.00 m)? If the proton is subsequently released and we assume that minimum separation distance between a proton and an electron is 1.00 pm, then how fast will the proton be traveling once it crashes into an electron?
Answer:
a) W = 1.63 10⁻²⁸ J, b) W = 1.407 10⁻²⁷ J, c) W = 1.68 10⁻²⁸ J,
d) W = - 4.93 10⁻²⁸ J
Explanation:
a) In this problem we have an electron at the origin, work is requested to carry another electron from infinity to the point x₂ = 0, y₂ = 2.00m
If we use the law of conservation of energy, work is the change in energy of the system
W = ΔU = U_∞ -U
the potential energy for point charges is
U =k [tex]\sum \frac{q_i q_j}{r_{ij} }[/tex]
in this case we only have two particles
U = k [tex]\frac{q_1q_2}{r_{12} }[/tex]
the distance is
r₁₂ = [tex]\sqrt{(x_2-x_1)^2 + ( y_2-y_1)^2 }[/tex]
r₁₂ =[tex]\sqrt{ 0 + ( 2-0)^2}[/tex]Ra 0 + (2-0)
r₁₂ = √2= 1.4142 m
we substitute
W = k \sum \frac{q_i q_j}{r_{ij} }
let's calculate
W = [tex]\frac{ 9 \ 10^9 (1.6 \ 10^{-19})^2 }{1.4142}[/tex] 9 109 1.6 10-19 1.6 10-19 / 1.4142
W = 1.63 10⁻²⁸ J
b) the two electrons are fixed, what is the work to bring another electron to x₃ = 3.00 m y₃ = 0
in this case we have two fixed electrons
U = k [tex]( \frac{q_1q_3}{r_{13} } + \frac{q_2q_3}{r_{23} } )[/tex]
in this case all charges are electrons
q₁ = q₂ = q₃ = q
W = U = k q² [tex]( \frac{1}{r_{13} } + \frac{1}{r_{23} } )[/tex]
the distances are
r₁₃ = [tex]\sqrt{(3-0)^2 + 0}[/tex]RA (3.00 -0) 2 + 0
r₁₃ = 3
r₂₃ = [tex]\sqrt{ 3^2 + 2^2}[/tex]Ra (3 0) 2 + (2 0) 2
r₂₃ = √13
r₂₃ = 3.606 m
let's look for the job
W = U
let's calculate
W =[tex]{9 \ 10^3 ( 1.6 10^{-19})^2 }({\frac{1}{3} + \frac{1}{3.606} } )[/tex]
W = 1.407 10⁻²⁷ J
c) the three electrons are fixed, we bring the four electron to x₄ = 3.00m,
y₄ = 4.00 m
W = U = k [tex]( \frac{q_1q_4}{r_{14 }} + \frac{q_2q_4}{r_{24} } + \frac{q_3q_4}{r_{34} } )[/tex]
all charges are equal q₁ = q₂ = q₃ = q₄ = q
W = k q² [tex](\frac{1}{r_{14} } + \frac{1}{r_{24} } + \frac{1}{r_{34} } )[/tex]
let's look for the distances
r₁₄ = [tex]\sqrt{3^2 +4^2}[/tex]
r₁₄ = 5 m
r₂₄ = [tex]\sqrt{3^2 + ( 4-2)^2}[/tex]
r₂₄ = √13 = 3.606 m
r₃₄ = [tex]\sqrt{(3-3)^2 + (4-0)^2}[/tex]
r₃₄ = 4 m
we calculate
W = 9 10⁹ (1.6 10⁻¹⁹)² [tex]( \frac{1}{5} + \frac{1}{3.606} + \frac{1}{4} )[/tex]
W = 1.68 10⁻²⁸ J
d) we take the proton to the location x5 = 1m y5 = 1m
W = U = k [tex]( \frac{q_1q_5}{r_{15} } + \frac{q_2q_5}{r_{25} } + \frac{q_3q_5}{r_{35} } + \frac{q_4q_5}{r_{45} } )[/tex]
in this case the charges have the same values but charge 5 is positive and the others negative, so the products of the charges give a negative value
W = - k q² [tex]( \frac{1}{r_{15} } + \frac{1}{r_{25} } + \frac{1}{r_{35} } + \frac{1}{r_{45} } )[/tex]
we look for distances
r₁₅ = [tex]\sqrt{ 1^2 +1^2}[/tex]Ra (1-0) 2 + (1-0) 2
r₁₅ = √ 2 = 1.4142 m
r₂₅ = [tex]\sqrt{ (2-1)^2 +1^2}[/tex]
r₂₅ = √2 = 1.4142 m
r₃₅ = [tex]\sqrt{ ( 3-1)^2 +1^2}[/tex]
r₃₅ = √5 = 2.236 m
r₄₅ = [tex]\sqrt{ (3-1)^2 + (4-1)^2}[/tex]
r₄₅ = √13 = 3.606 m
we calculate
W = - 9 10⁹ (1.6 10⁻¹⁹)² [tex]( \frac{1}{1.4142} +\frac{1}{1.4142} + \frac{1}{2.236} + \frac{1}{3.606} )[/tex]
W = - 4.93 10⁻²⁸ J
PLEASE HELP ASAP! WILL GIVE BRAINLIEST TO CORRECT ANSWER! HELP!! HELP!!
The diagram shows the structure of an animal cell.
The image of an animal cell is shown with some organelles labeled numerically from 1 to 6. The outer double layer boundary of the cell is labeled 1. A stacked disc like structure is labeled 2. A broad rod shaped structure with an irregular shape inside it is labeled 3. The entire plain section that forms the background of the cell and is within the outer boundary is labeled 4. A small circular shape within the large circular shape is labeled 5. The large central circular shape is labeled 6.
Which number label represents the cell membrane?
1
2
4
6
(this is middle school science)
Answer:
1. cell membrane
2. golgi body
3. mitochondrion
4. cytoplasm
5. nucleolus
6. nucleus
Explanation:
The correct answer to this question is Option A; 6.
Why?
In a plant cell, the nucleus surrounds the nucleolous, which would be number 5. Therefore, number 6 would be your correct answer.
~Thank you~
What are regular and irregular reflection of light? plz help its
urgent..
Explanation:
Regular reflection: It is the reflection from a smooth surface such that the light rays are evenly parallel to each other and an image is formed. ... Irregular reflection: It is the diffused reflection from uneven surface such that the light rays are not parallel to each other and do not form an image.
Potential energy is energy due to the:
a. motion of an object.
b. height of an object.
c. temperature of an object.
d. speed of an object.
Answer:I will say d
Explanation: because Potential energy is the energy stored within an object, due to the object's position, arrangement or state. Potential energy is one of the two main forms of energy, along with kinetic energy.
A diet is to contain at least 2400 mg vitamin C, 1800mg Calcium, and 1200 calories every day. Two foods, a dairy-based meal and a vegan option are to fulfill these requirements. Each ounce of the dairy-based meal provides 50 mg vitamin C, 30 mg Calcium, and 10 calories. Each ounce of the vegan option provides 20 mg vitamin C, 20 mg Calcium, and 40 calories. If the dairy-based meal costs $0.042 per ounce and the vegan option costs $0.208 per ounce, how many ounces of each food should be purchased to minimize costs? What is that minimum cost (per day)?
Answer:
The answer is below
Explanation:
Let x represent the number of ounce of dairy based meal and let y represent the number of vegan option in ounce.
Since the diet must contain at least 2400 mg vitamin C, therefore:
50x + 20y ≥ 2400
Since the diet must contain at least 1800 mg Calcium, therefore:
30x + 20y ≥ 1200
Since the diet must contain at least 1200 calories, therefore:
10x + 40y ≥ 1200
Therefore the constraints are:
50x + 20y ≥ 2400
30x + 20y ≥ 1200
10x + 40y ≥ 1200
x > 0, y > 0
The graph was drawn using geogebra online graphing tool, and the solution to the problem is at:
C(30, 45) and D(48, 18)
dairy-based meal costs $0.042 per ounce and the vegan option costs $0.208 per ounce. The cost equation is:
Cost = 0.042x + 0.208y
At C(30, 45); Cost = 0.042(30) + 0.208(45) = $10.62
At C(48, 18); Cost = 0.042(48) + 0.208(18) = $5.76
The minimum cost is at (48, 18). That is 48 dairy based meal and 18 vegan
Galileo _____.
did not believe friction existed
believed that friction stopped objects in motion
believed that friction kept objects in motion
assumed that in a frictionless environment objects would never move
Answer:
friction help to slow motion in other word it oppose motion, but in a frictionless environment object would move with difficult stopping point.
A football quarterback runs 15.0 m straight down the playing field in 2.30 s. He is then hit and pushed 3.00 m straight backward in 1.74 s. He breaks the tackle and runs straight forward another 28.0 m in 5.20 s.
Calculate his average velocity (in m/s) for each of the three intervals. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)
Answer:
6.52 m/s
1.72 m/s
5.38 m/s
Explanation:
this question requires us to find the average velocity.
1. velocity in straight down direction:
velocity = distance/time
= 15.0/2.30
= 6.52 m/s
2. velocity in straight backward direction:
velocity = distance/time
= 3.00 /1.74
= 1.72m/s
3. velocity in straight forward direction
velocity = distance/time
= 28.0/5.20
= 5.38 m/s
these are the his velocities for each if the intervals.
thank you!
A steel cylinder of length 10 cm, mass 160 g and density 8 g/em. The radius of the cylinder is
Answer:
0.8cm
Explanation:
Volume = mass/density = 160/8 = 20cm³
Volume = πr²h
r² = v/πh = 20/10π =0.64
r = √0.64 = 0.8
Velocity time graph and how to draw it
Answer:
Velocity time graph
Explanation:
Draw on graph paper two straight lines originating at the same point and perpendicular to each other. This is the x-y axis. The x-axis is the horizontal line and the y-axis is the vertical line.
Mark appropriate equally-spaced time intervals on the x-axis so that you can easily graph the time values from the table.
Mark appropriate velocity increments on the y-axis so that you can easily graph the velocity values from the table. If you have negative velocity values, extend the y-axis downward.
Find the first time value from the table and locate it on the x-axis. Look at the corresponding velocity value and find it on the y-axis.
Put a dot where a straight line vertically drawn up through the x-axis value and a straight line horizontally drawn through the y-axis value intersect.
Plot in similar fashion for all other velocity-time pairs in your table.
Draw a straight line with a pencil, connecting each dot you have put down on the graph paper, going from left to right
Tyler and Jim race each other up a mountain on their bicycles. Tyler rides a road bike on the switchbacks of the twisting and turning mountain road. Jim rides a mountain bike and follows a direct, but steeper, straight-line path up the mountain. They start at the same time and place at the bottom of the mountain and finish at the same time and place at the top of the mountain. From start to finish a. whose distance traveled was longer? b. whose displacement was longer? c. which rider had the faster average speed? d. which rider had the faster average velocity? e. who won the race?
Answer:
Explanation:
Displacement is minimum distance between initial and final point .
Distance is total length of path covered in a journey .
a )
Tyler covered a longer distance in the journey because total length of path covered by him is longer due to curved path .
b )
Both have same displacement , because minimum distance between initial and final point in both the case is same .
c )
average speed = distance / time
as time is same for both the case ,
average speed ∝ distance
As distance covered by Tyler is more , his average speed is more .
d )
average velocity = displacement / time
As both displacement and time are same in both the case , average velocity in both the case is same .
e )
They start at the same time and place at the bottom of the mountain and finish at the same time , both have tie and nobody won the race , in spite of speed of Tyler being greater .
The physics of wind instruments is based on the concept of standing waves. When the player blows into the mouthpiece, the column of air inside the instrument vibrates, and standing waves are produced. Although the acoustics of wind instruments is complicated, a simple description in terms of open and closed tubes can help in understanding the physical phenomena related to these instruments. For example, a flute can be described as an open-open pipe because a flutist covers the mouthpiece of the flute only partially. Meanwhile, a clarinet can be described as an open-closed pipe because the mouthpiece of the clarinet is almost completely closed by the reed.
Consider a pipe of length 80.0 cm open at both ends. What is the lowest frequency f of the sound wave produced when you blow into the pipe?
Answer:
Explanation:
Lowest frequency will be the fundamental frequency . For fundamental note
λ /2 = L where λ is wavelength of sound produced and L is length of open end pipe .
Given L = 80 cm
λ /2 = 80
λ = 160 cm .
= 1.6 m
frequency of note = velocity of sound / wavelength
= 330 / 1.6
= 206.25 Hz .
206 Hz approx.
1. Three centimeters of water evaporated from a 200-hectare vertical walled reservoir during 24 hours. Storm water was added to the reservoir at a constant rate of 3 m3/s during this period. Determine the volume in ha-cm of water released during the period (through the bottom of the reservoir) if the water level was the same at the beginning and the end of the day.
Answer:
25920 ha-cm
Explanation:
Since water evaporates from the reservoir at a rate of 3 cm in 24 hours, its height changes at a rate of 3 cm/24 × 3600 s = 3 cm/86400s = 3.472 10⁻⁵ cm/s.
Now, the volume loss is dV/dt = dV/dh × -dh/dt
= dV/dt × -3.472 × 10⁻⁵ cm/s
= -3.472 × 10⁻⁵ cm/sdV/dh
The reservoir increases in volume at a rate of 3 m³/s = 3 × 10⁶ cm³/s in 24 hours.
So, the net rate of volume change per unit time of the reservoir is
3 × 10⁶ cm³/s - 3.472 × 10⁻⁵ cm/sdV/dh = Adh/dt where A = area of vertical walled reservoir and dh/dt = change in height of the reservoir with respect to time
So, 3 × 10⁶ cm³/s - 3.472 × 10⁻⁵ cm/sdV/dh = Adh/dt
Since dh/dt = 0 in 24 hours(since the water level remains the same after 24 hours, that is dh = 0)
3 × 10⁶ cm³/s - 3.472 × 10⁻⁵ cm/sdV/dh = Adh/dt
3 × 10⁶ cm³/s - 3.472 × 10⁻⁵ cm/sdV/dh = A × 0
3 × 10⁶ cm³/s - 3.472 × 10⁻⁵ cm/sdV/dh = 0
3.472 × 10⁻⁵ cm/sdV/dh = 3 × 10⁶ cm³/s
dV/dh = 3 × 10⁶ cm³/s ÷ 3.472 × 10⁻⁵ cm/s
dV/dh = 8.64 × 10¹¹ cm²
dV = (8.64 × 10¹¹ cm²)dh
Integrating both sides with V from 0 to V and h from h = 0 to h = 3 cm, we have
∫dV = ∫(8.64 × 10¹¹ cm²)dh
∫dV = (8.64 × 10¹¹ cm²)∫dh
V = (8.64 × 10¹¹ cm²)[h]₀³
V = (8.64 × 10¹¹ cm²)[3 cm - 0 cm]
V = (8.64 × 10¹¹ cm²)(3 cm)
V = 25.92 × 10¹¹ cm³
V = 2.592 × 10¹² cm³
V = 2.592 × 10¹² cm² × 1 cm
Since 1 ha = 10⁸ cm²,
V = 2.592 × 10¹² cm² × 1 ha/10⁸ cm² × 1 cm
V = 2.592 × 10⁴ ha-cm
V = 25920 ha-cm
A woman accidentally drops a flowerpot from a windowsill at a height d above the street towards a man of height h standing below. The woman calls out to the man in just enough time for the man to move out of the way. If the man needs a time interval of Δt to respond to the warning, at what height above the street will the flowerpot be when the woman calls out the warning? (Use the following as necessary: d, h, Δt, v for the speed of sound, and g for gravitational acceleration.)
Answer:
h^2 - ( 2t_o v_s + 2v_s^2 /g) h + v_s^2 \ t_o^2 =0
The correct result is that of a positive height
Explanation:
For this exercise we use the kinematic relations, let's start by finding the time it takes for the sound to reach the man
v_s = y / t
t = [tex]\frac{y}{ v_s}[/tex]
this height is y = h
t = \frac{h}{ v_s}
the man has a response time of t = t₀, therefore
time to move is
t' = t - t₀
the initial height of flower pot is
y = y₀ + v₀ t' - ½ g t'²
when it reaches the floor the height is zero y = 0 and as the pot is dropped its initial velocity is zero v₀ = 0
0 = y₀ +0 - ½ g (t -t₀)²
if the initial height is i = h,
h = ½ g ([tex]\frac{h}{v_s}[/tex] - t₀)²2
[tex]\frac{2}{g} h[/tex] = [tex]\frac{h^2}{v_s^2}[/tex] - [tex]\frac{2t_o }{v_s} h[/tex] + t₀²
[tex]\frac{h^2}{v_s^2} - ( \frac{2t_o}{v_s} + \frac{2}{g} ) h + t_o^2 = 0[/tex]h2 / vs2 - (2nd / vs + 2 / g) h + to2 - = 0
[tex]h^2 - ( 2t_o v_s + 2v_s^2 /g) h + v_s^2 \ t_o^2 =0[/tex]
To know the height, you must solve the second degree equation, it is much easier with numerical values.
The correct result is that of a positive height
The electric field 30cm from a van de Graaff generator is measured to be 28,300N/C. What is the charge of the van de Graaf?
Answer:
14
Explanation:
EWAN KO LANG DIN BASTA YAN ALAM KO
Tell types of mirros and
each
one
Answer: We can identify the different types of mirrors without touching them by looking at the image it produces. Look into each mirror, the nature of the image produced will tell you the type of mirror it is.
- A plane mirror will produce an image of the same size as your face.
- A concave mirror will produce a magnified image of your face.
- A convex mirror will produce a diminished image of your face.
MARK ME BRAINLIST
1. Clara stops for 10 minutes to catch up with a friend.
Answer:
Clara has speed of 80m/min
Explanation:
Clara was jogging at 600 m in 5 minutes. She stopped suddenly which reduced her velocity and then she waited for 10 minutes so that her friends comes near her. She stopped to catch her friend. During this 10 minutes the velocity of Clara is zero. She started to walk again at a slower speed of 80m/min.
A vertical wire carries a current straight up in a region of the magnetic field directed north. What is the direction of the magnetic force on the current due to the magnetic field
Answer:
The direction of the force on the vertical wire is towards the East or right.
Explanation:
Using Fleming's right hand rule, the current is the middle finger pointing straight up, the magnetic field is the fore-finger pointing Northwards and then the thumb is the direction of the force on the vertical wire.
Following these conventions, the thumb points towards the East. So, the direction of the force on the vertical wire is towards the East or right.
A toy car can go 5 mph. How long would it take to go 12 miles?
4. Kenny Kinematic notes that he is at mile marker 334 on the highway. He travels south to mile marker 181. What is his displacement?
Answer:
153miles
Explanation:
Distance on the highway = +334miles
Distance through south = -181miles (towards the negative direction)
Displacement will be the sum of the distances
Displacement = +334-181
Displacement = 153miles
Hence the displacement is 153miles
If 0.5 C charge passes through a wire in 10 seconds, what will be the value of the current flowing through the wire? *
20 mA
30 mA
50 mA
60 mA
Answer:
electric current passing through it will be 50mA
Explanation:
electric current = charge / time
I = Q / TI = 0.5 / 10 I = 0.05 amperecurrent = 0.05 A = 50mA
If 0.5C charge passes through a wire in 10 seconds, then 50mA current is flowing through the wire. Thus, the correct option is C.
What is Electric current?
Electric current is the flow of electricity in an electronic circuit. It is the amount of electricity flowing through a electronic circuit. It is generally measured in amperes (A). The larger the value in amperes, the more electricity is flowing in that circuit.
The formula for calculation of Electric current is:
I = Q/T
where, I = electric current,
Q = amount of charge,
T = time required
Therefore, the current flowing in the wire is:
I = 0.5C/ 10 seconds
I = 0.05 A or 50mA (1mA = 10⁻³A)
Therefore, the correct option is C.
Learn more about Electric current here:
https://brainly.com/question/2264542
#SPJ6
For PN junctions, determine if each statement below is True or False:
a. There can be large net current from p-side to n-side under forward bias.
b. There can be large net current from n-side to p-side under reverse bias if reverse bias is sufficiently high.
c. Electron diffusion current flows from n-side to p-side.
d. Electric field magnitude is higher under reverse bias
e. Electrons in the transition region drift from p-side to n-side.
Answer:
a) True
b) True
c) false
d) True
e) True
Explanation:
a) True
In forward bias, the resistance of the p–n junction reduces and hence the electric charges can flow easily.
b) True
In reverse bias condition, the electric current is due to the minority charge carriers (negative).
c) False
direction of diffusion current is in the direction of movement of positive charge i,e towards n side
d) True
Because the breakdown of charge carriers occur due to which the current increases rapidly
e) True
Find the GCF of each set of numbers.
12, 21, 30
Math
Answer:
3 is the GCF for all these numbers if thats what you're asking
What is the weight of a 44.5 kg object?
Answer:
98.11 I think
Explanation:
I really hope this helps have a wonderful day
How much force is needed to accelerate a Kia Soul with a
mass of 1200 kg to 5 m/s2?
Answer:
[tex]\boxed {\boxed {\sf 6,000 \ Newtons}}[/tex]
Explanation:
Force is the product of mass and acceleration.
[tex]F=ma[/tex]
The mass of the Kia Soul is 1200 kilograms and its acceleration is 5 meters per square second.
[tex]m= 1200 \ kg \\a= 5 \ m/s^2[/tex]
Substitute the values into the formula.
[tex]F= 1200 \ kg * 5 \ m/s^2[/tex]
Multiply.
[tex]F= 6000 \ kg*m/s^2[/tex]
1 kilgram meter per square second is equal to 1 Newton. Our answer of 6000 kg*m/s² equals 6000 N[tex]F= 6000 \ N[/tex]
Answer:
Given :-Mass = 1200 kgAcceleration = 5 m/s²To Find :-Force
Solution :-We know that
F = ma
F = Force
m = mass
a = acceleration
F = 1200 × 5
F = 6000 N
[tex] \\ [/tex]
he nucleus of 8Be, which consists of 4 protons and 4 neutrons, is very unstable and spontaneously breaks into two alpha particles (helium nuclei, each consisting of 2 protons and 2 neutrons). (a) What is the force between the two alpha particles when they are 6.60 ✕ 10−15 m apart? N (b) What is the initial magnitude of the acceleration of the alpha particles due to this force? Note that the mass of an alpha particle is 4.0026 u. m/s2
Answer:
A) F = 21.134 N
B) a = 3180.76 × 10^(24) m/s²
Explanation:
A) We are given;
Mass of alpha particle; m = 4.0026 u
Now, 1u = 1.66 × 10^(-27) kg
Thus; m = 4.0026 × 1.66 × 10^(-27)
Distance apart; r = 6.60 × 10^(−15) m
Charge on the alpha particle is;
q = 2e = 2 × 1.6 × 10^(-19) C
Formula for the force between the two alpha particles is;
F = kq1.q2/r²
k = 8.99 × 10^(9) N.m²/C²
q1 = q2 = 2 × 1.6 × 10^(-19) C
F = 8.99 × 10^(9) × (2 × 1.6 × 10^(-19))²/(6.60 × 10^(−15))²
F = 21.134 N
B) acceleration is given by;
a = F/m
Thus; a = 21.134/(4.0026 × 1.66 × 10^(-27))
a = 3180.76 × 10^(24) m/s²
Assuming 84.0% efficiency for the conversion of electrical power by the motor, what current must the 13.0-V batteries of a 716 kg electric car be able to supply to climb a 3.00 x 102 m high hill in 2.00 min at a constant 22.0 m/s speed while exerting 7.00 x 102 N of force to overcome air resistance and friction
Answer:
[tex]\mathbf{ current(I) =1766.67 \ A}[/tex]
Explanation:
Given that:
The air resistance and friction = 700 N
The gravity caused force = 716 × 9.8 = 7016.8
Total force = (7016.8 + 700) N
Total force = 7716.8 N
∴
[tex]13 \times current(I) \times 0.84 = \dfrac{7716.8 \times 300}{2 \times 60}[/tex]
[tex]current(I) \times 10.92= 19292[/tex]
[tex]current(I) = \dfrac{19292}{10.92}[/tex]
[tex]\mathbf{ current(I) =1766.67 \ A}[/tex]
Q5. Use Superposition to V. in the circuit below? (5 points)
4 mA
12V
2 ΚΩ
2 mA
1 ΚΩ
2 ΚΩ
Answer:
4va
12va
2jk
1jk
2jk
Which image represents a transverse mechanical wave?
Answer:
A
Explanation:
It is kinda like a spring.
The image which represents a transverse mechanical wave is A.
What is a mechanical wave?The wave has motion if all points on a wave vibrate at right angles to the direction of the wave propagation.
A transverse wave is a mechanical wave which is much like sinusoidal wave which has particles vibrating about their equilibrium position perpendicular to the direction of the motion of the wave.
Hence, the image which represents a transverse mechanical wave is A.
Learn more about mechanical wave.
https://brainly.com/question/3101711
#SPJ2