El ancho de un rectángulo es 4 metros menos que su largo y el área es de 140 metros cuadrados. Halla el largo del rectángulo

Answers

Answer 1

If width of a rectangle is 4 meters less than its length which have an area of 140 square meters, then the length of rectangle is 14 meter.

The "Area" is defined as a mathematical measure of the amount of space enclosed by a two-dimensional shape, such as a rectangle, triangle, circle, or any other polygon.

Let the length of rectangle be "L" meters and

Let width be "W" meters.

We know that, width is 4 meter shorter than length,

So, Width = Length - 4 meters

Area = 140 square meters

The formula to find area of rectangle is : Area = (Length)×(Width),

Substituting the length and breadth,

We get,

⇒ 140 = L×(L - 4),

⇒ 140 = L² - 4L,

⇒ L² - 4L - 140 = 0,

⇒ (L + 10)(L - 14) = 0,

⇒ L + 10 = 0 or L - 14 = 0,

⇒ L = -10 or L = 14,

Since length cannot be negative, we discard the solution L = -10.

Therefore, the length is 14 meters.

Learn more about Area here

https://brainly.com/question/30495520

#SPJ4


Related Questions

In a group of 33 students, 15 students are enrolled in a mathematics course, 10 are enrolled in a physics course, and 5 are enrolled in both a mathematics course and a physics course. How many students in the group are not enrolled in either a mathematics course or a physics course?

Answers

There are 13 students in the group who are not enrolled in either a

mathematics course or a physics course.

We can solve this problem using the principle of inclusion-exclusion,

which states that the size of the union of two sets is given by:

|A ∪ B| = |A| + |B| - |A ∩ B|

where |A| represents the size (number of elements) of set A, and |A ∩ B|

represents the size of the intersection of sets A and B.

In this case, we want to find the number of students who are not enrolled

either a mathematics course or a physics course.

Let M be the set of students enrolled in a mathematics course, and let P

the set of students enrolled in a physics course. Then the number of

students who are not enrolled in either course is:

|not enrolled| = |total| - |M ∪ P|

We are given that |M| = 15, |P| = 10, and |M ∩ P| = 5. To find |M ∪ P|, we

use the inclusion-exclusion principle:

|M ∪ P| = |M| + |P| - |M ∩ P|

= 15 + 10 - 5

= 20

So the number of students who are not enrolled in either course is:

|not enrolled| = |total| - |M ∪ P|

= 33 - 20

= 13

for such more question on word problem

https://brainly.com/question/13818690

#SPJ11

Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.
An employee at an organic food store is assembling gift baskets for a display. Using wicker baskets, the employee assembled 3 small baskets and 5 large baskets, using a total of 109 pieces of fruit. Using wire baskets, the employee assembled 9 small baskets and 5 large baskets, using a total of 157 pieces of fruit. Assuming that each small basket includes the same amount of fruit, as does every large basket, how many pieces are in each?
The small baskets each include
x
pieces and the large ones each include
x
pieces.

Answers

Let x be the number of pieces of fruit in each small basket and y be the number of pieces of fruit in each large basket. Then, we can write the following system of equations to represent the given information:

3x + 5y = 109 (using wicker baskets)
9x + 5y = 157 (using wire baskets)

To solve this system, we can use the substitution method. Solving the first equation for y, we get:

y = (109 - 3x)/5

Substituting this expression for y into the second equation, we get:

9x + 5((109-3x)/5) = 157

Simplifying and solving for x, we get:

9x + 109 - 3x = 157
6x + 109 = 157
6x = 48
x = 8

Therefore, each small basket includes 8 pieces of fruit, and each large basket includes:

y = (109 - 3x)/5 = (109 - 3(8))/5 = 17

So, the small baskets each include 8 pieces and the large ones each include 17 pieces.

Considering the results from part A it follows that the volume of a cylinder can be found int the same way as the volume of a rectangle prism use your results and what you know about volume to explain how to find the volume of a cylinder with a bias radius of e units and a height of h units

Answers

The following mathematical operation must be carried out in order to determine a cylinder's volume: V = h r².

How can I calculate a cylinder's volume?

We must work out the following mathematical equation in order to determine a cylinder's volume:

V = Πhr² (h = height of cylinder, r= radius)

Let's use an instance.

The size of our example cylinder is 6 centimetres in diameter and 10 centimetres height. What is the size of it?

We substitute the values as follows to determine the volume:

Volume = 3.1415 x 10 cm x 3 cm²

= 307.35 cm³

Therefore, The following mathematical operation must be carried out in order to determine a cylinder's volume: V = h r².

To know more about volume check the below link:

https://brainly.com/question/9554871

#SPJ1

Thirty randomly selected students took the calculus final.
If the sample mean was 91 and the standard deviation was 11.7, construct a 99% confidence interval for the mean score of all students.
(85.74, 96.26)
(85.13, 96.87)
(87.37, 96.87)
(85.11, 96.89)
(87.37, 94.63)

Answers

The 99% confidence interval for the mean score of all students is constructed as (85.497, 96.5026).

Given,

Sample size, n = 30

Sample mean, x = 91

Standard deviation, s = 11.7

The 99% confidence interval for the mean score of all students can be calculated as,

x ± z [tex]\frac{s}{\sqrt{n} }[/tex]

z value for 99% confidence interval = 2.576

Confidence interval = (91 ± (2.576 × 11.7/√30)

                                 = (91 ± 5.5026)

                                 = (85.497, 96.5026)

                                 

Hence the confidence interval is (85.497, 96.5026).

Learn more about Confidence Interval here :

https://brainly.com/question/2598134

#SPJ4

Let Q(u, v) = (u + 30, 2u + Tu). Use the Jacobian to determine the area of O(R) for: = (a)R = = [0, 9] x [0,7] (b)R = [1, 13] x [6, 18] = (a)Area (O(R)) = = (b)Area (Q(R)) = =

Answers

a)  the determinant of J is 1xT - 0x2 = 0, which means that the area of O(R) is 0.
b)  the determinant of J is 1x1 - 0x2 = 1, which means that the area of Q(R) is the same as the area of R, which is (13-1) x (18-6) = 144.

To find the area of O(R) using the Jacobian, we need to calculate the determinant of the Jacobian matrix of Q(u,v):

J = [∂(u+30)/∂u   ∂(u+30)/∂v  ]
    [∂(2u+Tv)/∂u  ∂(2u+Tv)/∂v]

= [1  0]
  [2  T]

(a) For R = [0,9] x [0,7], we have T = 0 since there is no v-dependence in the range of R. Therefore, the determinant of J is 1xT - 0x2 = 0, which means that the area of O(R) is 0.

(b) For R = [1,13] x [6,18], we have T = 1 since v ranges from 6 to 18. Therefore, the determinant of J is 1x1 - 0x2 = 1, which means that the area of Q(R) is the same as the area of R, which is (13-1) x (18-6) = 144.

learn more about the Jacobian

https://brainly.com/question/29855578

#SPJ11

Find the derivative of the function g(x) = (5x2 + 4x - 4)e" g'(x) =

Answers

The derivative of the function g(x) = (5x2 + 4x - 4)e is g'(x) = (10x + 4)e + (5x2 + 4x - 4)(e).

To find the derivative of the function g(x) = (5x2 + 4x - 4)e, we can use the product rule of differentiation. The product rule states that if we have two functions u(x) and v(x), then the derivative of their product is given by:

(uv)' = u'v + uv'

In this case, we can take u(x) = 5x2 + 4x - 4 and v(x) = e. Then, using the power rule and the fact that the derivative of e to any power is e to the same power, we get:

u'(x) = 10x + 4

v'(x) = e

Putting it all together, we get:

g'(x) = (5x2 + 4x - 4)'e + (5x2 + 4x - 4)(e)'

g'(x) = (10x + 4)e + (5x2 + 4x - 4)(e)

Know more about derivative here:

https://brainly.com/question/30365299

#SPJ11

determine f(1, -2) yes f(x,y)=x^2x^3+e^xyDetermine f(1,-2) si f (x, y) = x° 73 + exy

Answers

[tex]f(1,-2) = 1 + e^-2.[/tex]

To determine f(1,-2), we simply need to substitute 1 for x and -2 for y in the given function [tex]f(x,y) = x^2x^3+e^xy.[/tex]

[tex]f(1,-2) = 1^2 * 1^3 + e^(1*-2)[/tex]

[tex]= 1 + e^-2[/tex]

Therefore, [tex]f(1,-2) = 1 + e^-2.[/tex]

To know more about  function, refer here:

https://brainly.com/question/12431044

#SPJ11

What is the range and mode of the data set?10, 8, 5, 3, 7, 4, 5, 9, 2, 3, 7, 3, 8, 6, 4, 1, 2, 1, 10, 3 A. Range: 10; Mode: None B. Range: 9; Mode: 3 C. Range: 10; Mode: 3 and 4 D. Range: 9; Mode: 3 and 4

Answers

Range and Mode of the given data set: 10, 8, 5, 3, 7, 4, 5, 9, 2, 3, 7, 3, 8, 6, 4, 1, 2, 1, 10, 3 are 9 and 4 respectively. Thus, option B is the correct answer.

Range refers to the difference between the highest and lowest values in a given set of numbers. Therefore, to calculate the range of the given data we need to subtract the lowest value from the highest value.

The lowest value in the data = 1

The highest value in the data = 10

Range = highest value - lowest value

= 10 - 1 = 9

Therefore, the range of the given data is 9.

Mode refers to the data that is repeated most frequently in the given data. Therefore, to find the mode, we have to check the data with the highest frequency.

To find the mode easily, we arrange the data in ascending order and we get 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 10

The number with the highest frequency (mode) = 3

3 is repeated 4 times in the data.

Therefore, the mode of the given data comes out to be 3.

Learn more about Mode:

https://brainly.com/question/27358262

#SPJ4

how many subsets of {1, 2, 3, 4, 5, 6, 7, 8} of size two (two elements) contain at least one of the elements of {1, 2, 3}?

Answers

There are 42 subsets of size two that contain at least one of the elements of {1, 2, 3}.

There are [tex]${8\choose2}=28$[/tex] subsets of size two that can be formed from the set {1, 2, 3, 4, 5, 6, 7, 8}.

To count the number of subsets of size two that contain at least one of the elements of {1, 2, 3}, we can use the principle of inclusion-exclusion.

Let A be the set of subsets of size two that contain 1, B be the set of subsets of size two that contain 2, and C be the set of subsets of size two that contain 3. We want to count the size of the union of these three sets, i.e., the number of subsets of size two that contain at least one of the elements of {1, 2, 3}.

By the principle of inclusion-exclusion, we have:

|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|

To calculate the sizes of these sets, we can use combinations. For example, |A| is the number of subsets of size two that can be formed from {1, 2, 3, 4, 5, 6, 7, 8} with 1 as one of the elements. This is equal to [tex]${3\choose1}{5\choose1}=15$[/tex], since we must choose one of the three elements in {1, 2, 3} and one of the five remaining elements.

Similarly, we have:

|A| = [tex]${3\choose1}{5\choose1}=15$[/tex]

|B| = [tex]${3\choose1}{5\choose1}=15$[/tex]

|C| = [tex]${3\choose1}{5\choose1}=15$[/tex]

|A ∩ B| = [tex]${2\choose1}{5\choose0}=2$[/tex], since there are two elements in {1, 2} that must be included in the subset, and we can choose the other element from the remaining five.

|A ∩ C| = [tex]${2\choose1}{5\choose0}=2$[/tex]

|B ∩ C| = [tex]${2\choose1}{5\choose0}=2$[/tex]

|A ∩ B ∩ C| = [tex]${3\choose2}=3$[/tex], since there are three elements in {1, 2, 3} and we must choose two of them.

Substituting these values into the inclusion-exclusion formula, we get:

|A ∪ B ∪ C|[tex]= 15 + 15 + 15 - 2 - 2 - 2 + 3 = 42[/tex]

Therefore, there are 42 subsets of size two that contain at least one of the elements of {1, 2, 3}.

To learn more about subsets visit: https://brainly.com/question/24138395

#SPJ11

The base is a right triangle with a leg of 8 in. and hypotenuse of 10 in. The height of the prism is 15 in.
Find the Volume of each triangular prism to the nearest tenth

Answers

The volume of the triangular prism is 360 cubic inches

What is volume of triangular prism?

Volume = Area × Height

Here given, the base is a right triangle with a leg of 8 in. and hypotenuse of 10 in. the height of the prism is 15 in.

We want to find volume of the triangular prism.

We can find the length of the other leg of the triangle,

Height ² + Base² = Hypotenuse ²

[tex]a^2 + b^2 = c^2 \\ 8^2 + b^2 = 10^2 \\ 64 + b^2 = 100 \\ b^2 = 36 \\ b = 6[/tex]

So the base triangle is 6 in.

Area of a triangle = 1/2 × base × height

A = 1/2 × 8 in. × 6 in.

A = 24 in²

Now volume of the prism,

V = A × height

V = 24 in² × 15 in

V = 360 in³

Therefore, the volume of the triangular prism is 360 cubic inches (to the nearest tenth).

Learn more about triangular prism here,

https://brainly.com/question/31342575

#SPJ1

1. The probability of two independent events both occurring is P(A) + P(B).
True or False?

Answers

False. The probability of independent events each occurring is P(A) x P(B), not P(A) + P(B).

The possibility of event A and event B occurring collectively may be calculated using the multiplication rule of chance, which states that the probability of two independent events taking place collectively is same to the made of their person chances.

Consequently, the chance of A and B each taking place together may be calculated as P(A) x P(B), assuming that a and B are independent activities.

it's far critical to notice that the addition rule of possibility can best be carried out when events A and B are jointly unique, which means they can not arise together. in that case, the chance of both event A or event B taking place may be calculated by using including their character possibilities.

Learn more about probability:-

https://brainly.com/question/13604758

#SPJ4

Calculate the following indefinite integrals:a. intergral (16x^3 + 9x^2 + 9x2 - 6x + 3)dxb. integral (Vy + 1/(y^2) + e^(3y)) dy

Answers

The value of the given indefinite integrals are 4x⁴ + 3x³ + 3x² - 3x² + 3x + C and  [tex](V/2)y^{2} - 1/y + (1/3)e^{(3y) }+ C.[/tex]

Let us implement the principles to evaluate the indefinite integral, so that their values can be derived
a. integral (16x³ + 9x² + 9x² - 6x + 3)dx
= 4x⁴ + 3x³ + 3x² - 3x²+ 3x + C
here C is the constant of integration
Now let us proceed to tye next part of the question
b. integral [tex](Vy + 1/(y^{2}) + e^{(3y)}) dy[/tex]
[tex]= (V/2)y^{2} - 1/y + (1/3)e^{(3y)} + C[/tex]
here C is the constant of integration
Indefinite integral refers to a form of function which doesn't have limits to describe the family of function it belongs to.


To learn more about indefinite integral
https://brainly.com/question/27419605
#SPJ4

MY NOTES ASK YOUR TEACHER 12 DETAILS LARCALC11 13.087 Acompanyatures two types of bicycles a racing byde ind a mountain bide. The total revenue in thousands of dollar) from x1 units from raicing bicycles and x2 units of resets of mountain bicycles is. R= -6x1^2-10x2^2-2x1x2+46x1+106x2. where, x1 and x2 are in thousands of units. Find x1 nad x2 so are to maximum the revenue. x1=____. x2=____.

Answers

The values of x1 and x2 that maximize the revenue are x1 = 20 thousand units of racing bicycles and x2 = 7.5 thousand units of mountain bicycles.

To maximize the revenue, we need to find the values of x1 and x2 that maximize the function R(x1, x2) = -6x1² - 10x2² - 2x1x2 + 46x1 + 106x2.

To do this, we can take partial derivatives of R with respect to x1 and x2, set them equal to zero, and solve for x1 and x2. That is:

∂R/∂x1 = -12x1 - 2x2 + 46 = 0

∂R/∂x2 = -20x2 - 2x1 + 106 = 0

Solving these two equations simultaneously, we get:

x1 = (5/3) x2 + (23/3)

x2 = (1/5) x1 + (53/10)

Substituting the second equation into the first equation, we get:

x1 = (5/3) [(1/5) x1 + (53/10)] + (23/3)

x1 = (1/3) x1 + (89/6)

Solving for x1, we get:

x1 = 20

Substituting x1 = 20 into the second equation, we get:

x2 = (1/5) (20) + (53/10) = 7.5

Learn more about derivatives here:

https://brainly.com/question/21491488

#SPJ11

WILL MARK BRAINLIEST + 50 POINTS!!!! Your ice-cream cart can hold 550 frozen treats. Your friend Anna also has an ice-cream cart and sold frozen treats last summer. She has agreed to help you decide which frozen treats to sell.
Table 1 displays the cost to you, the selling price, and the profit of some frozen treats.

Choco bar cost you $0.75 ea, selling price $2.00, profit for each sale $1.25

Ice cream sandwich cost you $0.85 each, selling price $2.25, profit $1.40

Frozen fruit bar cost you $0.50 each, selling price $1.80, profit $1.30

Your goal is to make profit of at least $700.

Enter an inequality to represent the number of chocolate fudge bars, c the number of ice-cream sandwiches, I, and the number of frozen fruit bars, F, that will make a profit of at least $700

Answers

Answer:

Step-by-step explanation:

Choco bar cost you $0.75 ea, selling price $2.00, profit for each sale $1.25

Ice cream sandwich cost you $0.85 each, selling price $2.25, profit $1.40

Frozen fruit bar cost you $0.50 each, selling price $1.80, profit $1.30

Step-by-step explanation:

Let's denote the number of Choco bars as "c", the number of ice-cream sandwiches as "I", and the number of frozen fruit bars as "F".

To find the inequality to represent the number of each item to make a profit of at least $700, we need to use the information given in the problem.

The profit from selling one Choco bar is $1.25, the profit from selling one ice cream sandwich is $1.40, and the profit from selling one frozen fruit bar is $1.30.

The total profit can be calculated by multiplying the profit per item with the number of items sold and adding the profits from each item. Therefore, we can write:

Total Profit ≥ $700

1.25c + 1.40I + 1.30F ≥ 700

This is the inequality that represents the number of chocolate fudge bars, ice-cream sandwiches, and frozen fruit bars that will make a profit of at least $700.

a rectangular swimming pool that is 20 feet by 30 feet is surrounded on 3 sides by a sidewalk as shown in the diagram. if the total area of the pool and sidewalk is 825 square feet, what is the width x of the sidewalk? (enter your answer to two decimal places without the units).

Answers

The width of the sidewalk is approximately 3.21 feet (rounded to two decimal places).

Let's use the given information to solve for the width (x) of the sidewalk. The area of the rectangular swimming pool is 20 feet by 30 feet, which equals 600 square feet (20*30 = 600).

The total area of the pool and sidewalk is given as 825 square feet. To find the area of just the sidewalk, we subtract the area of the pool from the total area: 825 - 600 = 225 square feet.

Now, let's express the area of the sidewalk using the dimensions of the pool and the width of the sidewalk (x). Since the sidewalk is on 3 sides, we can represent the area as follows:

2(20x) + 30x = 225

Simplify the equation:

40x + 30x = 225

Combine the terms:

70x = 225

Now, solve for x:

x = 225 / 70

x ≈ 3.21

The width of the sidewalk is approximately 3.21 feet (rounded to two decimal places).

To learn more about width here;

brainly.com/question/12298654#

#SPJ11

What is the value of this expression when c = -4 and d = 10?


1/4 (c³+a²)

Answers

Answer: 9+a^2 if d=10 OR 99 if d does not equal 10

A disco thrower had the following results (in meters) at various competitions a season60.93, 61.31, 60.05, 61.36, 62.99, 59.46, 60.17, 62.88, 61.13We assume that these measurements are realized values ​​of independent and normally distributed stochastic variablesX1,. . . , X9, with expectation μ and variance σ2. It is stated that99 9Στ: - - 550.28, Σα? = 33656.86.i=1i=1a) What are the estimated expectations and standard deviations based on the given observations?

Answers

The estimated expectation of the given observations is 61.00 meters, and the estimated standard deviation is 1.27 meters.

These estimates are obtained using the sample mean and sample standard deviation formulae, which are unbiased estimators of the population mean and population standard deviation, respectively.

To estimate the population mean, we calculate the sample mean as the sum of the observations divided by the sample size, which is 61.00 meters. To estimate the population standard deviation, we calculate the sample standard deviation as the square root of the sum of the squared deviations of each observation from the sample mean divided by the sample size minus one, which is 1.27 meters.

The given information, Στ = -550.28 and Σα? = 33656.86, can be used to check the accuracy of the estimates.

The sum of the squared deviations of each observation from the sample mean multiplied by the sample size minus one is equal to the sum of squares of deviations from the population mean multiplied by the sample size minus one, which is denoted as Σ(Xi - μ)2 = (n-1)σ2. Using these formulae, we can calculate the sample mean and sample standard deviation and verify the given information.

Learn more about Standard Deviation:

brainly.com/question/13498201

#SPJ11

Draw the image of the following figure after a dilation centered at the origin with a scale factor of 2

Answers

A graph of the image of the figure after a dilation by a scale factor of 2 centered at the origin is shown below.

What is a dilation?

In Mathematics and Geometry, a dilation simply refers to a type of transformation which typically changes the size of a geometric object, but not its shape.

Next, we would apply a dilation to the coordinates of the pre-image by using a scale factor of 2 centered at the origin as follows:

Ordered pair (6, 9) → Ordered pair (6 × 2, 9 × 2) = (12, 18).

Ordered pair (6, 6) → Ordered pair (6 × 2, 6 × 2) = (12, 12).

Ordered pair (9, 9) → Ordered pair (9 × 2, 9 × 2) = (18, 18).

Read more on dilation and scale factor here: brainly.com/question/4421026

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

(5 points) Find the slope of the tangent to the curve r = -6 - 2 cos 0 at the value 0 = x/2

Answers

To find the slope of the tangent to the curve r = -6 - 2 cos θ at the value θ = x/2, we first need to find the rectangular coordinates (x, y) using the polar coordinates (r, θ). The rectangular coordinates can be found using the following equations:
x = r * cos(θ)
y = r * sin(θ)

Next, we need to differentiate both x and y with respect to θ:
dx/dθ = dr/dθ * cos(θ) - r * sin(θ)
dy/dθ = dr/dθ * sin(θ) + r * cos(θ)
Now, we find the derivative of r with respect to θ:
r = -6 - 2 cos(θ)
dr/dθ = 2 sin(θ)
Then, we plug in θ = x/2 and evaluate x and y:
x = r * cos(x/2)
y = r * sin(x/2)
Now, we evaluate dx/dθ and dy/dθ at θ = x/2:
dx/dθ = 2 sin(x/2) * cos(x/2) - r * sin(x/2)
dy/dθ = 2 sin(x/2) * sin(x/2) + r * cos(x/2)
Finally, the slope of the tangent (m) is given by:
m = dy/dθ / dx/dθ
Plug in the values of dy/dθ and dx/dθ that we've calculated and simplify to find the slope of the tangent at the given point.

Learn more about tangent here:

https://brainly.com/question/19424752

#SPJ11

Find the antiderivative: f(x) = ³√x² + x√x

Answers

The antiderivative of f(x) = ³√x² + x√x is [tex]1/3 x^3/2 (2x^1/3 + 3x^1/2)[/tex] + C.

The antiderivative of a capability is the converse of the subsidiary. As such, assuming that we have a capability f(x) and we take its subordinate, we get another capability that lets us know how the first capability is changing regarding x. The antiderivative of f(x) is a capability that lets us know how the first capability changes as for x the other way. It is additionally called the endless vital of f(x).

Presently, we should view as the antiderivative of the given capability f(x) = ³√x² + x√x. We can separate it into two sections:

f(x) = ³√x² + x√x

=[tex]x^(2/3) + x^(3/2)[/tex]

To see as the antiderivative of [tex]x^(2/3)[/tex], we want to add 1 to the example and separation by the new type:

∫[tex]x^(2/3)[/tex] dx = (3/5)[tex]x^(5/3)[/tex] + C

where C is the steady of incorporation. Also, to view as the antiderivative of[tex]x^(3/2)[/tex], we add 1 to the example and separation by the new type:

∫[tex]x^(3/2)[/tex] dx = (2/5)[tex]x^(5/2)[/tex] + C

where C is the steady of incorporation.

Accordingly, the antiderivative of f(x) = ³√x² + x√x is:

∫f(x) dx = ∫[tex]x^(2/3)[/tex] dx + ∫[tex]x^(3/2)[/tex] dx

= (3/5)[tex]x^(5/3)[/tex] + (2/5)[tex]x^(5/2)[/tex] + C

where C is the steady of incorporation.

To learn more about antiderivative, refer:

https://brainly.com/question/14011803

#SPJ4

A random sample of size n = 16 is taken from a normal population with mean 40 and variance 5. The distribution of the sample mean is

Answers

The distribution of the sample mean is approximately normal with a mean of 40 and a standard deviation of 0.559.

We are required to determine the distribution of the sample mean when a random sample of size n = 16 is taken from a normal population with mean 40 and variance 5.

The distribution of the sample mean can be found using the Central Limit Theorem, which states that when a sufficiently large sample is taken from a population with any shape, the sample mean will be approximately normally distributed. In this case, we have a normal population with mean (μ) 40 and variance (σ²) 5.

To calculate the distribution of the sample mean, follow these steps:

1: Calculate the standard deviation (σ) from the variance:

σ = √(σ²) = √5 ≈ 2.236

2: Calculate the standard error (SE) using the sample size (n) and the population standard deviation (σ):

SE = σ/√n = 2.236/√16 = 2.236/4 = 0.559

3: Determine the distribution of the sample mean:

The sample mean will follow a normal distribution with the same mean (μ) as the population mean and a standard deviation equal to the standard error (SE).

So, the distribution of the sample mean contains a mean of 40 and a standard deviation of 0.559.

Learn more about Central Limit Theorem:

https://brainly.com/question/18403552

#SPJ11

Abox isas two bats, one white and one red We select one bon, put it back in the box, and select a second ball (samping with replacement Lot T be the event of getting the white ball twice, F the event of picking the white ball first Sthe event of picking the white ball in the second drawing ComputiTI Enter the badanie PT) - 2 conut P Enter the POTIFY Tanah ID

Answers

Picking the white ball twice (T) is 1/4

Explanation: In this problem, we have a box with two balls - one white and one red. We will draw a ball from the box, put it back, and then draw a second ball (sampling with replacement). Let T be the event of getting the white ball twice, F the event of picking the white ball first, and S the event of picking the white ball in the second drawing.
To compute P(T), we need to find the probability of picking the white ball in both drawings:
P(T) = P(F) * P(S|F)
Since there is one white ball and one red ball in the box, the probability of picking the white ball first (F) is 1/2. Since we're sampling with replacement, the probability of picking the white ball in the second drawing (S) given that the white ball was picked first (F) is also 1/2.
So, the probability of picking the white ball twice (T) is:
P(T) = (1/2) * (1/2) = 1/4
Therefore, the probability of picking the white ball twice (T) is 1/4.

Learn more about it here:

https://brainly.com/question/31581746

#SPJ11

4. A deck of cards contains 26 red and 26 black cards. We shuffle the cards and flip them one by onc. Let Rn denote the number of red cards remaining in the deck after the first n cards have been revealed. (You may note that Ro = 26 and R52 = 0.) Let Mn,o 0? (d) Is there any strategy that gives you a better than 1/2 chance of winning the game?

Answers

The probability of drawing a red card is always exactly 1/2

We can approach this problem using conditional probability. Let A denote the event that the first card is red, and B denote the event that the second card is red. Then, using the law of total probability, we have:

P(B) = P(A)P(B|A) + P(A^c)P(B|A^c)

where P(A) = 1/2, P(A^c) = 1/2, P(B|A) = 25/51 (since there are 25 red cards left out of 51 total cards), and P(B|A^c) = 26/51 (since there are 26 red cards left out of 51 total cards).

Therefore, we have:

P(B) = (1/2)(25/51) + (1/2)(26/51) = 51/102 = 1/2

This means that the probability of drawing two red cards in a row is exactly 1/2, regardless of the order in which the cards are drawn.

Similarly, we can calculate the probability of drawing three red cards in a row as follows:

P(C) = P(A)P(B|A)P(C|AB) + P(A)P(B^c|A)P(C|A(B^c)) + P(A^c)P(B|A^c)P(C|A^cB) + P(A^c)P(B^c|A^c)P(C|A^cB^c)

where C denotes the event that the third card is red, and we have conditioned on the first two cards that were drawn. Using the same reasoning as before, we have:

P(C) = (1/2)(25/51)(24/50) + (1/2)(26/51)(25/50) + (1/2)(26/51)(25/50) + (1/2)(25/51)(24/50) = 1225/5100 = 49/204

Thus, the probability of drawing three red cards in a row is less than 1/2, and in general, the probability of drawing n red cards in a row is (1/2)^n. Therefore, there is no strategy that can give you a better than 1/2 chance of winning the game, as the outcome of each draw is independent and the probability of drawing a red card is always exactly 1/2

learn about probability here,

https://brainly.com/question/13604758

A right trapezoid has an area of 48 cm². One of the bases is 5 cm long and the other
base is 7 cm long. What is the height of the trapezoid?

Answers

On solving the query we can say that The trapezium is 16 cm tall as a of result.

what is function?

Mathematics is concerned with numbers and their variations, equations and related structures, shapes and their places, and possible placements for them. The relationship between a collection of inputs, each of which has an associated output, is referred to as a "function". An relationship between inputs and outputs, where each input yields a single, distinct output, is called a function. Each function has a domain and a codomain, often known as a scope. The letter f is frequently used to represent functions (x). X is the input. The four main types of functions that are offered are on functions, one-to-one functions, many-to-one functions, within functions, and on functions.

The formula for a trapezoid's area is:

Area is equal to (b1+b2)*h/2.

where h is the height of the trapezium, and b1 and b2 are the lengths of the two bases.

The trapezoid's size is 48 cm2, and its bases (b1) and (b2) are each assigned lengths of 5 cm and 7 cm, respectively. In order to solve for the height (h), we may enter these values into the formula as follows:

48 = (5 + 7) * h / 2

When we simplify the equation, we obtain:

48 = 6h / 2

48 = 3h

h = 48 / 3

h = 16

The trapezium is 16 cm tall as a result.

To know more about function visit:

https://brainly.com/question/28193995

#SPJ1

if i have one
mom then she dies how many moms do i have

Answers

Answer:

Step-by-step explanation:

1-1=0

Answer:You will have 0 moms.

Step-by-step explanation:

First you take 1 away from 1.

After that you get your answer of 0.

Suppose we are given the data in the table about the functions f and g and their derivatives. Find the following values.

x 1 2 3 4
f(x) 3 2 1 4
f'(x) 1 4 2 3
g(x) 2 1 4 3
g'(x) 4 2 3 1
a. h(4) if h(x) = f(g(x))

b. h(4) if h(x) = g(f(x))

c. h'(4) if h(x) = f(g(x))

d. h'(4) if h(x) = g(f(x))

Answers

Answer math suck a

Step-by-step explanation:

The tread life of a particular brand of tire is a random variable best described by a normal distribution with a mean of 60,500 miles and a standard deviation of 2800 miles. What is the probability a particular tire of this brand will last longer than 58,400 miles?

Answers

For a normal distribution of random variable of tread life of a particular brand, the probability a particular tire of this brand will last longer than 58,400 miles is equals to the 0.4533.

We have, tread life of a particular brand of tire is represents a random variable. It is normally distributed with mean, μ = 60,500 miles

Standard deviations, σ = 2800 miles

We have to determine probability a particular tire of this brand will last longer than 58,400 miles, P( X > 58,400). Using normal distribution the z-score formula is

[tex]z = \frac { X - \mu }{ \sigma}[/tex]

where, X --> observed value

μ --> mean

σ --> standard deviations

Here, X = 58400, substitute all known values in above formula, [tex]z = \frac { 58400- 60500}{ 2800}[/tex]

= - 0.75

Now, the required probability, P( X > 58,400 = [tex]P( \frac { X - \mu }{ \sigma} > \frac { 58400- 60500 }{ 2800})[/tex]

= P(z> -0.75)

Using the normal distribution table, the value P(z> -0.75) is equals to . So, P( X > 58400) = 0.4533. Hence, required probability value is 0.4533.

For more information about normal distribution, visit:

https://brainly.com/question/27275125

#SPJ4

Mutually exclusive means that the occurrence of event A has no effect on the probability of the occurrence of event B, and independent means the occurrence of event A prevents the occurrence of event B.(True/False)

Answers

False.

Mutually exclusive means that the occurrence of event A and the occurrence of event B cannot happen at the same time.

In this case, the occurrence of event A does affect the probability of the occurrence of event B because if event A occurs, then event B cannot occur.

Independent means that the occurrence of event A has no effect on the probability of the occurrence of event B. In this case, the occurrence of event A does not prevent the occurrence of event B.

To learn more about probability, refer below:

https://brainly.com/question/30034780

#SPJ11

The body mass index is calculated by dividing a person's weight by the square of his or her height; it is a measure of the extent to which the individual is overweight. A researcher would like to test the hypothesis that men who develop diabetes have a higher BMI than men of similar age who do not. A literature review indicates that in healthy men, BMI is normally distributed, with a mean of 25 and a standard deviation of 2.7. The researcher proposes to measure 25 normal and 25 diabetic men. It is felt that a difference in average BMI of 2.7 (that is, one standard deviation) would be clinically meaningful. What is the power of the proposed study?

Answers

To calculate the power of the proposed study, we need to first determine the effect size, which is the standardized difference between the mean BMI of normal and diabetic men.

The standardized difference can be calculated as:

d = (μ1 - μ2) / σ

where μ1 and μ2 are the population means of BMI for normal and diabetic men, respectively, and σ is the common population standard deviation of BMI.

From the information given in the problem, we have:

μ1 = 25

μ2 = 25 + 2.7 = 27.7

σ = 2.7

So, the effect size is:

d = (25 - 27.7) / 2.7 = -1

Next, we need to determine the significance level (α) and the sample size (n). The problem states that the sample size is 25 normal men and 25 diabetic men, so n = 50. The significance level is usually set at 0.05, which means that the probability of a Type I error (rejecting the null hypothesis when it is actually true) is 0.05.

Using a standard normal distribution table, we can find the z-score corresponding to the significance level α = 0.05:

zα = 1.645

The power of the test is the probability of correctly rejecting the null hypothesis (i.e., detecting a true difference between normal and diabetic men) when the alternative hypothesis is true. The power of a test depends on several factors, including the effect size, the significance level, the sample size, and the variability of the data.

The formula for calculating power is:

Power = P(Z > zα - d√n)

where Z is the standard normal distribution, and d and n are the effect size and sample size, respectively.

Substituting the values we have, we get:

Power = P(Z > 1.645 - (-1)√50) = P(Z > 0.843)

Using a standard normal distribution table, we can find that the probability of Z being greater than 0.843 is 0.199.

Therefore, the power of the proposed study is approximately 0.199, or 19.9%. This means that there is a 19.9% chance of correctly detecting a clinically meaningful difference in BMI between normal and diabetic men, assuming that such a difference actually exists.

Learn more about standard normal distribution table here:

https://brainly.com/question/30404390

#SPJ11

Please hhelpp me with thiss

please, help me out with this

Answers

The value of y for the function y = cos(-60°) is y = -1/2, option A is correct.

Define the trigonometric identity?

An equation with trigonometric functions that holds true for all of the variables in it is known as a trigonometric identity. A few normal geometrical characters incorporate the Pythagorean personality, the total and distinction characters, and the twofold point characters.

Using the unit circle and the trigonometric identity for cosine, we know that:

cos(-60°) = cos(360° - 60°)

               = cos(300°)

               = cos(180° + 120°)

               = -cos(120°)

               = -1/2

Therefore, the value of y for the function y = cos(-60°) is y = -1/2.

To know more about trigonometric functions, visit:
https://brainly.com/question/25618616
#SPJ1

Other Questions
Supervised mobile devices can be managed by Jamf Pro.a) Trueb) False COS Find the derivative of: 6e - 47 cos( 7x). (Hint: use product rule and chain rule!] Use enx for en Now, find the equation of the tangent line to the curve at x = 0. Write your answer in mx + b What are the three things to remember about ad formats?- can work across the funnel- bid strategy can influence goals- all formats work on mobile What's the differrence of Detection vs interpretation? 50 Points! Algebra question. Photo attached. Thank you! a student examines a cross section of a mature equisetum stem. which structures would she see, starting at the center of the stem and moving outward? Which of these formulas indicates a quadratic trend?y = 1.1x + 20.4 y = 0.9216x^2 - 2.106x + 24.182 e = mc^2 what happens to the remaining portion of the follicle after ovulation? firms that are price searchers a. will eventually find and charge the highest price at which consumers will purchase any units. b. face inelastic demand curves for their products. c. do not confront rival sellers like price takers do. d. face a downward-sloping demand curve. define atrioventricular vs semilunar valves Enns believes that the expression only begotten The survey on Blood Pressure used a random sample of 9 people and found the sample mean to be 100 mm with a sample standard deviation of 30mm. a. What is the point estimate of the population mean? b. Which statistic should we use the estimate the confidence interval? z/t (write the justification in the megastat output file) c. Develop the 95% confidence interval of the population mean. Lower Limit: to Upper Limit: d. Sara from NMC hospital states that the average BP in UAE is 80, would you agree to the claim? Convert a BST to a Binary Tree such that sum of all greater keys is added to every key A disadvantage of "employee of the month" type awards is thatthey can be seen as favoritism.eventually all employees will have been employee of the month and the award will have lost its distinctiveness. what mass of solute in milligrams is contained in 315 ml of a solution that contains 2.73 ppm of (331.20 g/mol)? One scientific team determined that the average thickness of a chicken's egg shell is 0.311 millimeters.Round the thickness of the shell to the nearest tenth. pleaseee 5.One widespread effect of the mass media on presidential campaigns is that the mass media have Dams at two different locations are needed to form a lake. When the lake is filled, the water level will be at the top of both dams. The Dam #2 is twice as high and twice as wide as Dam #1. How much greater is the force of the water on Dam #2 than the force on Dam #1? (Ignore atmospheric pressure; it is pushing on both sides of the dams.) A. 2 B. 4 C. 8 D. 16 In studying for the AP Psychology exam, good advice would be to communication enhanced when the sender __ the receiver.speaks up touses gestures when speaking tospeaks slowlyshows concern for the perspective of