list some application of atmospheric pressure?
Answer:
Drinking straw, syringe, Dropper, vacuum, etc.
Explanation:
uest
1. State Newton's law of cooling.
Answer:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant. This condition is generally met in heat conduction (where it is guaranteed by Fourier's law) as the thermal conductivity of most materials is only weakly dependent on temperature. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling
What is the approximate size of the Earth's magnetic field? (dont ask me to specify thats what the question is and im as confused as heck too)
Answer:
The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 -.65 gauss).
Explanation:
To measure the Earth's magnetism in any place, we must measure the direction and intensity of the field. The Earth's magnetic field is described by seven parameters. These are declination (D), inclination (I), horizontal intensity (H), the north (X), and east (Y) components of the horizontal intensity, vertical intensity (Z), and total intensity (F). The parameters describing the direction of the magnetic field are declination (D) and inclination (I). D and I are measured in units of degrees, positive east for D and positive down for me. The intensity of the total field (F) is described by the horizontal component (H), vertical component (Z), and the north (X) and east (Y) components of the horizontal intensity. These components may be measured in units of gauss but are generally reported in nanoTesla (1nT * 100,000 = 1 gauss). The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 - .65 gauss). Magnetic declination is the angle between magnetic north and true north. D is considered positive when the angle measured is east of true north and negative when west. The magnetic inclination is the angle between the horizontal plane and the total field vector, measured positive into Earth. In older literature, the term “magnetic elements” is often referred to as D, I, and H.
3. A person is pushing a box down the hallway with a force of 25N. The Force of friction is 15N
a. List all of the forces on the box (use pushing/pulling on
Answer:
10 N
Explanation:
Given that,
Force applied by a person = 25 N
Force of friction = 15 N
The net force acting on the box is given by :
F = Applied force - the force of friction
So,
F = 25 N - 15 N
F = 10 N
So, the required force is equal to 10 N.
Just as optical astronomers observe the visible light emitted by objects such as stars and galaxies, radio astronomers can also observe the radio waves emitted by these objects, as well as the radio waves emitted by gas and dust. However, radio telescopes are different from optical telescopes in important ways. In general, compared to optical telescopes, radio telescopes are larger. more curved. more expensive. smaller. This is because
Answer:
Radio telescopes are LARGER than optical telescopes and this is because radio wavelengths are much longer than optical wavelengths
Explanation:
In general radio telescopes are LARGER than optical telescopes and this is because radio wavelengths are much longer than optical wavelengths.
The main difference between radio telescopes and other telescopes especially optical telescopes is based on size and wavelength of both telescopes
The type of brightness in which all
stars being observed are the same
distance from Earth is known as
which type of brightness?
A. absolute brightness.
B. apparent brightness.
C. obvious brightness.
D. compositional brightness.
A 0.017-kg acorn falls from a position in an oak tree that is 18.5 meters above the ground. Calculate the velocity of the acorn just before it reaches the ground (rounding your answer to the integer) and its kinetic energy when hitting the ground (rounding your answer to the nearest tenth).
Answer:
The velocity and translational kinetic energy of the acorn when hitting the ground are approximately 19 meters per second and 3 joules, respectively.
Explanation:
Let suppose that the acorn is a conservative system. By Principle of Energy Conservation, we understand that initial potential gravitational potential energy ([tex]U_{g}[/tex]), in joules, which is related to initial height above the ground, is equal to the final translational kinetic energy ([tex]K[/tex]), in joules, related to the instant just before hitting the ground. Let suppose that ground has a height of zero. That is:
[tex]U_{g} = K[/tex] (1)
[tex]m\cdot g \cdot h = \frac{1}{2}\cdot m \cdot v^{2}[/tex] (1b)
Where:
[tex]m[/tex] - Mass, in kilograms.
[tex]g[/tex] - Gravitational acceleration, in meters per square second.
[tex]h[/tex] - Height, in meters.
[tex]v[/tex] - Speed, in meters per second.
If we know that [tex]m = 0.017\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]h = 18.5\,m[/tex], then the velocity and the translational kinetic energy of the acorn just before hitting the ground is:
[tex]m\cdot g \cdot h = \frac{1}{2}\cdot m \cdot v^{2}[/tex]
[tex]v = \sqrt{2\cdot g \cdot h}[/tex]
[tex]v \approx 19.049\,\frac{m}{s}[/tex]
[tex]K = \frac{1}{2}\cdot m\cdot v^{2}[/tex]
[tex]K = 3.084\,J[/tex]
The velocity and translational kinetic energy of the acorn when hitting the ground are approximately 19 meters per second and 3 joules, respectively.
A cell membrane consists of an inner and outer wall separated by a distance of approximately 10nm10nm. Assume that the walls act like a parallel plate capacitor, each with a charge density of 10−5C/m2, and the outer wall is positively charged. Although unrealistic, assume that the space between cell walls is filled with air.
1. What is the magnitude of the electric field between the membranes?
A. 1×10^−15N/C
B. 5×10^−5N/C
C. 1×10^6N/C
D. 9×10^−2N/C
2. What is the magnitude of the force on a Ca++ ion between the cell walls?
A. 4×10^−13N
B. 4×10^−12N
C. 2×10^−12N
D. 2×10^−11N
3. What is the potential difference between the cell walls?
A. 1×10^7V
B. 1×10^−2V
C. 6×10^−3V
D. 10V
4. What is the direction of the electric field between the walls?
A. Toward the outer wall.
B. Parallel to the walls.
C. Toward the inner wall.
D. There is no electric field.
5. If released from the inner wall, what would be the kinetic energy of a 3fC charge at the outer wall? 1fC=10^−15C.
A. 3×10^−14J
B. 3×10^−17J
C. 3×10^−8J
D. 3×10^−2J
Answer:
the correct answue are B, A, C, C, B
Explanation:
1) The electric field is requested, let's approximate the membrane by a parallel plate with surface charge density
E = [tex]\frac{\sigma }{2 \epsilon_o }[/tex]
E = [tex]\frac{ 10^{-5}}{2 \ 8.85 \ 10^{-12}}[/tex]
E = 5.65 10⁵ N / C
the correct answer is B
2) A calcium ion has two positive charges, so the force applied by each side of the membrane (plate)
F = q E
F = 2 1.6 10⁻¹⁹ 5.65 10⁵
F = 1.8 10⁻¹³ N
the total force is the sum of the force of each membrane and the two forces go to the same side
F = total = 2 F
F_total = 3.6 10⁻¹³ N
the correct answer is A
3) the field and the electric potential are related
ΔV = - E s
ΔV = - 5.65 10⁵ 10 10⁻⁹
ΔV = - 5.65 10⁻³ V
the correct answer is C
4) In the exercise they indicate that the outer wall has a positive charge, therefore, as they indicate that we approximate the system to a capacitor, the inner wall must be negatively charged.
The electric field goes from the positive to the negative charge, which is why it goes from the outer wall to the inner wall
the correct answer is C
5) For this part we use conservation of energy
starting point. On the inside wall, brown
Em₀ = U = qV
final point. On the outside
Em_f = K
energy is conserved
Em₀ = Em_f
q V = K
K = 3 10⁻¹⁵ 5.65 10⁻³
K = 1.7 10⁻¹⁷ J
the correct answer is B
Please Help with this
Answer: c is correct
Explanation: i did this
PLEASE HELP!!! WILL GIVE 30 POINTS!! HAS TO BE CORRECT!
The picture below shows a solar event in the sun's atmosphere.
Which of these events is most likely to occur as a result of the solar event pictured above?
Disruption to electricity power grid
Less aurora activity at the poles
The sun's photosphere would be blocked
The sun's magnetic effect would decrease
Answer:
the answer is A . Disruption to electricity power grid :)
Explanation:
An electron moves through a region of crossed electric and magnetic fields. The electric field E = 3059 V/m and is directed straight down. The magnetic field B = 1.14 T and is directed to the left. For what velocity v of the electron into the paper will the electric force exactly cancel the magnetic force?
Answer:
v = 2683.33 m/s
Explanation:
The magnetic force and the electric force on the electron must be the same, in order for them to cancel each other:
[tex]Electric\ Force = Magnetic\ Force\\Eq = qvBSin\theta \\\\v = \frac{E}{BSin\theta}[/tex]
where,
v = velcoity of electron = ?
E = Electric Field = 3059 V/m
B = Magnetic Field = 1.14 T
θ = Angle between velocity and magnetic field = 90°
Therefore,
[tex]v = \frac{3059\ V/m}{(1.14\ T)Sin90^o}[/tex]
v = 2683.33 m/s
PLEASE HELP ME PLEASE!
Answer:
40N
Explanation:
The weight is "how much force of gravity drags this down".
Because we're told that gravity on the Moon exerts 1.6N of force per kg, a 25kg object will weigh:
[tex]F_g = 25kg \cdot 1.6\frac{N}{kg} = 40N[/tex]
Determine the potential difference between the ends of the wire of resistance 5 Ω if 720 C passes through it per minute.
Answer:
The potential difference between the ends of a wire is 60 volts.
Explanation:
It is given that,
Resistance, R = 5 ohms
Charge, q = 720 C
Time, t = 1 min = 60 s
We know that the charge flowing per unit charge is called current in the circuit. It is given by :
I = 12 A
Let V is the potential difference between the ends of a wire. It can be calculated using Ohm's law as :
V = IR
V = 60 Volts
So, the potential difference between the ends of a wire is 60 volts. Hence, this is the required solution.
Why did the “yielders” conform in Asch’s experiment?
Answer:
Asch's experiment showed that about 75% of people were "yielders" who conformed and 25% were "independent" who didn't conform. Asch concludes that people ignored reality and gave an incorrect answer in order to follow the rest of the group.
FREE BRAINIEST IF YOU ANSWER THIS
How long must a 400 W electrical engine work in order to produce 300 kJ of work?
The watt is a rate, similar to something like speed (miles per hour) and other time-interval related measurements.
Specifically, watt means Joules per Second. We are given that the electrical engine has 400 watts, meaning it can make 400 joules per second. If we need 300 kJ, or 3000 Joules, then we can write an equation to solve the time it would take to reach this amount of joules:
w * t = E
w: Watts
t: Time
E: Energy required
(Watts times time is equal to the energy required)
Input our values:
400 * t = 3000
(We need to write 3000 joules instead of 300 kilojoules, since Watts is in joules per second. It's important to make sure your units are consistent in your equations)
Divide both sides by 400 to isolate t:
[tex]\frac{400t}{400}[/tex] = [tex]\frac{3000}{400}[/tex]
t = 7.5 (s)
It will take 7.5 seconds for the 400 W engine to produce 300 kJ of work.
If you have any questions on how I got to the answer, just ask!
- breezyツ
The 400 W electrical engine must work for 12 minute 30 second in order to produce 300 kJ of work.
What is power?The quantity of energy moved or converted per unit of time is known as power in physics. The watt, or one joule per second, is the unit of power in the International System of Units. Power is also referred to as activity in ancient writings. A scalar quantity is power.
Power of the electrical engine = 400 Watt.
Work done by the electrical energy = 300 kJ
= 300 × 1000 Joule
= 300000 Joule.
Now from the definition of power:
Power = Work done/time interval
Hence, required time interval = work done/ power
= 300000 Joule/400 watt
= 750 second
= 12 minute 30 second.
Hence, a 400 W electrical engine must work for 12 minute 30 second in order to produce 300 kJ of work.
Learn more about power here:
https://brainly.com/question/29575208
#SPJ2
The scanning process and magnetic lenses used in a scanning electron microscope often results in fair to poor resolution and "fuzzy" images.
(A)True
(B)False
Answer:
(B)False is the answer.
Explanation:
1.00 x 100 kg of clear liquid (specific heat
capacity = 5.11 x 102 J/kg•°C) at a temperature
of 15.0°C gains 3.33 x 10 J of heat. What is the
final temperature of the liquid? (Assume the
melting point is less than 15.0°C and the boiling
point is greater than 62.0°C.)
Answer:
No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a ... to change 1 kg of liquid water at the normal boiling point (100ºC at atmospheric pressure) to steam (water vapor).
The melting point of lead is 327.3o C. Assume the final temperature of the system is T. Then the amount of energy released by the lead as it solidifies is. ΔQ = mleadLlead = 0.09 kg*(2.45*104 J/kg) = 2205 J
Jill doubled the force acting on an object, yet she kept the acceleration constant or unchanged.
How did she do this?
Answer:
Mass doubles
Explanation:
Since F = ma, and given that the acceleration stayed constant, the mass must have changed. (Assuming thatt when the problem states the force doubles, they mean the net force doubles). Note, that the mass does not have to change if the acceleration is zero.
The Image shows a magnetic field around the poles of a magnet. Identify the areas where the magnetic force is the strongest.
N
Answer:
strongest are at the points of the north pole and the south pole, specifically between the red box and the letter of each pole.
Explanation:
The lines of magnetic force are drawn so that the density of lines is proportional to the intensity of the magnetic field.
Therefore, the sections where the magnetic field is strongest are at the points of the north pole and the south pole, specifically between the red box and the letter of each pole.
The light ray is traveling from Acrylite into air. The refractive index for air is 1.00. If the angle of incidence and the angle of refraction are known, how could you determine the refractive index of Acrylite?
Answer:
Refraction. A light ray traveling through some plastic has a frequency of 5.5 x 1014 Hz. It is ... making an angle of 32° with the normal to the interface; it passes through the ... [5 points] (a) What is the refractive index of the glass? ... What you do know is the wavelength of the light in glass, 321 nm, and you know the frequency.
Explanation:
The refractive index of Acrylate is determined as: ratio of sine of incident angle to sine of refractive angle.
What is Snell's law?The relationship between the angles of incidence and refraction for light or other waves flowing through a border between two different isotropic media, such as water, glass, or air, is described by Snell's law, a formula.
The amount a light ray bends as it travels through different media is measured by the refractive index.
Given that: The refractive index for air is 1.00.
Let the angle of incidence from medium air to Acrylate is = i
the angle of refraction from medium air to Acrylate is = r.
Let the refractive index for Acrylate = n.
Then according to Snell's law:
1×sini = n× sinr
n = sini/sinr.
Hence, the refractive index of Acrylate is ratio of sine of incident angle to sine of refractive angle.
Learn more about Snell's law here:
https://brainly.com/question/2273464
#SPJ2
Look at pic for question pls help
B IS YOUR ANSWER.
Soft sound has small amplitude and louder sound has large amplitude. Since, the second wave has large amplitude, it will have the loudest sound.
Which segments show changes of state that absorb heat? Check all that apply.
B–C
C–D
D–C
D–E
E–F
Answer:
B-C
D-E
Explanation:
Trust
Answer:
B-C and D-E are correct
Explanation:
1. The block shown below is being putled to the right on a horizontal table,
Which labeled vectors represent all the forces acting on the block?
Answer:
E
Explanation:
What characteristic helps us determine
the temperature of a star?
A. shape
B. texture
C. color
Answer:
I would say color.
Explanation:
Because for me most of the time the warm color mean It hot. and the cool color most likily to mean cold
Answer:
Color
Explanation:
The temperature of a star is determined by the color. lol :)
example of kinetic energy into heat energy
Answer:
The kinetic energy of large objects can be converted into this thermal energy.
Explanation:
For example, if you drop a water balloon onto the ground, its kinetic energy is converted mostly to thermal energy. If the balloon weighs 1 kilogram and you drop it from about 2 meters, it will heat up by less.
what mass of water is required to absorb 4.7 x 10 to the 5th power J of energy from a car engine while the temperature increases from 298K to 355 K
HELPPPPP
Two long current-carrying wires run parallel to each other and are separated by a distance of 5.00 cm. If the current in one wire is 1.65 A and the current in the other wire is 3.25 A running in the opposite direction, determine the magnitude and direction of the force per unit length the wires exert on each other.
Answer:
The magnitude of the force per unit length is 2.145 x 10⁻⁵ N/m and the direction of the force is outward or repulsive since the current in the two parallel wires are flowing in opposite direction.
Explanation:
Given;
distance between the parallel wires, r = 5.0 cm = 0.05 m
current in the first wire, I₁ = 1.65 A
current in the second wire, I₂ = 3.25 A
The magnitude of the force per unit length between the two wires is calculated as follows;
[tex]\frac{F}{l} =\frac{\mu_0 I_1 I_2}{2\pi r} \\\\\frac{F}{l} =\frac{4\pi \times 10^{-7} \times 1.65 \times 3.25}{2\pi \times 0.05} \\\\\frac{F}{l} = 2.145 \times 10^{-5} \ N/m[/tex]
Therefore, the magnitude of the force per unit length is 2.145 x 10⁻⁵ N/m and the direction of the force is outward or repulsive since the current in the two parallel wires are flowing in opposite direction.
4 points
Bonus: We know that a huge star went supernova in our area a long time
ago because of the large amount of
on earth.
Water
Oxygen
Iron
Carbon
Answer: i may not be 100% accurate but i believe it is iron, there is a fire work that uses iron to shine a certain way and is found on stars.
PLEASE HELP!
how am i supposed to label a graph using the points from the protractor?
Answer:
srghgddggjjjkkkk
Explanation:
fhhgxxxxxxxx3
errghydhi
How much kinetic energy does a 0.30-kg stone have if it is thrown at 44 m/s?
O 440J
O 510 J
O 580J
0 290
Answer:
0 290
Explanation:
Answer:
290
Explanation:
the reason is that the formula for kinetic energy is half m×v².
you divde half by 0.30 multiply by 44×44
you get 290.4
then you round it to significant figures to get 290