Answer:
Step-by-step explanation:
To find the Taylor series of sinc(x) we will use the taylor series of sin(x). We have that
[tex]\sin(x) = \sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{(2n+1)!}[/tex]
which is the taylor series expansion based at 0. Then for [tex]x\neq 0[/tex], by dividing both sidex by x, we have that
[tex]\text{sinc}(x) = \frac{\sin(x)}{x}= \sum_{n=0}^{\infty}\frac{(-1)^n x^{2n}}{(2n+1)!}[/tex]
which is the taylor series expansion for the sinc function. Since the series of sine converges for every value of x. Then the taylor series of sinc converges for every value of x, but 0.
ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.
Answer:
B. (f - g)(x) = -3x² - x - 4
Step-by-step explanation:
→Set it up like so:
(-4x² - 6x - 1) - (-x² - 5x + 3)
→Distribute the -1 to (-x² - 5x + 3):
-4x² - 6x - 1 + x² + 5x - 3
→Add like terms (-4x² and x², -6x and 5x, -1 and -3):
-3x² - x - 4
Which graph represents the piecewise-defined function f(x) = -1.5x + 3.5, x < 2?
4 + x, x >2
Answer:
DID IT oN EDGEN UITY
Step-by-step explanation:
The first graph correctly represents our piecewise function f(x) = - 1.5x + 3.5 for x < 2 and 4 + x for x ≥ 2.
What is a piecewise function?A function that is piecewise-defined by numerous subfunctions, each of which has a separate domain interval for which it is applicable.
Piecewise definition is more of an expression of the function than it is a property of the function.
Given a piecewise function f(x) = - 1.5x + 3.5 for x < 2 and 4 + x for x ≥ 2.
Now, strictly less or greater than will be shown as an open circle in the graph and less than or greater than equal to will be shown by a closed circle on the graph.
If we observe the first graph when x = 0, y = 3.5, and the end is represented as an open circle which is < 2 and when x ≥ 2 it is 6 and represented with a closed circle.
learn more about piecewise function here :
https://brainly.com/question/11294479
#SPJ6
The length of a rectangle is increasing at a rate of 8 cmys and its width is increasing at a rate of 3 cmys. When the length is 20 cm and the width is 10 cm, how fast is the area of the rectangle increasing?
Answer:
The area of the rectangle increasing at the rate of 140 cm²/s
Step-by-step explanation:
Rectangle area:
A rectangle has two dimensions, length l and width w.
It's area is:
A = l*w.
When the length is 20 cm and the width is 10 cm, how fast is the area of the rectangle increasing?
We apply implicit differentiation to solve this question:
[tex]A = l*w[/tex]
So
[tex]\frac{dA}{dt} = l\frac{dw}{dt} + w\frac{dl}{dt}[/tex]
Length is 20, so [tex]l = 20[/tex].
Width is 10, so [tex]w = 10[/tex]
The length of a rectangle is increasing at a rate of 8 cm/s and its width is increasing at a rate of 3 cm/s.
This means that [tex]\frac{dl}{dt} = 8, \frac{dw}{dt} = 3[/tex]
So
[tex]\frac{dA}{dt} = l\frac{dw}{dt} + w\frac{dl}{dt}[/tex]
[tex]\frac{dA}{dt} = 20*3 + 10*8 = 140[/tex]
Area in cm².
So
The area of the rectangle increasing at the rate of 140 cm²/s
PLEASE HELP ?
The range is the set of
A: first coordinates
B: ordered pairs
C:second coordinates
Answer:
C:second coordinates
Step-by-step explanation:
A range is the set of output coordinates
The domain is the input coordinates
Domain is the x, range is the y
Answer: its definitly c
Step-by-step explanation:
A manager records the repair cost for 4 randomly selected stereos. A sample mean of $82.64 and standard deviation of $14.32 are subsequently computed. Determine the 90% confidence interval for the mean repair cost for the stereos. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
Answer:
CI = (70.861 , 94.418)
Step-by-step explanation:
In order to determine the 90% confidence interval you use the following formula (for a population approximately normal):
[tex]CI=(\overline{x}-Z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{x}+Z_{\alpha/2}\frac{\sigma}{\sqrt{n}})[/tex] (1)
[tex]\overline{x}[/tex]: mean = 82.64
σ: standard deviation = 14.32
n: sample = 4
α: tail area = 1 - 0.9 = 0.1
Z_α/2 = Z_0.05: Z factor = 1.645
You replace these values and you obtain:
[tex]Z_{0.05}(\frac{14.32}{\sqrt{4}})=(1.645)(\frac{14.32}{\sqrt{4}})=11.778[/tex]
The confidence interval will be:
[tex]CI=(82.64-11.778,82.64+11.778)=(70.861,94.418)[/tex]
The 90% confidence interval is (70.861 , 94.418)
What’s the correct answer for this question?
Answer:
A.
Step-by-step explanation:
Volume of cone = 1/3πr²h
= (1/3)(3.14)(1.5)²(5)
= (1/3)(3.14)(2.25)(5)
= (1/3)(35.3)
= 11.78
≈ 11.8 cubic inches
0.2x + (-0.9) + 1.7 = 9.6
0.2x + 0.8 = 9.6
X=
WHAT DOES x =
Answer:
x =44
Step-by-step explanation:
0.2x + (-0.9) + 1.7 = 9.6
Combine like terms
.2x +.8 = 9.6
Subtract .8 from each side
.2x +.8 -.8 = 9.6 -.8
.2x = 8.8
Divide each side by .2
.2x/.2 = 8.8/.2
x =44
Estimate and then solve the equation. X - 17 4/5=-13 1/5
Answer: 5 (estimate)
Step-by-step explanation:
x - 17 4/5 = -13 1/5
Estimate: x - 18 = -13
x - 18 + 18 = -13 + 18
x = 5
actual answer without estimating using exact numbers is 4 3/5 (so estimate is reasonable)
Seventy-six percent of sunflower seeds will germinate into a flower, and a sample of 800 such sunflower seeds is randomly selected. The standard deviation for the number of sunflower seeds that will germinate in such samples of size 800 is:
Answer:
12.08
Step-by-step explanation:
For each sunflower, there are only two possible outcomes. Either it germinates, or it does not. The probability of a sunflower germinating is independent of other sunflowers. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Seventy-six percent of sunflower seeds will germinate into a flower
This means that [tex]p = 0.76[/tex]
Samples of 800:
This means that [tex]n = 800[/tex]
The standard deviation for the number of sunflower seeds that will germinate in such samples of size 800 is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{800*0.76*0.24} = 12.08[/tex]
Is a measure of 22 inches "far away" from a mean of 16 inches? As someone with knowledge of statistics, you answer "it depends" and request the standard deviation of the underlying data. (a) Suppose the data come from a sample whose standard deviation is 2 inches. How many standard deviations is 22 inches from 16 inches? (b) Is 22 inches far away from a mean of 16 inches? (c) Suppose the standard deviation of the underlying data is 4 inches. Is 22 inches far away from a mean of 16 inches?
Answer:
a) 3 standard deviations above 16
b) More than 2 standard deviations of the mean, so yes, 22 inches is faw away from the mean of 16 inches.
c) Less than 2 standard deviations, so not far away.
Step-by-step explanation:
Z-score:
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
If Z < -2 or Z > 2, X is considered to be far away from the mean.
In this question, we have that:
[tex]\mu = 16[/tex]
(a) Suppose the data come from a sample whose standard deviation is 2 inches. How many standard deviations is 22 inches from 16 inches?
This is Z when [tex]X = 22, \sigma = 2[/tex].
So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{22 - 16}{2}[/tex]
[tex]Z = 3[/tex]
So 22 inches is 3 standard deviations fro 16 inches.
(b) Is 22 inches far away from a mean of 16 inches?
3 standard deviations, more than two, so yes, 22 inches is far away from a mean of 16 inches.
(c) Suppose the standard deviation of the underlying data is 4 inches. Is 22 inches far away from a mean of 16 inches?
Now [tex]\sigma = 4[/tex]
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{22 - 16}{4}[/tex]
[tex]Z = 1.5[/tex]
1.5 standard deviations from the mean, so 22 inches is not far away from the mean.
what equation results from completing the square and then factoring? x^2+24x=33
a.) (x+24)^2=57
b.) (x+12)^2=57
c.) (x+12)^2=177
d.) (x+24)^=177
The factorisation of the given equation using completing square method is (x+12)²=177. Therefore, option D is correct.
The given equation is x²+24x=33.
We need to factorise the equation using completing the square method.
What is completing the square method?Completing the square means writing a quadratic in the form of a squared bracket and adding a constant if necessary.
Now, x²+24x-33=0
Add and subtract (b/2)²=144 to the equation.
x²+24x-33+144-144=0
⇒x²+24x+144-33-144=0
⇒(x+12)²-177=0
⇒(x+12)²=177
The factorisation of the given equation using completing square method is (x+12)²=177. Therefore, option D is correct.
To learn more about completing the square method visit:
https://brainly.com/question/26107616.
#SPJ2
Which statement best compares the graphs of y = –3xn and y = 3xn?
Answer: choice B
Step-by-step explanation:
The graph of y=-3x^n is the reflection of the graph of y=3x^n about the x-axis.
Answer: B
Step-by-step explanation:
Jose makes custom bicycles. He sells each bicycle for $400.
A)How much revenue does he make if he sells 1 bicycle?
B)How much revenue does he make if he sells 2 bicycles?
C)How much revenue does he make if he sells X bicycles?
D)What is her revenue equation?
A) $400
B) $800
C) 400*X
D) revenue=400x
A tree diagram is simply a way of representing a sequence of events. True or False.
Answer:
True.
Step-by-step explanation:
A tree diagram is a diagram used in general mathematics, statistics, and probability to show a sequence of events. This tool is used to calculate the number of possibilities of an event to occur. Commonly, the tool of a tree diagram is used to find the possibility of outcome while flipping a coin. It is a diagram in which connections between the events is shown using the strucure of branching connecting lines.
So, the given statement is true, that is a simple way of showing events in a sequence.
intext:"A shipment of 50 inexpensive digital watches, including 6 that are defective, is sent to a department store. The receiving department selects 10 at random for testing and rejects the whole shipment if 1 or more in the sample are found defective. What is the probability that the shipment will be rejected?"
Answer:
0.7125
Step-by-step explanation:
The binomial distribution with parameters n and p is the discrete probability distribution of the number of successes (with probability p) in a sequence of n independent events.
The probability of getting exactly x successes in n independent Bernoulli trials = [tex]n_{C_{x}}(p)^x(1-p)^{n-x}[/tex]
Total number of watches in the shipment = 50
Number of defective watches = 6
Number of selected watches = 10
Let X denotes the number of defective digital watches such that the random variable X follows a binomial distribution with parameters n and p.
So,
Probability of defective watches = [tex]\frac{X}{n}=\frac{6}{50}=0.12[/tex]
Take n = 10 and p = 0.12
Probability that the shipment will be rejected = [tex]P(X\geq 1)=1-P(X=0)[/tex]
[tex]=1-n_{C_{x}}(p)^x(1-p)^{n-x}\\=1-10_{C_{0}}(0.12)^0(1-0.12)^{10-0}[/tex]
Use [tex]n_{C_{x}}=\frac{n!}{x!(n-x)!}[/tex]
So,
Probability that the shipment will be rejected = [tex]=1-\left ( \frac{10!}{0!(10-0)!} \right )(0.88)^{10}[/tex]
[tex]=1-(0.88)^{10}\\=1-0.2785\\=0.7125[/tex]
Write an equation of a line that passes through (-6, 1), parallel to y = 2x – 6.
Answer:
y = -1/2x - 2
Step-by-step explanation:
If it's parallel, that means that the slope is the opposite of the one in the given equation, meaning that 2 would be flipped and turned negative into -1/2.
Then, fill in the x and y values to get the y-intercept.
1 = -1/2(-6) + b
1 = 3 + b
-2 = b
So your answer is y = -1/2x - 2
Business Week conducted a survey of graduates from 30 top MBA programs. On the basis of the survey, assume that the mean annual salary for male and female graduates 10 years after graduation is $168,000 and $117,000, respectively. Assume the standard deviation for the male graduates is $40,000 and for the female graduates it is $25,000. 1. In which of the preceding two cases, part a or part b, do we have a higher probability of obtaining a smaple estimate within $10,000 of the population mean? why? 2. What is the probability that a simple random sample of 100 male graduates will provide a sample mean more than $4,000 below the population mean?
Answer:
1. Due to the lower standard deviation, it is more likely to obtain a sample of females within $10,000 of the population mean
2. 15.87% probability that a simple random sample of 100 male graduates will provide a sample mean more than $4,000 below the population mean
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
1. In which of the preceding two cases, part a or part b, do we have a higher probability of obtaining a smaple estimate within $10,000 of the population mean? why?
The lower the standard deviation, the less dispersed the values are, meaning it is more likely to find values within a certain threshold of the mean.
So
Due to the lower standard deviation, it is more likely to obtain a sample of females within $10,000 of the population mean.
2. What is the probability that a simple random sample of 100 male graduates will provide a sample mean more than $4,000 below the population mean?
We have that:
[tex]\mu = 168000, \sigma = 40000, n = 100, s = \frac{40000}{\sqrt{100}} = 4000[/tex]
This probability is the pvalue of Z when X = 168000 - 4000 = 164000. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{164000 - 168000}{4000}[/tex]
[tex]Z = -1[/tex]
[tex]Z = -1[/tex] has a pvalue of 0.1587
15.87% probability that a simple random sample of 100 male graduates will provide a sample mean more than $4,000 below the population mean
The set of whales is a proper subset of the set of mammals.
A sample is taken from all college freshman . Right-handed students are excluded.what is this an example of?
Answer:
All college freshman is called Population and Right handed students are excluded is called sample from Population
Step-by-step explanation:
Explanation:-
Population:- The total of the observations which we are concerned
given data all college freshman is called Population
Sample :-
A sample is a subset of a Population
Given data all college freshman is called Population and Right handed students are excluded is called sample from Population
g(x) = x2 – 5x + 2.
Answer:
Use the quadratic formula:
a = 1 b= -5 c= 2
x = - -5 +-sqr root (25 - 4 * 1 * 2) / 2 * 1
x = 5 +-sqr root (25 - 8) / 2
x = 5 +- sqr root (17) / 2
x1 = 5 +4.1231056256 / 2
x1 = 4.5615528128
x2 = 5 -4.1231056256 / 2
x2 = 4.5615528128
Step-by-step explanation:
Here's a graph of a linear function. Write the
equation that describes that function.
Express it in slope-intercept form.
Answer:
y = [tex]\frac{1}{2}[/tex]x - 5
Step-by-step explanation:
Use rise over run to find the slope, which will get you 1/2 as the slope
The y-intercept is at (0, -5) so put -5 in the equation
Answer: y= 1/2x + -5
Step-by-step explanation: slope is 1/2 because the line is going up one and over 2 (rise over run), the y intercept is -5 because that is where the line hits on the y axis
I WILL GIVE BRAINLIEST ANSWER ASAP
Answer: B
Step-by-step explanation:
For this problem, to solve for x, you want to move all like terms to one side.
[tex]\frac{1}{4}x-\frac{1}{2}x=\frac{7}{8} +\frac{1}{8}[/tex]
Now that you have moved like terms to one side, you can directly add and subtract to combine like terms.
[tex]-\frac{1}{4} x=1[/tex]
x=-4
Answer:
[tex]x = - 4[/tex]
Second answer is correct
Step-by-step explanation:
[tex] \frac{1}{4} x - \frac{1}{8} = \frac{7}{8} + \frac{1}{2} x \\ \frac{1}{4} x - \frac{1}{2} x = \frac{1}{8} + \frac{7}{8} \\ \frac{1x - 2x}{4} = \frac{8}{8} \\ - \frac{1}{4} x = 1 \\ - 1x = 1 \times 4 \\ - 1x = 4 \\ x = - 4[/tex]
hope this helps you
Convert decimal +61 and +27 to binary using the signed 2’s complement representation and enough digits to accommodate the numbers. Then perform the binary equivalent of (27) + (-61), (-27) + (+61), and (-27) + (-61). Convert then answers back to decimal and verify that they are correct.
Answer:
the sum is 01011000₂ = 88
Step-by-step explanation:
For numbers of magnitude less than 128, it is convenient to use an 8-bit representation. I find it works will to convert back and forth through the octal (base-8) representation, as each base-8 digit converts nicely to three (3) base-2 bits.
61 = 8·7 +5 = 075₈ = 00 111 101₂
27 = 8·3 +3 = 033₈ = 00 011 011₂
Then ...
[tex]\begin{array}{cc|ccc}&61&&00111101\\+&27&+&00011011\\ &\overline{88}&&\overline{01011000}\end{array}[/tex]
__
Starting from the right, we can convert the binary back to octal, then to decimal by considering 3 bits at a time:
01 011 000₂ = 130₈ = 1·8² +3·8 +0 = 64 +24 = 88
The binary sum is the same as the decimal sum.
The sales price of a single family house in Charlotte is normally distributed with mean $210,000 and standard deviation $35,000. 1. A random sample of 49 single-family houses in Charlotte is selected. Let X ¯ be the mean sales price of the sample. What is the mean of X ¯?
Answer:
E(X ¯)=210,000.
Step-by-step explanation:
A sampling distribution for samples of size n=49 from a population with means μ=210,000 and standard deviation σ=35,000, has the following means anda standard deviation:
[tex]\mu_s=\mu=210,000\\\\\sigma_s=\sigma/\sqrt{n}=35,000/\sqrt{49}=35,000/7=5,000[/tex]
If X ¯ is the mean sales price of the sample, it will have a mean value of E(X ¯)=210,000.
Mathematics: The graph below have the same shape. What is the equation of the blue graph?
Answer:
Since the blue graph is the red graph translated 3 units to the left the answer is D.
HELP PLEASE SIMPLIFY !!!
Answer:
[tex]=x^{\frac{5}{6}}+2x^{\frac{7}{3}}[/tex]
Step-by-step explanation:
[tex]x^{\frac{1}{3}}\left(x^{\frac{1}{2}}+2x^2\right)\\\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b+c\right)=ab+ac\\a=x^{\frac{1}{3}},\:b=x^{\frac{1}{2}},\:c=2x^2\\=x^{\frac{1}{3}}x^{\frac{1}{2}}+x^{\frac{1}{3}}\cdot \:2x^2\\=x^{\frac{1}{3}}x^{\frac{1}{2}}+2x^2x^{\frac{1}{3}}\\\mathrm{Simplify}\:x^{\frac{1}{3}}x^{\frac{1}{2}}+2x^2x^{\frac{1}{3}}:\quad x^{\frac{5}{6}}+2x^{\frac{7}{3}}\\x^{\frac{1}{3}}x^{\frac{1}{2}}+2x^2x^{\frac{1}{3}}\\x^{\frac{1}{3}}x^{\frac{1}{2}}=x^{\frac{5}{6}}[/tex]
[tex]x^{\frac{1}{3}}x^{\frac{1}{2}}\\\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^{b+c}\\x^{\frac{1}{3}}x^{\frac{1}{2}}=\:x^{\frac{1}{3}+\frac{1}{2}}\\=x^{\frac{1}{3}+\frac{1}{2}}\\\mathrm{Join}\:\frac{1}{3}+\frac{1}{2}:\quad \frac{5}{6}\\\frac{1}{3}+\frac{1}{2}\\\mathrm{Least\:Common\:Multiplier\:of\:}3,\:2:\quad 6\\Adjust\:Fractions\:based\:on\:the\:LCM\\=\frac{2}{6}+\frac{3}{6}[/tex]
[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}\\=\frac{2+3}{6}\\\mathrm{Add\:the\:numbers:}\:2+3=5\\=\frac{5}{6}\\=x^{\frac{5}{6}}\\2x^2x^{\frac{1}{3}}=2x^{\frac{7}{3}}\\=x^{\frac{5}{6}}+2x^{\frac{7}{3}}[/tex]
Is 3/5 A.irrational, B.rational, C.natural and whole, or D.natural, whole integer and rational
Answer:
B
Step-by-step explanation:
3/5 is a fraction, meaning it isn't irrational, natural, whole or an integer, therefore the answer is rational (B).
Answer:
B.rational
Step-by-step explanation:
3/5 is written as a fraction so it is a rational number
It is not a whole number since it is a reduced fraction that is less than 1
Please solve the following inequality 2(3 - x) ≥ 14
Answer:
x ≤ -4
Step-by-step explanation:
2(3 - x) ≥ 14
Divide by 2
2/2(3 - x) ≥ 14/2
(3 - x) ≥ 7
Subtract 3 from each side
3-x-3 ≥ 7-3
- x ≥ 4
Divide each side by -1, remembering to flip the inequality
x ≤ -4
Answer:
-4
Step-by-step explanation:
6-2x≥14 (/expand )
-2x≥14-6=-2x≥8
x≤8/-2=-4
WILL MARK BRAINLIEST PLEASE HELP
Answer:
1) h = -1/2t^2 +10t
2) h = -1/2(t -10)^2 +72
3) domain: [0, 20]; range: [0, 50]
Step-by-step explanation:
1.) I find it easiest to start with the vertex form when the vertex is given. The equation of the presumed parabolic path for Firework 1 is ...
h = a(t -10)^2 +50
To find the value of "a", we must use another point on the graph. (0, 0) works nicely:
0 = a(0 -10)^2 +50
-100a = 50 . . . . . . subtract 100a
a = -1/2 . . . . . . . . . divide by -100
Then the standard-form equation is ...
h = (-1/2)(t^2 -20t +100) +50
h = -1/2t^2 +10t
__
2.) The path of Firework 2 is translated upward by 22 units from that of Firework 1.
h = -1/2(t -10)^2 +72
__
3.) The horizontal extent of the graph for Firework 1 is ...
domain: 0 ≤ t ≤ 20
The vertical extent of the graph for Firework 1 is ...
range: 0 ≤ h ≤ 50
Answer the inequality
Answer:
A.
Step-by-step explanation:
Add 4:
-5x ≤ 10
Divide by -5:
x ≥ -2