• Briefly discuss the cause of errors in the measurements

Answers

Answer 1
(also called Observational Error) is the difference between a measured quantity and its true value. It includes random error

Related Questions

URGENT!! This is timed, PLEASE HELP!
Nitrogen gas can be prepared by passing gaseous ammonia over solid copper (II) oxide at high temperatures, as described by the following balanced equation:
2 NH3(g) + 3 CuO(s) → 1N2(g) + 3 Cu(s) + 3 H2O(g)
How many grams of N2 are formed when 120.51 g of NH3 are reacted with excess CuO?
(Please explain using steps and show the whole process. Make sure the answer is in sig figs)

Answers

Answer:

99.24 gm of nitrogen .

Explanation:

molecular weight of ammonia = 17 , molecular weight of nitrogen = 28.

2 NH₃(g) + 3 CuO(s) → 1N₂(g) + 3 Cu(s) + 3 H₂O(g)

2 x 17 gm                      28 gm

( 34 gm )

34 gm of ammonia forms 28 gms of nitrogen

1 gm of ammonia   forms 28 / 34 gms of nitrogen

120.51 gn of ammonia forms 28 x 120.51 / 34 gms of nitrogen

28 x 120.51 / 34 gms

= 99.24 gms of nitrogen will be formed .

If 25.8 mL of an AgNO3 solution is needed to precipitate all Cl- ions in a 1570 mg of KCl (forming AgCl), what is the molarity of the AgNO3nsolution?

Answers

Answer:

M=0.816M

Explanation:

Hello,

In this case, we should consider the following reaction:

[tex]AgNO_3+KCl\rightarrow KNO_3+AgCl[/tex]

Thus, by knowing the 1:1 molar ratio of silver nitrate and potassium chloride, we can easily compute the moles of silver nitrate precipitating the 1570 mg of potassium chloride considering its molar mass of 74.5513 g/mol:

[tex]n_{AgNO_3}=1570mgKCl*\frac{1gKCl}{1000mgKCl} *\frac{1molKCl}{74.5513gKCl}*\frac{1molAgNO_3}{1molKCl} \\\\n_{AgNO_3}=0.021molAgNO_3[/tex]

Then, by using the volume of silver nitrate in liters (0.0258 L), we can directly compute the molarity:

[tex]M=\frac{0.021molAgNO_3}{0.0258L}\\ \\M=0.816M[/tex]

Regards.

In what unit do we usually measure the force of the earth gravity? Acceleration due to gravity is 9.8/s^2

Answers

Answer:

in short weight

Explanation:

weight is mass x gravitational pull on an object

Monel metal is a corrosion-resistant copper-nickel alloy used in the electronics industry. A particular alloy with a density of 8.80 g/cm3 and containing 0.090 % Si by mass is used to make a rectangular plate that is 15.0 cm long, 12.5 cm wide, and 3.50 mm thick and has a 2.50-cm-diameter hole drilled through its center such that the height of the hole is 3.50 mm .
The silicon in the plate is a mixture of naturally occurring isotopes. One of the those isotopes is silicon-30, which has an atomic mass of 29.97376 amu. The percent natural abundance, which refers to the atoms of a specific isotope, of silicon-30 is 3.10%.
Part A What is the volume of the plate?Express the volume numerically in cubic centimeters.
Part B How many silicon-30 atoms are found in this plate?
Express your answer numerically using two significant figures.

Answers

Answer:

Based on the given question, the dimensions of the plate is 15 cm in length, 12.5 cm in width, and 3.50 mm in thickness (0.350 cm). Now the volume of the plate will be,  

V = 15 cm × 12.5 cm × 0.350 cm = 65.62 cm³

A hole of diameter 2.50 cm is drilled through the center of the plate, at the height of 3.50 mm or 0.350 cm. Now the volume of the hole is π(r)²h,  

= 22/7 × (1.25 cm)² × 0.350 cm = 1.72 cm³

Thus, the volume of the plate will be determined by subtracting the volume of plate with the volume of hole, which will be,  

65.62 cm³ - 1.72 cm³ = 63.9 cm³

The density of the alloy is 8.80 g/cm³, therefore, the mass of the alloy can be determined by using the formula, mass = density * volume  

mass = 8.80 g/cm³ × 63.9 cm³ = 562.32 grams

Of the total alloy, 0.090 percent is Si, that is,  

(0.090/100) × 562.32 g = 0.506 grams of Si

The natural abundance of the element is not determined by mass but by the number of atoms it possess. For this Avogadro's number and atomic mass of Si is used. Now the number of atoms of Si present is,  

(0.506 g) (1 mol/28.0855 g) (6.023 × 10²³ atoms /mol) = 1.08 × 10²² Si atoms

Of these Si atoms, 3.10 percent are Si-30 so,  

= (3.10 / 100) × (1.08 × 10²² atoms) / 1000 = 3.34 × 10²⁰ atoms of Si-30. or 3.4 × 10²⁰ atoms

When you look at an ant up close, using a convex lens, what do you see?

Answers

Answer:

You would be able to see the ants clearly with the unique body parts.

Explanation:

Convex lens is also known as Converging lens. It helps in converging rays of light to become a principal focus which is usually very clear and visible to the eyes. The converging lens when used to view the ant makes the ant appear very visible and the individual is able to see all the unique body parts of the ant. This type of lens is used in individuals who are longsighted.

Which of the following is a chemical property of iron? It

Answers

Answer:

is capable of combining with oxygen to form iron oxide

The three‑dimensional structure of a generic molecule is given. Identify the axial and equatorial atoms in the three‑dimensional structure. What is the shape of this molecule?

Answers

Answer:

Explanation:

CHECK THE ATTACHMENT FOR THE COMPLETE QUESTION AND THE DETAILED EXPLANATION

NOTE:

Equatorial atoms are referred to atoms that are attached to carbons in the cyclohexane ring which is found at the equator of the ring.

Axial atoms are atoms that exist in a bond which is parallel to the axis of the ring in cyclohexane

For the aqueous reaction dihydroxyacetone phosphate↽−−⇀glyceraldehyde−3−phosphate dihydroxyacetone phosphate↽−−⇀glyceraldehyde−3−phosphate the standard change in Gibbs free energy is ΔG°′=7.53 kJ/molΔG°′=7.53 kJ/mol . Calculate ΔGΔG for this reaction at 298 K298 K when [dihydroxyacetone phosphate]=0.100 M[dihydroxyacetone phosphate]=0.100 M and [glyceraldehyde-3-phosphate]=0.00200 M[glyceraldehyde-3-phosphate]=0.00200 M .

Answers

Answer:

ΔG = -2.17 kJ/mol

Explanation:

ΔG of a reaction at any moment could be obtained thus:

ΔG = ΔG° + RT ln Q

Where ΔG° is standard change in free energy of a particular reaction (7.53kJ/mol for the reaction of the problem, R is gas constant (8.314×10⁻³kJ/molK), T is absolute temperature (298K) and Q is reaction quotient of the reaction.

For the reaction:

dihydroxyacetone phosphate ⇄ glyceraldehyde−3−phosphate

Q is defined as:

Q = [glyceraldehyde−3−phosphate] / [dihydroxyacetone phosphate]

Replacing values in ΔG formula:

ΔG = 7.53kJ/mol + 8.314×10⁻³kJ/molK × 298.15K ln [0.00200M] / [0.100M]

ΔG = -2.17 kJ/mol

An electrochemical cell is constructed with a zinc metal anode in contact with a 0.052 M solution of zinc nitrate and a silver cathode in contact with a 0.0042 M solution of silver(I) nitrate. What is the value of Q to use in the Nernst equation for this cell

Answers

Answer:

Q = 12.38

Explanation:

The Nernst equation is given as; Ecell = E°cell - (2.303RT/nF) log Q  ;where Q is the reaction quotient.

The reaction quotient, Q  in a reaction, is the product of the concentrations of the products divided by the product of the concentrations of the reactants.

In an electrochemical cell, Q is the ratio of the concentration of the electrolyte at the anode to that of the electrolyte at the cathode.

Q = [anode]/[cathode]

therefore , Q = 0.052/0.0042 = 12.38

need help and quick answer as fast as possible

Answers

yes. arthropod are animals such as insects, crabs, lobsters etc

One proposed mechanism of the reaction of HBr with O2 is given here. HBr + O2 → HOOBr (slow) HOOBr + HBr → 2HOBr (fast) HOBr + HBr → H2O + Br2 (fast) What is the equation for the overall reaction?

Answers

Answer:

4 HBr + O2  →  + 2H2O + 2Br2

Explanation:

Based on the following reaction mechanism:

HBr + O2 → HOOBr (slow)

HOOBr + HBr → 2HOBr (fast)

HOBr + HBr → H2O + Br2 (fast)

The equation for the overall reaction is the sum of the three reactions in which intermediaries of reaction (HOBr and HOOBr are canceled). That is 1 + 2 + 2*(3):

HBr + O2 + HOOBr + HBr + 2HOBr + 2HBr → HOOBr + 2HOBr + 2H2O + 2Br2

4 HBr + O2  →  + 2H2O + 2Br2

Beeing this reaction the equation of the overall reaction.

A sample of carbon dioxide gas at a pressure of 879 mm Hg and a temperature of 65°C, occupies a volume of 14.2 liters. Of the gas is cooled at constant pressure to a temperature of 23°C, the volume of the gas sample will be

Answers

Answer:

The correct answer is 12.43 Liters.

Explanation:

Based on the given question, the volume V₁ occupied by the sample of carbon dioxide gas is 14.2 liters at temperature (T₁) 65 degree C or 65+273 K = 338 K.  

The gas is cooled at a temperature (T₂) 23 degree C or 273+23 K = 296 K

The volume of the gas (V₂) after cooling can be determined by using the formula,  

V₁/T₁ = V₂/T₂

14.2/338 = V₂/296

0.0420 = V₂/296

V₂ = 0.0420 * 296  

V₂ = 12.43 Liters.  

Which option describes a similarity and a difference between isotopes of an element? A. same atomic number; different number of protons B. same number of protons; different atomic number C. same atomic number; different mass number D. same mass number; different atomic number E. same number of neutrons; same number of protons

Answers

Answer:

c

Explanation:

A boy with pneumonia has lungs with a volume of 1.7 L that fill with 0.070 mol of air when he inhales. When he exhales, his lung volume decreases to 1.3 L. Enter the number of moles of gas that remain in his lungs after he exhales. Assume constant temperature and pressure.

Answers

Answer:

0.053moles

Explanation:

Hello,

To calculate the number of moles of gas remaining in his after he exhale, we'll have to use Avogadro's law which states that the volume of a given mass of gas is directly proportional to its number of moles provided that temperature and pressure are kept constant. Mathematically,

V = kN, k = V / N

V1 / N1 = V2 / N2= V3 / N3 = Vx / Nx

V1 = 1.7L

N1 = 0.070mol

V2 = 1.3L

N2 = ?

From the above equation,

V1 / N1 = V2 / N2

Make N2 the subject of formula

N2 = (N1 × V2) / V1

N2 = (0.07 × 1.3) / 1.7

N2 = 0.053mol

The number of moles of gas in his lungs when he exhale is 0.053 moles

Suppose an industrial quality-control chemist analyzes a sample from a copper processing plant in the following way. He adds powdered iron to a copper(II) sulfate sample from the plant until no more copper will precipitate. He then washes, dries, and weighs the precipitate, and finds that it has a mass of . Calculate the original concentration of copper(II) sulfate in the sample. Round your answer to significant digits.

Answers

Answer:

Concentration of Copper (II) Sulfate in the original sample in mol/L = 0.0035 M

Concentration of Copper (II) Sulfate in the original sample in g/L = 0.56 g/L

Explanation:

Complete Question

Fe(s) + CuSO₄(aq) → Cu(s) + FeSO₄(aq)

Suppose an industrial quality-control chemist analyzes a sample from a copper processing plant in the following way. He adds powdered iron to a 400.mL copper (II) sulfate sample from the plant until no more copper will precipitate. He then washes, dries, and weighs the precipitate, and finds that it has a mass of 89.mg. Calculate the original concentration of copper(II) sulfate in the sample. Round your answer to 2 significant figures.

Solution

Noting that the precipitate is Copper as it is the only solid by-product of this reaction.

89 mg of Copper is produced from this reaction.

We convert this into number of moles for further stoichiometric calculations

Mass of Copper = 89 mg = 0.089 g

Molar mass of Copper = 63.546 amu

Number of moles of Copper produced from the reaction = (0.089/63.546) = 0.0014005602 = 0.001401 mole

From the stoichiometric balance of the reaction,

1 mole of Copper is produced from 1 mole of Copper (II) Sulfate

0.001401 mole of Copper will be produced similarly from 0.001401 mole of Copper (II) Sulfate.

Number of moles of Copper (II) Sulfate in the original sample = 0.001401 mole

Concentration of Copper (II) Sulfate in the original sample in mol/L = (Number of moles) ÷ (Volume in L)

Number of moles = 0.001401 mole

Volume in L = (400/1000) = 0.4 L

Concentration of Copper (II) Sulfate in the original sample in mol/L = (0.001401/0.4) = 0.0035025 mol/L = 0.0035 mol/L to 2 s.f.

Concentration in g/L = (Concentration in mol/L) × (Molar Mass)

Concentration in mol/L = 0.0035025 M

Molar mass of Copper (II) Sulfate = 159.609 g/mol

Concentration of Copper (II) Sulfate in the original sample in g/L = 0.0035025 × 159.609 = 0.559 g/L = 0.56 g/L to 2 s.f

Hope this Helps!!!!

The concentration of the original copper solution is 0.035 M.

The equation of the reaction is;

Fe(s) + CuSO4(aq) -------> FeSO4(aq) + Cu(s)

Number of moles of copper obtained = 89 × 10^-3g/63.5 = 0.0014 moles

Since the reaction is 1:1, the number of moles of copper sulfate that reacted is c.

From the question, we are told that the volume of solution is 400.mL or 0.04L.

Hence, the concentration of the solution is; number of moles /volume

=  0.0014 moles/0.04L = 0.035 M

Learn more: https://brainly.com/question/9352088

Missing parts;

Suppose an industrial quality-control chemist analyzes a sample from a copper processing plant in the following way. He adds powdered iron to a 400.mL copper (II) sulfate sample from the plant until no more copper will precipitate. He then washes, dries, and weighs the precipitate, and finds that it has a mass of 89.mg. Calculate the original concentration of copper(II) sulfate in the sample. Round your answer to 2 significant figures.

Consider the following reaction. I– 2 H2O2 (l) 2 H2O (l) + O2 (g) A solution contains 15 mL 0.1 M KI, 15 mL of DI water and 5 mL of 3% H2O2. After the decomposition of H2O2 is complete, you titrate the solution with 0.1 M AgNO3. If the catalyst, I–, is not consumed in the reaction and is completely recovered, what volume of the 0.1 M AgNO3 is required to reach the end point?

Answers

Answer:

Explanation:

The given chemical reaction is:

[tex]2H_2O_{(l)} \to^{I^-}} 2H_2O_{(l)}+O_2_{(g)}[/tex]

From above equation  [tex]I^-[/tex] serves as catalyst which is not consumed by the reaction and also it is completely recovered; as a result to that , the full volume of KI will definitely react with AgNO₃.

Given that :

the volume of potassium iodide [tex]V_{KI} = 15 \ ml[/tex]

the molarity of potassium [tex]M_{KI} = 0.1 \ M[/tex]

the volume of distilled water [tex]V_W = 15 \ mL[/tex]

The volume of 3% [tex]H_2O_2 \ \ V_{H_2O_2} = 5 \ mL[/tex]

Molarity of AgNO₃ [tex]M_{AgNO_3} = 0.1 \ M[/tex]

Let take an integral look with the reaction between KI and AgNO₃; we have

[tex]KI + AgNO_3 \to KNO_3 + AgI[/tex]

At the end point; the moles of KI will definitely be equal to the moles of AgNO₃

So;

[tex]M_{KI}V_{KI}= M_{AgNO_3}V_{AgNO_3} \\ \\ V_{AgNO_3} = \dfrac{M_{KI}V_{KI}}{M_{AgNO_3}} \\ \\ \\ V_{AgNO_3} = \dfrac{ 0.1*15}{0.1}[/tex]

[tex]V_{AgNO_3} = 15 \ ml[/tex]

Thus; the volume of 0.1 M AgNO₃  needed to reach the end point is 15 mL

At 25.0 °C the Henry's Law constant for sulfur hexafluoride (SP) gas in water is 2.4x 10 M/atm Calculate the mass in grams of SFo, gas that can be dissolved in S25. ml. of water at 25.0 C and a SF, partial pressure of 1.90 atm Be sure your answer has the correct number of significant digits.

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The mass is [tex]m = 0.0349 \ g[/tex]

Explanation:

From the question we are told that

   The Henry's Law constant is  [tex]k = 2.4 *10^{10} M/atm[/tex]

   The volume of water is [tex]V = 525 \ ml = 0.525 \ L[/tex]

   The partial pressure is  [tex]P = 1.90 \ atm[/tex]

   The temperature is [tex]T = 25 ^oC[/tex]

Henry's  law is mathematically represented as

       [tex]C = P * k[/tex]

Where C is  the concentration of sulfur hexafluoride(SP)

substituting value

        [tex]C = 1.90 * 2.4*10^{-4}[/tex]

        [tex]C = 4.56*10^{-4} \ M[/tex]

The number of moles of  SP is mathematically represented as

        [tex]n = C * V[/tex]

substituting value

       [tex]n = 0.525 * 4.56*10^{-4}[/tex]

       [tex]n = 2.39 *10^{-4} \ moles[/tex]

The mass of SP that dissolved is

          [tex]m = n * Z[/tex]

Where Z is the molar mass of SP which has a constant value of

           [tex]Z = 146 g/mole[/tex]

So

         [tex]m = 2.394*10^{-4} * 146[/tex]

         [tex]m = 0.0349 \ g[/tex]

A 33.0−g sample of an alloy at 93.00°C is placed into 50.0 g of water at 22.00°C in an insulated coffee-cup calorimeter with a heat capacity of 9.20 J/K. If the final temperature of the system is 31.10°C, what is the specific heat capacity of the alloy? J g·°C

Answers

Answer:

THE SPECIFIC HEAT OF THE ALLOY IS 0.9765 J/g K

Explanation:

Mass of alloy = 33 g

Initial temperature of alloy = 93°C

Mass of water = 50 g

Initail temp. of water = 22 °C

Heat capacity of calorimeter = 9.20 J/K

Final temp. = 31.10 °C

specific heat of alloy = unknown

specific heat capacity of water = 4.2 J/g K

Heat = mass * specific heat * change in temperature = m c ΔT

Heat = heat capcity * chage in temperature = Δ H * ΔT

In calorimetry;

Heat lost by the alloy = Heat gained by water + Heat of the calorimeter

                     mc ΔT = mcΔT + Heat capacity * ΔT

33 * C * ( 93 - 31.10) = 50 * 4.2 * ( 31.10 -22) + 9.20 * ( 31.10 -22)

33 * C * 61.9 = 50 * 4.2 * 9.1 + 9.20 * 9.1

2042.7 C = 1911 + 83,72

C = 1911 + 83.72 / 2042.7

C = 1994.72 /2042.7

C =0.9765 J/g K

The specific heat of the alloy is 0.9765 J/ g K

Identify whether each species functions as a Brønsted-Lowry acid or a Brønsted-Lowry base in this net ionic equation. HF (aq) + SO32- ⇌ F- + HSO3- Brønsted-Lowry _____ Brønsted-Lowry _____ Brønsted-Lowry _____ Brønsted-Lowry _____ In this reaction: The formula for the conjugate _____ of HF is The formula for the conjugate _____ of SO32- is

Answers

Explanation:

A Bronsted-Lowry base is a substance that accepts a proton in the form of a hydrogen (H) atom.

On the other hand;

Bronsted-Lowry acid is the substance that donates the proton.

HF (aq) + SO32- ⇌ F- + HSO3-

In the forward reaction;

Bronsted-Lowry acid : HF

Bronsted-Lowry base: SO32-

In the backward reaction;

Bronsted-Lowry acid : HSO3-

Bronsted-Lowry base: F-

The conjugate base of HF is F-

The conjugate acid of SO32- is HSO3-

1. Reaccionan 9.7 Kg de un mineral de níquel al 70% con 8L de una solución de ácido fosfórico al 60% y con una densidad de 1.36g/ml.

Answers

Answer:

The reaction produces 201.4 g of hydrogen gas and 12.2 kg of Nickel Phosphate.

Explanation:

English Translation

9.7 Kg of a 70% nickel mineral react with 8L of a 60% phosphoric acid solution and with a density of 1.36g / ml.

Solution

The problem doesn't seen to be complete as it doesn't ask a question in the end. But, we will just calculate the amount of each product expected to cover the grounds.

The balanced chemical reaction between Nickel and Phosphoric acid is given as

3Ni + 2H₃PO₄ → 3H₂ + Ni₃(PO₄)₂

We need to first obtain the limiting reagent, that is, the reagent that is used up during the reaction and is in short supply. This reagent determines the amount of products that will be formed.

Mass of nickel that is present at the start = 70% of 9.7 kg = 6.79 kg

Mass of Phosphoric acid present at the start of the reaction = 60% of (8000 mL × 1.36 g/mL) = 6528 g = 6.528 kg

Converting both of these to number of moles

Number of moles = (mass)/(Molar mass)

For nickel,

Mass = 6.79 kg = 6790 g

Molar mass = 58.6934 g/mol

Number of moles at the start = (6790/58.6934) = 115.7 moles

For Phosphoric acid

Mass = 6528 g

Molar mass = 97.994 g/mol

Number of moles = (6528/97.994) = 66.6 moles

3 moles of Ni reacts with 2 moles of H₃PO₄

From the number of moles present initially, shows that Phosphoric acid is in limited supply and is the limiting reagent.

From the stoichiometric balance of the reaction

2 moles of H₃PO₄ gives 3 moles of H₂

66.6 moles of H₃PO₄ will give (66.6×3/2) of H₂, that is, 99.9 moles of H₂.

Mass of H₂ liberated from the reaction = (Number of moles) × (molar mass) = 99.9 × 2.016 = 201.3984 g = 201.4 g

2 moles of H₃PO₄ gives 1 mole of Ni₃(PO₄)₂

66.6 moles of H₃PO₄ will give (66.6×1/2) of Ni₃(PO₄)₂, that is, 33.3 moles of Ni₃(PO₄)₂.

Mass of Ni₃(PO₄)₂ produced from the reaction = (Number of moles) × (molar mass) = 33.3 × 366.02 = 12,188.466 g = 12.2 kg

Hope this Helps!!!

Aqueous sulfuric acid H2SO4 will react with solid sodium hydroxide NaOH to produce aqueous sodium sulfate Na2SO4 and liquid water H2O. Suppose 62. g of sulfuric acid is mixed with 33.8 g of sodium hydroxide. Calculate the minimum mass of sulfuric acid that could be left over by the chemical reaction. Round your answer to 2 significant digits.

Answers

Answer:

Approximately [tex]21\; \rm g[/tex].

Explanation:

[tex]\rm H_2SO_4[/tex] (a diprotic acid) reacts with [tex]\rm NaOH[/tex] (a monoprotic base) at a one-to-two ratio:

[tex]\rm 2\; NaOH\, (s) + H_2SO_4\, (aq) \to Na_2SO_4\; (aq) + 2\; H_2O\, (l)[/tex].

In other words, if [tex]n(\mathrm{NaOH})[/tex] and [tex]n(\mathrm{H_2SO_4})[/tex] represent the number of moles of the two compounds reacted, then:

[tex]\displaystyle \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} = \frac{1}{2}[/tex].

Look up the relative atomic mass data on a modern periodic table:

[tex]\rm H[/tex]: [tex]1.008[/tex].[tex]\rm S[/tex]: [tex]32.06[/tex].[tex]\rm O[/tex]: [tex]15.999[/tex].[tex]\rm Na[/tex]: [tex]22.990[/tex].

Calculate the (molar) formula mass of [tex]\rm H_2SO_4[/tex] and [tex]\rm NaOH[/tex]:

[tex]M(\mathrm{H_2SO_4}) = 2 \times 1.008 + 32.06 + 4 \times 15.999 = 98.072\; \rm g \cdot mol^{-1}[/tex].

[tex]M(\mathrm{NaOH}) = 22.990 + 15.999 + 1.008 = 39.997\; \rm g \cdot mol^{-1}[/tex].

Calculate the number of moles of formula units in that [tex]33.8\; \rm g[/tex] of [tex]\rm NaOH[/tex]:

[tex]\begin{aligned}n(\mathrm{NaOH}) &= \frac{m(\mathrm{NaOH})}{M(\mathrm{NaOH})} \\ &= \frac{33.8\; \rm g}{39.997\; \rm g \cdot mol^{-1}} \approx 0.845\; \rm mol\end{aligned}[/tex].

Apply the ratio [tex]\displaystyle \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} = \frac{1}{2}[/tex] to find the (maximum) number of moles of [tex]\rm H_2SO_4[/tex] that would react with the [tex]33.8\; \rm g[/tex] of [tex]\rm NaOH[/tex]:

[tex]\begin{aligned}n(\mathrm{H_2SO_4}) &= \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} \cdot n(\mathrm{NaOH})\\ &= \frac{1}{2} \times 0.845 \approx 0.4225\; \rm mol\end{aligned}[/tex].

Calculate the mass of that [tex]0.4225\; \rm mol[/tex] of [tex]\rm H_2SO_4[/tex]:

[tex]\begin{aligned}m(\mathrm{H_2SO_4}) &= n(\mathrm{H_2SO_4}) \cdot M(\mathrm{H_2SO_4})\\ &= 0.4225 \; \rm mol \times 98.072\; \rm g \cdot mol^{-1} \approx 41.435\; \rm g \end{aligned}[/tex].

When the maximum amount of [tex]\rm H_2SO_4[/tex] is reacted, the minimum would be in excess. Hence, the minimum mass of

[tex]62\; \rm g - 41.435\; \rm g \approx 21\; \rm g[/tex] (rounded to two significant figures.)

Two scientists study data collected during an experiment and reach different conclusions. How would the scientific community address their disagreement?

Please

Answers

Answer: D. They would device an experiment that could test the two scientists conclusions.

Explanation:

The results of the scientific study must be verified by peer scientists or members of the scientific community to proof whether the research has been conducted produce a valid evidence.

In the given situation, the two scientists had developed different conclusion for the same experiment. This may mean either of the two may have put up an incorrect conclusion.

The scientific community may address this issue by performing the experiment. Every scientific conclusion is based upon the results of the experimental approach.

Answer:d

Explanation:

g Reduction involves the A) loss of neutrons, gain of electrons, and an increase in oxidation state. B) loss of neutrons. C) increase in oxidation state. D) gain of electrons and an increase in oxidation state. E) gain of electrons.

Answers

Answer:

E. Gain of electrons

Explanation:

A reduction reaction is one part of the two concurrent reactions that take place in a redox (reduction-oxidation) reaction.

During reduction, an atom gains electrons from a donor atom, and it's oxidation number becomes smaller.

Option A is wrong because reduction does not increase oxidation state nor are neutrons involved

Option B is wrong because reduction is not a nuclear reaction (does not involve the nucleons)

Option C is wrong because reduction leads to reduction in oxidation state

Option D is wrong leads to a reduction in oxidation state when electrons are gained

Option E is correct because reduction involves gain of electrons

11. Caproic acid, which is responsible for the foul odor of dirty socks, is composed of C, H, and O atoms. Combustion of a 0.225-g sample of this compound produces 0.512 g CO2 and 0.209 g H2O. (a) What is the empirical formula of caproic acid

Answers

Answer:

C3H6O

Explanation:

Step 1:

Data obtained from the question include the following:

Mass of the compound = 0.225g

Mass of CO2 = 0.512g

Mass of H2O = 0.209g

Step 2:

Determination of the masses of carbon, hydrogen and oxygen present in the compound.

This is illustrated below:

For Carbon, C:

Molar mass of CO2 = 12 + (2x16) = 44g/mol

Mass of C in CO2 = 12/44 x 0.512 = 0.1396g

For Hydrogen, H:

Molar mass of H2O = (2x1) + 16 = 18g/mol

Mass of H in H2O = 2/18 x 0.209 = 0.0232g

For Oxygen, O:

Mass of O = 0.225 – (0.1396 + 0.0232)

Mass of O = 0.0622g

Step 3:

Determination of the empirical formula for caprioc acid.

This can be obtain as follow:

C = 0.1396g

H = 0.0232g

O = 0.0622g

Divide by their molar mass

C = 0.1396/12 = 0.0116

H = 0.0232/1 = 0.0232

O = 0.0622/16 = 0.0039

Divide by the smallest

C = 0.0116/0.0039 = 3

H = 0.0232/0.0039 = 6

O = 0.0039/0.0039 = 1

Therefore, the empirical formula for caprioc acid is C3H6O

What is the atomic mass of AlNO2?

Answers

Answer:

I am not sure, but I think this is the answer 72.987 g/mol

72.83 should be correct

A temperature of 50°F is equal to °C.

Answers

Answer:

CONVERT IT:

50°F is equal to 10°C

Answer:

10 degrees Celsius

Explanation:

(50°F − 32) × 5/9 = 10°C

A maple tree could be studied in many fields of science. What aspects of a maple tree might be studied in chemistry?

Answers

Answer:

Chemical reactions, kinetics, organic chemistry

Explanation:

You might study the chemical reaction, learn about the differences between products and reactants, about delta H and exothermic and endothermic reactions. You may also study Kinetics by studying the rates of reactions with certain chemicals in a maple's enzymatic processes.

Another thing that you might learn about is organic chemistry. The glucose molecules, carbohydrates, lipids, nucleic acids, all have a structure based on the Carbon atom. You can learn about the specific structures of some chemicals that are involved in photosynthesis and simple hydrocarbons that are involved in photosynthetic/bio-synthetic pathways.

There's probably a lot more - but these are the most basic things I could think of.

The following data show the rate constant of a reaction measured at several different temperatures. Temperature (K) Rate Constant (1/s) 310 0.194 320 0.554 330 1.48 340 3.74 350 8.97 Part APart complete Use an Arrhenius plot to determine the activation barrier for the reaction. Express your answer using three significant figures. Ea

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

Part A

    activation barrier for the reaction [tex]E_a = 84 .0 \ KJ/mol[/tex]

Part B

    The frequency plot is  [tex]A = 2.4*10^{13} s^{-1}[/tex]    

Explanation:

From the question we are told that

     at  [tex]T_1 = 300 \ K[/tex]   [tex]k_1 = 5.70 *10^{-2}[/tex]

and  at  [tex]T_2 = 310 \ K[/tex]   [tex]k_2 = 0.169[/tex]

The  Arrhenius plot is mathematically represented as

      [tex]ln [\frac{k_2}{k_1} ] = \frac{E_a}{R} [\frac{1}{T_1} - \frac{1}{T_2} ][/tex]

Where [tex]E_a[/tex] is the activation barrier for the reaction

         R is the gas constant with a value of  [tex]R = 8.314*10^{-3} KJ/mol \cdot K[/tex]

Substituting values

          [tex]ln [\frac{0.169}{6*10^-2{}} ] = \frac{E_a}{8.314*10^{-3}} [\frac{1}{300} - \frac{1}{310} ][/tex]

=>       [tex]E_a = 84 .0 \ KJ/mol[/tex]

The  Arrhenius plot can also be  mathematically represented as

      [tex]k = A * e^{-\frac{E_a}{RT} }[/tex]

Here we can use any value of k from the data table with there corresponding temperature let take  [tex]k_2 \ and \ T_2[/tex]

So substituting values

        [tex]0.169 = A e ^{- \frac{84.0}{8.314*10^{-3} * 310} }[/tex]

=>       [tex]A = 2.4*10^{13} s^{-1}[/tex]    

Gravity on Earth is 9.8 m/s2, and gravity on the Moon is 1.6 m/s2.

so if the mass of an object on earth is 40 kilograms what is the mass on the moon.
and how much does it way

Answers

Answer:

Mass is the same but it weights 64 Newtons

Explanation:

First of Mass is the same in any sort of gravity. Now let's calculate weight

W = MG

where W = Weight

M = Mass

G = Gravity

W = (40kg)(1.6)

W = 64

Sorry for the spelling mistakes, hope this helps

Answer:6.61kilo

Explanation: fdfv

Enter your answer in the provided box. To make use of an ionic hydrate for storing solar energy, you place 409.0 kg of sodium sulfate decahydrate on your house roof. Assuming complete reaction and 100% efficiency of heat transfer, how much heat (in kJ) is released to your house at night

Answers

Answer:

409.0 kg of sodium sulfate decahydrate will produce 4.49×10⁵ kJ

of heat energy.

Explanation:

CHECK THE COMPLETE QUESTION BELOW

To make use of an ionic hydrate for storing solar energy, you place 409.0 kg of sodium sulfate decahydrate on your house roof. Assuming complete reaction and 100% efficiency of heat transfer, how much heat (in kJ) is released to your house at night? Note that sodium sulfate decahydrate will transfer 354 kJ/mol

EXPLANATION

Here we were asked to calculate the amount of heat will be generated by 409.0 kg of sodium sulfate decahydrate at night assuming there Isa complete reaction and 100% efficiency of heat transfer in the process

The molecular weight of sodium sulfate decahydrate (H₂₀Na₂O₁₄S) is needed here, so it must be firstly calculated.

The molecular weight of sodium sulfate decahydrate (H₂₀Na₂O₁₄S)

( 1*20) + (22.98*2) + (16*14)+ (32*14)= 322.186 g/mol.

Thus 409.0 kg of H₂₀Na₂O₁₄S will have a value which is equivalent to = (409000g)/(322.186 g/mol.)

=1269.453mol of H₂₀Na₂O₁₄S.

But it was stated in the the question that per mole of H₂₀Na₂O₁₄S will transfer 354 kJ heat.

Therefore, 1269.453mol will transfer 1269.453× 354 kJ = 4.49×10⁵ kJ of heat.

Hence, 409.0 kg of sodium sulfate decahydrate will produce

4.49×10⁵ kJ of heat energy.

Other Questions
Shape 1 and shape 2 are plotted on a coordinate plane. Which rigid transformation can you perform on shape 2 to show that shape 2 is congruent to shape 1? Which of the following are square roots of the number below? Check all thatapply.576A.) 24 B.) -576 1/2C.) 12D.) -24E.) 48F.) 576 1/2 Which graph represents a function?? List the two suggestions the article gives for avoiding gender-biased language. (Site 2) asap plz!! What is the frequency of a wave with a period of 0.2 seconds? A large cooler contains 15 liters of iced tea and A small cooler contains 5 liters of iced tea how many more milliliters of iced tea does the large cooler contain than the small cooler? Find the absolute maximum and absolute minimum of the function f(x,y)=2x24x+y24y+1 on the closed triangular plate bounded by the lines x=0,y=2,y=2xin the first quadrant. Samantha is going to the store to buy cat food. A small bag of cat food costs $6 while a large bag costs $14. She plans to buy at least 4 bags of food but spend no more than $56. Which of the following is a possible combination of the types of bags she can buy? The volume of a rectangular prism can be found by multiplying the base area, B, times the height. If the volume of the prism is represented by 15x2 + x + 2 and the height is x2, which expression represents B, the area of the base? 15x + + 15x + + 15 + + 15 + + RESUELVE EL SIGUINTE PORBLEMA En la escuela "Soy Feliz porque soy diverso", hay 230 estudiantes en total. De estos, 35 son mujeres. a) Cuntos son hombres? b) Qu parte del total de los estudiantes son hombres? 2. Mara se ha gastado 13 del dinero que le dieron de paga sus abuelitos en comprar un libro de aventuras. Tambin se ha gastado 29 de la paga en comprar una cartuchera. Qu fraccin de su paga se ha gastado Mara? Datos: Libro de aventuras = 13 Cartuchera = 29 Solucin: 13+ 29=3+29= 59 Find the total cost, rounded to the nearest cent, of 3.9 pounds of corned beef at $5.49 per pound and 4.6 pounds of pastrami at $4.95 per pound. Si tuviramos suficiente dinero_a Chile durante las vacaciones.O A. volveremosB. volvamosC. vuelvenO D. volveramosSUBMIT Need help ASAP How to check that a trinomial is a perfect square ? (blank)is a chemical substance that organisms require to live. How did shifting workforce demographics contribute to the dramatic changes that occurred in the US labor force and industry during and immediately after World War II?Can any please help me I don't understand the question What might happen to the organisms in the food web below if the number of phytoplankton and vegetation drastically decreased? A paper manufacturer packages twelve reams of paper in a boxin three stacks of four reams. A ream of paper weighs 5 pounds and has dimensions of 8.5 inches by 11 inches by 2 inches. What is the volume of the current-sized box? a0 cubic inches If the market price of an orange increases from $0.80 to $1.05, then consumer surplus. Name First orange Second orange Third orange Allison $2 $1.5 $0.75 Bob $1.5 $1 $0.6 Charisse $0.75 $0.25 $0 Group of answer choices increases by $0.75 decreases by $0.95. decreases by $0.75 decreases by $1.00 Which reason would most effectively refute the counterclaim?Counterclaim: In addition to writing acclaimed lyrics, Bob Dylan has written both prose and poetry.I have read Dylans book of poetry, Tarantula, and his memoir, Chronicles: Volume One, and think that both books are worthy of the Nobel Prize in Literature. I just dont think that Dylans song lyrics should be awarded in the same category as his books.It is true that Bob Dylan has published traditional poetry and prose. However, neither of the books was very good, and neither won prestigious awards. If the Nobel Prize in Literature considered all writers of at least two mediocre books, the award would mean nothing.It is true that Bob Dylan has published traditional poetry and prose. However, one book of poetry and one memoir would not qualify him for the prize. The prize was awarded based on his songwriting, which does not qualify as literature. Two very large parallel sheets a distance d apart have their centers directly opposite each other. The sheets carry equal but opposite uniform surface charge densities. A point charge that is placed near the middle of the sheets a distance d/2 from each of them feels an electrical force F due to the sheets. If this charge is now moved closer to one of the sheets so that it is a distance d/4 from that sheet, what force will feel