Answer:
E = 3.6 x 10⁷ N/C
Explanation:
The electric field strength due to a point charge is given by the following formula:
[tex]E = \frac{kq}{r^2}\\\\[/tex]
where,
E = Electrical Field Strenght = ?
k = Colomb's Constant = 9 x 10⁹ Nm²/C²
q = magnitude of charge = 10 μC = 1 x 10⁻⁵ C
r = distance = 5 cm = 0.05 m
Therefore,
[tex]E = \frac{(9\ x\ 10^9\ Nm^2/C^2)(1\ x\ 10^{-5}\ C)}{(0.05\ m)^2}[/tex]
E = 3.6 x 10⁷ N/C
What is the approximate size of the Earth's magnetic field? (dont ask me to specify thats what the question is and im as confused as heck too)
Answer:
The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 -.65 gauss).
Explanation:
To measure the Earth's magnetism in any place, we must measure the direction and intensity of the field. The Earth's magnetic field is described by seven parameters. These are declination (D), inclination (I), horizontal intensity (H), the north (X), and east (Y) components of the horizontal intensity, vertical intensity (Z), and total intensity (F). The parameters describing the direction of the magnetic field are declination (D) and inclination (I). D and I are measured in units of degrees, positive east for D and positive down for me. The intensity of the total field (F) is described by the horizontal component (H), vertical component (Z), and the north (X) and east (Y) components of the horizontal intensity. These components may be measured in units of gauss but are generally reported in nanoTesla (1nT * 100,000 = 1 gauss). The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 - .65 gauss). Magnetic declination is the angle between magnetic north and true north. D is considered positive when the angle measured is east of true north and negative when west. The magnetic inclination is the angle between the horizontal plane and the total field vector, measured positive into Earth. In older literature, the term “magnetic elements” is often referred to as D, I, and H.
What would happen if you use a thicker wire around the iron nail of an electromagnet? (thats the whole question)
Answer:
When we have a current I, we will have a magnetic field perpendicular to this current.
Then if we have a wire in a "spring" form. then we will have a magnetic field along the center of this "spring".
Now suppose we put an iron object in the middle (where the magnetic field is) then we will magnetize the iron object.
Of course, the intensity of the magnetic field is proportional to the current, given by:
B = (μ*I)/(2*π*r)
Where:
μ is a constant, I is the current and r is the distance between to the current.
Now remember that for a resistor:
R = ρ*L/A
R is the resistance, ρ is the resistivity, which depends on the material of the wire, L is the length of the wire, and A is the cross-section of the wire.
If we increase the area of the wire (if we use a thicker wire).
And the relation between resistance and current is:
I = V/R
Where V is the voltaje.
Now, if we use a thicker wire, then the cross-section area of the wire increases.
Notice in the resistance equation, that the cross-section area is on the denominator, then if we increase the area A, the resistance decreases.
And the resistance is on the denominator of the current equation, then if we decrease R, the current increases.
If the current increases, the magnetic field increases, which means that we will have a stronger electromagnet.
PLEASE HELP!
how am i supposed to label a graph using the points from the protractor?
Answer:
srghgddggjjjkkkk
Explanation:
fhhgxxxxxxxx3
errghydhi
So the the greater the height, the
farther something can fall, the greater
the potential energy.
True
False
3. A person is pushing a box down the hallway with a force of 25N. The Force of friction is 15N
a. List all of the forces on the box (use pushing/pulling on
Answer:
10 N
Explanation:
Given that,
Force applied by a person = 25 N
Force of friction = 15 N
The net force acting on the box is given by :
F = Applied force - the force of friction
So,
F = 25 N - 15 N
F = 10 N
So, the required force is equal to 10 N.
A negatively charged rod briefly touches a neutral metal ball. The metal ball will now be ____________
Answer:
let say it will be positive
When the electrons reach the collector, they flow towards the positivly charged grid. The resulting current is measured. Note that as the electrons accelerate from the cathode toward the grid, they collide with the mercury atoms. Assume that these collisions are completely elastic. How does the collected current vary if the ΔVgridΔVgrid is slowly increased? View Available Hint(s)
Answer:
We can conclude by saying that in the beginning current will increase but after sometime, it becomes saturated.
Explanation:
Note: No information on change in number of electron generated.
Since there is a collision, the electrons emitted will not reach the collector at same time. As the voltage is increased, the the speed with which the electrons will reach the collector starts to increase. Due to this, electric current will first increases till all the emitted electrons reach the collector. Since we are not provided with the information that number of electrons generated are changing, after increasing voltage current will increase for some time and then reaches a saturated state.
We can conclude by saying that in the beginning current will increase but after sometime it becomes saturated.
A ray of light is incident from air on the surface of a block of clear ice (nice=1.31) at an angle of 45.0° with the normal. Part of the light is reflected and part is refracted. Find the angle between the reflected and refracted light.
Answer:
A ray of light is incident from air on the surface of a block of clear ice (nice=1.31) at an angle of 45.0° with the normal. Part of the light is reflected and part is refracted. Find the angle between the reflected and refracted light.
Determine the volume of the ring/tube using Archimedes' Principle and compare your results to the volume of the ring/tube calculated from physical measurements. Do not tie the thread directly to the balance; use the paper clip as a hook. Assume that the density of the water is 1.0 g/cm. Neatly show all work and provide all necessary data. If the TA cannot duplicate your results from the data that you provide, your score will be drastically reduced.
Volume of ring/tube via Archimedes' Principle (A): ___________
Volume of ring/tube via Physical Measurement (B): __________
Percent Difference-=(A-B)/ (A+B)/2 x100%-=_________
Percent Difference <-3% <-5% <= 10% <--15% <-20% | >20%
Points 50 45 40 25 10 0
Answer:fuafnshf dj en jz
Explanation:
Can. Nd I do j dj cdj an man Jaz jxn nah an b
PLEASE HELP, PLEASE A CORRECT ANSWER!
Answer: I like your profile picture
Explanation:
uest
1. State Newton's law of cooling.
Answer:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant. This condition is generally met in heat conduction (where it is guaranteed by Fourier's law) as the thermal conductivity of most materials is only weakly dependent on temperature. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling
Determine the potential difference between the ends of the wire of resistance 5 Ω if 720 C passes through it per minute.
Answer:
The potential difference between the ends of a wire is 60 volts.
Explanation:
It is given that,
Resistance, R = 5 ohms
Charge, q = 720 C
Time, t = 1 min = 60 s
We know that the charge flowing per unit charge is called current in the circuit. It is given by :
I = 12 A
Let V is the potential difference between the ends of a wire. It can be calculated using Ohm's law as :
V = IR
V = 60 Volts
So, the potential difference between the ends of a wire is 60 volts. Hence, this is the required solution.
form
bonds with each other.
There are many kinds of mixtures. Some mixtures are
chunky like a mixture of peanuts and raisins. These
mixtures are called
I
mixtures.
Answer:
Homogeneous mixtures
Explanation:
I think so because homogeneous means mixed mixtures
The type of brightness in which all
stars being observed are the same
distance from Earth is known as
which type of brightness?
A. absolute brightness.
B. apparent brightness.
C. obvious brightness.
D. compositional brightness.
example of kinetic energy into heat energy
Answer:
The kinetic energy of large objects can be converted into this thermal energy.
Explanation:
For example, if you drop a water balloon onto the ground, its kinetic energy is converted mostly to thermal energy. If the balloon weighs 1 kilogram and you drop it from about 2 meters, it will heat up by less.
How much kinetic energy does a 0.30-kg stone have if it is thrown at 44 m/s?
O 440J
O 510 J
O 580J
0 290
Answer:
0 290
Explanation:
Answer:
290
Explanation:
the reason is that the formula for kinetic energy is half m×v².
you divde half by 0.30 multiply by 44×44
you get 290.4
then you round it to significant figures to get 290
Learning Task 1: Analyze the figure and answer the questions that follow.
1. Which one is the charged object?
2. What made the hair of the girl to rise?
Answer:
1) Van der rcf generator
2) the charge is distributed among all the hairs, as they all have the same potential,
the charges are of the same sign repel each other
Explanation:
1.) The object is a Van der rcf generator, which is loaded by friction,
The girl has no load
2) when the girl touches the sphere of the generator part of the electrons of this is transferred to the girl, when this charge reaches the hair, the charge is distributed among all the hairs, as they all have the same potential,
the charges are of the same sign repel each other
Since water is much denser than air, deep-sea divers experience a much higher ambient pressure underwater. Each 10 meters of depth underwater adds another 1 atm to the ambient pressure experienced by the diver. (Note: this is in addition to the 1 atm ambient pressure at the surface of the water!) What pressure, in psi, is experienced by a diver 50.0 meters below the surface of the water
Answer:
If you are at sea level, each square inch of your surface is subjected to a force of 14.6 pounds. The pressure increases about one atmosphere for every 10 meters of water depth. At a depth of 5,000 meters the pressure will be approximately 500 atmospheres or 500 times greater than the pressure at sea level.
Explanation:
At sea level, a force of 14.6 pounds is applied to every square inch of your surface. For every 10 meters of sea depth, the pressure rises by approximately one atmosphere. The pressure will be about 500 atmospheres, or 500 times more than the pressure at sea level, at a depth of 5,000 meters.
What is pressure?Pressure is defined as the force applied perpendicularly to an object's surface divided by the surface area over which it is applied.
Pressure is the physical amount of force exerted on a particular area.
Pressure can be expressed as
Pressure = Force / area
There are three types of pressure.
Absolute pressureGauge pressureDifferential pressureThus, at sea level, a force of 14.6 pounds is applied to every square inch of your surface. For every 10 meters of sea depth, the pressure rises by approximately one atmosphere. The pressure will be about 500 atmospheres, or 500 times more than the pressure at sea level, at a depth of 5,000 meters.
To learn more about pressure, refer to the link below:
https://brainly.com/question/15170210
#SPJ2
A 0.017-kg acorn falls from a position in an oak tree that is 18.5 meters above the ground. Calculate the velocity of the acorn just before it reaches the ground (rounding your answer to the integer) and its kinetic energy when hitting the ground (rounding your answer to the nearest tenth).
Answer:
The velocity and translational kinetic energy of the acorn when hitting the ground are approximately 19 meters per second and 3 joules, respectively.
Explanation:
Let suppose that the acorn is a conservative system. By Principle of Energy Conservation, we understand that initial potential gravitational potential energy ([tex]U_{g}[/tex]), in joules, which is related to initial height above the ground, is equal to the final translational kinetic energy ([tex]K[/tex]), in joules, related to the instant just before hitting the ground. Let suppose that ground has a height of zero. That is:
[tex]U_{g} = K[/tex] (1)
[tex]m\cdot g \cdot h = \frac{1}{2}\cdot m \cdot v^{2}[/tex] (1b)
Where:
[tex]m[/tex] - Mass, in kilograms.
[tex]g[/tex] - Gravitational acceleration, in meters per square second.
[tex]h[/tex] - Height, in meters.
[tex]v[/tex] - Speed, in meters per second.
If we know that [tex]m = 0.017\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]h = 18.5\,m[/tex], then the velocity and the translational kinetic energy of the acorn just before hitting the ground is:
[tex]m\cdot g \cdot h = \frac{1}{2}\cdot m \cdot v^{2}[/tex]
[tex]v = \sqrt{2\cdot g \cdot h}[/tex]
[tex]v \approx 19.049\,\frac{m}{s}[/tex]
[tex]K = \frac{1}{2}\cdot m\cdot v^{2}[/tex]
[tex]K = 3.084\,J[/tex]
The velocity and translational kinetic energy of the acorn when hitting the ground are approximately 19 meters per second and 3 joules, respectively.
4 points
Bonus: We know that a huge star went supernova in our area a long time
ago because of the large amount of
on earth.
Water
Oxygen
Iron
Carbon
Answer: i may not be 100% accurate but i believe it is iron, there is a fire work that uses iron to shine a certain way and is found on stars.
FREE BRAINIEST IF YOU ANSWER THIS
How long must a 400 W electrical engine work in order to produce 300 kJ of work?
The watt is a rate, similar to something like speed (miles per hour) and other time-interval related measurements.
Specifically, watt means Joules per Second. We are given that the electrical engine has 400 watts, meaning it can make 400 joules per second. If we need 300 kJ, or 3000 Joules, then we can write an equation to solve the time it would take to reach this amount of joules:
w * t = E
w: Watts
t: Time
E: Energy required
(Watts times time is equal to the energy required)
Input our values:
400 * t = 3000
(We need to write 3000 joules instead of 300 kilojoules, since Watts is in joules per second. It's important to make sure your units are consistent in your equations)
Divide both sides by 400 to isolate t:
[tex]\frac{400t}{400}[/tex] = [tex]\frac{3000}{400}[/tex]
t = 7.5 (s)
It will take 7.5 seconds for the 400 W engine to produce 300 kJ of work.
If you have any questions on how I got to the answer, just ask!
- breezyツ
The 400 W electrical engine must work for 12 minute 30 second in order to produce 300 kJ of work.
What is power?The quantity of energy moved or converted per unit of time is known as power in physics. The watt, or one joule per second, is the unit of power in the International System of Units. Power is also referred to as activity in ancient writings. A scalar quantity is power.
Power of the electrical engine = 400 Watt.
Work done by the electrical energy = 300 kJ
= 300 × 1000 Joule
= 300000 Joule.
Now from the definition of power:
Power = Work done/time interval
Hence, required time interval = work done/ power
= 300000 Joule/400 watt
= 750 second
= 12 minute 30 second.
Hence, a 400 W electrical engine must work for 12 minute 30 second in order to produce 300 kJ of work.
Learn more about power here:
https://brainly.com/question/29575208
#SPJ2
Two long current-carrying wires run parallel to each other and are separated by a distance of 5.00 cm. If the current in one wire is 1.65 A and the current in the other wire is 3.25 A running in the opposite direction, determine the magnitude and direction of the force per unit length the wires exert on each other.
Answer:
The magnitude of the force per unit length is 2.145 x 10⁻⁵ N/m and the direction of the force is outward or repulsive since the current in the two parallel wires are flowing in opposite direction.
Explanation:
Given;
distance between the parallel wires, r = 5.0 cm = 0.05 m
current in the first wire, I₁ = 1.65 A
current in the second wire, I₂ = 3.25 A
The magnitude of the force per unit length between the two wires is calculated as follows;
[tex]\frac{F}{l} =\frac{\mu_0 I_1 I_2}{2\pi r} \\\\\frac{F}{l} =\frac{4\pi \times 10^{-7} \times 1.65 \times 3.25}{2\pi \times 0.05} \\\\\frac{F}{l} = 2.145 \times 10^{-5} \ N/m[/tex]
Therefore, the magnitude of the force per unit length is 2.145 x 10⁻⁵ N/m and the direction of the force is outward or repulsive since the current in the two parallel wires are flowing in opposite direction.
Help please due tomorrow
Jill doubled the force acting on an object, yet she kept the acceleration constant or unchanged.
How did she do this?
Answer:
Mass doubles
Explanation:
Since F = ma, and given that the acceleration stayed constant, the mass must have changed. (Assuming thatt when the problem states the force doubles, they mean the net force doubles). Note, that the mass does not have to change if the acceleration is zero.
HELP!!!!
A student did an experiment to determine the
specific heat capacity of an unknown metal.
She heated 1.00 x 10- kg of the metal to 225°C
and quickly placed it in an insulated container
(negligible specific heat capacity) that contained
0.0900 kg of water at a temperature of 18.0°C.
What is the final temperature of the water if the
specific heat capacity of the metal is
2.11 x 102 J/kg.°C?
Answer:
T₂ = 16.83°C
Explanation:
Applying the law of conservation of energy principle here in this situation we get the following equation:
[tex]Energy\ Lost\ by\ Metal = Energy\ Gaine\ by\ Water\\m_{metal}C_{metal}(T_2-T_{1metal}) = m_{w}C_{w}(T_2-T_{1w})[/tex]
where,
T₂ = Final Temperature of Water = Final Temperature of Metal = ?
C_metal = Specififc Heat Capacity of the metal = 2.11 x 10² J/lg.°C
T_1metal = Initial Temperature of Metal = 225°C
m_metal = mass of metal = 1 x 10⁻²[tex](0.01\ kg)(211\ J/kg.^oC)(T_2-225^oC) = (0.09\ kg)(4184\ J/kg.^oC)(T_2-18^oC)\\2.11 T_2 - 474.75 = 376.56T_2 - 6778.08\\374.45T_2 = 6303.33\\[/tex] kg (exponent assumed due to missing info in question)
C_w = Specififc Heat Capacity of the water = 4184 J/lg.°C
T_1w = Initial Temperature of water = 18°C
m_w = mass of water = 0.09 kg
Therefore,
[tex](0.01\ kg)(211\ J/kg.^oC)(T_2-225^oC)=(0.09\ kg)(4184\ J/kg.^oC)(T_2-18^oC)\\\\2.11 - 474.75T_2 = 376.56 - 6778.08T_2\\[/tex]
T₂ = 16.83°C
What is the
mass
density
of an object of
equal to 100 grams and volume of 20 cubic
centimeter
Answer:
[tex]d=5\ g/cm^3[/tex]
Explanation:
Given that,
Mass of the object, m = 100 grams
Volume of the object, V = 20 cm³
We need to find the density of the object. We know that, density is equal to mass per unit volume. So,
[tex]d=\dfrac{m}{V}\\\\d=\dfrac{100\ g}{20\ cm^3}\\\\d=5\ g/cm^3[/tex]
So, the density of the object is equal to [tex]5\ g/cm^3[/tex].
Please Help with this
Answer: c is correct
Explanation: i did this
Which of the following answers are true: Group of answer choices The larger the slit, the better the wavelength resolution of the spectrometer A slit can select wavelengths spatially. This is for example used in a monochromator, where focused light after refraction in a prism or diffracted from a grating can be selected through a narrow slit. A slit can be used to direct light alternatingly to the sample or the blank. A slit can be used as a photodetector. The narrower the slit, the better the wavelength resolution of t
Answer:
true b, e
Explanation:
The expression that describes the diffraction of a grating is
d sin θ = m λ
where d is the separation between the slits, m is the order of the spectrum
let's analyze the different answers
a) False. The size (height) of the slits does not influence the resolution, the number of them per unit of length influences, the greater the number, the smaller the distance (d) this they
b) True. The spectrum is resolved on a screen, in the form that each wavelength corresponds to a fixed distance from the central maximum, for a given order
c) False. The exit slit selects a given wavelength, but does not deflect the beam from its path
d) False. The slit lets in light, but does not measure its intensity
e) True. For a continuous spectrum, the wavelength variation that passes through a slit is proportional to its width. For a discrete spectrum the width of the slit does not affect the wavelength
Lee and Leigh are twins. At their first birthday party, Lee is placed on a spaceship that travels away from the earth and back at a steady 0.714 c . The spaceship eventually returns, landing in the swimming pool at Leigh's eleventh birthday party. When Lee emerges from the ship, how old is he?
a. He is still only 1 year old
b. He is 8 years old
c. He is also 11 years old
d. He is 18 years old
Answer:
b. He is 8 years old
Explanation:
We will use Einstein's formula for time dilation, to calculate the age of Lee. Because Lee was traveling comparable to the speed of light, his age must be lesser than Leigh.
[tex]T = \frac{T_o}{\sqrt{1-\frac{v^2}{c^2} } }[/tex]
where,
T₀ = Time on Earth = ?
T = Relative Time = 10 years
v = relativistic speed of Lee = 0.714 c
c = speed of light = 3 x 10⁸ m/s
Therefore,
[tex]10\ years = \frac{T_o}{\sqrt{1-\frac{(0.714\ c)^2}{c^2} } } \\\\[/tex]
T₀ = 7 years
Hence, the age of Lee will be:
[tex]Lee's\ Age = 1\ year + 7\ years = 8\ years[/tex]
b. He is 8 years old
list some application of atmospheric pressure?
Answer:
Drinking straw, syringe, Dropper, vacuum, etc.
Explanation: