Answer:
Rs 75,000
Step-by-step explanation:
Let the total value of property be x
If one-fifth of that is given to son
property with son = 1/5 of total value of property = 1/5 of x = x/5
If one-third of that is given to daughter
property with daughter = 1/3 of total value of property = 1/3 of x = x/3
remaining property after giving the portions to son and daughter
= total value of property - property with son -property with daughter
= x - x/5 - x/3
taking LCM of 5 and 3 (15)
= (15x - 3x - 5x)/15
= 7x/15
Given that remaining property was given to wife
property with wife = 7x/15
it is given that wife got 35000 Rs
thus,
7x/15 = 35,000
7x = 35,000*15 = 525,000
x = 525,000/7 = 75,000
Thus, total worth of property =Rs 75,000 Answer
Answer:
Rs 75,000
Step-by-step explanation:
Let the total value of property be x
If one-fifth of that is given to son
property with son = 1/5 of total value of property = 1/5 of x = x/5
If one-third of that is given to daughter
property with daughter = 1/3 of total value of property = 1/3 of x = x/3
remaining property after giving the portions to son and daughter
= total value of property - property with son -property with daughter
= x - x/5 - x/3
taking LCM of 5 and 3 (15)
= (15x - 3x - 5x)/15
= 7x/15
Given that remaining property was given to wife
property with wife = 7x/15
it is given that wife got 35000 Rs
thus,
7x/15 = 35,000
7x = 35,000*15 = 525,000
x = 525,000/7 = 75,000
Thus, total worth of property =Rs 75,000 Answer
The system of equations above has solution (x,y).
What is the value of x ?
Answer: [tex]\frac{21}{4}[/tex]
Step-by-step explanation:
Multiply each side by 2 to get rid of the fraction on the right side. That basically gets rid of the 1/2 and the 2.
Youre now stuck with 2x + y = 21. They gave us y which is 2x. 2x + 2x = 4x
You now have 4x = 21
Divide each side by 4 to get x = 21/4
The weight of an
object on Earth varies
directly as the weight
of that object on the
B moon. If a 150-1b
object would weigh
24 lbs on the moon,
how much would a 95-
lb object weigh on the
moon?
Answer:
15.2 lbs
Step-by-step explanation:
Make a ratio: 150 : 24 = 95 : x
[tex]\frac{75}{12}=\frac{95}{x}[/tex]
75x = 1140
x = 15.2
Which is the equation of a line that has a slope of 1 and passes through point (5, 3)?
y = -2
y = x + 2
y = x + 3
y=x-5
Answer:
y = x - 2
Step-by-step explanation:
y = x + b
3 = 5 + b
y = x - 2
We can use the slope intercept form of a line.
y = mx+b where m is the slope and b is the y intercept
y = 1x +b
Substitute the point into the equation
3 = 1*5+b
3 = 5+b
Subtract 5 from each side
3-5 = 5+b-5
-2 =b
y = x-2
Need help ASAP please!!
Answer:
AOB = 73
BOC = 107
Step-by-step explanation:
So make an equation.
9x + 27 = 180
9x = 153
x = 17
AOB = 73
BOC = 107
Which of the following describes the function x^3-8
Answer:
Is there any options if so just repost with the options and i will answer it
Step-by-step explanation:
Any help would be great
Answer:
2/3
Step-by-step explanation:
[tex]\dfrac{12}{18}= \\\\\\\dfrac{6\times 2}{6\times 3}= \\\\\\\dfrac{2}{3}[/tex]
Hope this helps!
Answer:
[tex]\frac{2}{3}[/tex]
Step-by-step explanation:
[tex]\frac{12}{18}=\frac{x}{3}[/tex]
[tex]18x=12 \times 3[/tex]
[tex]18x=36[/tex]
[tex]\frac{18x}{18y} =\frac{36}{18}[/tex]
[tex]x=2[/tex]
[tex]=\frac{2}{3}[/tex]
a mathematical statement regarded as undecided or cannot be proved to be true or false is called what
Answer: axiom
Step-by-step explanation:
Classify the triangle by its sides, and then by its angles.
6 in.
8 in.
10 in.
Classified by its sides, the triangle is a(n)
▼
isosceles
scalene
equilateral
triangle.
Classified by its angles, the triangle is a(n)
▼
acute
obtuse
right
triangle.
Answer: scalene and right
Step-by-step explanation:
Given the coordinates (0,0) and (4, 1), the distance is:
Answer:
[tex]\sqrt{17}[/tex] or ≈4.12
Step-by-step explanation:
Use the distance formula
d= √(x₂ - x₁) ² + (y₂-y₁) ²
d= √(4-0)² + (1-0)²
d= √16 + 1
d= √17
Angle EFB is 108º
a)Find the size of angle x.
b) which one of these justifies your answer?
A-corresponding angles
B- Alternate angles
C- vertically opposite angles
Answer:
c of what im sure about
Step-by-step explanation:
how to differentiate functions
Answer: see boxed answers below
Step-by-step explanation:
(i) multiply the exponent to the coefficient then subtract 1 from the exponent.
[tex]y=\dfrac{3}{5x^3}+3x^4+2x^2-20\\\\\\\text{rewrite it as follows}: y=\dfrac{3}{5}x^{-3}+3x^4+2x^2-20x^0\\\\\\y'=(-3)\dfrac{3}{5}x^{-3-1}+(4)3x^{4-1}+(2)2x^{2-1}-(0)20x^{0-1}\\\\\\y'=-\dfrac{9}{5}x^{-4}+12x^3+4x^1-0\\\\\\y'=\large\boxed{-\dfrac{9}{5x^{4}}+12x^3+4x}[/tex]
(ii) Use the division formula: [tex]y = \dfrac{a}{b}\rightarrow \quad y'=\dfrac{ab'-a'b}{b^2}[/tex]
[tex]a=5x^3+1\qquad \qquad a'=15x^2\\b=3x^5+4x^2\qquad \quad b'=15x^4+8x\\\\\\y'=\dfrac{(15x^2)(3x^5+4x^2)-(5x^3+1)(15x^4+8x)}{(3x^5+4x^2)^2}\\\\\\.\quad =\dfrac{45x^7+60x^4-75x^7-55x^4-8x}{(3x^5+4x^2)^2}\\\\\\.\quad =\large\boxed{\dfrac{-35x^7+5x^4-8x}{(3x^5+4x^2)^2}}[/tex]
A college basketball player makes 80% of his freethrows. Over the course of the season he will attempt 100 freethrows. Assuming free throw attempts are independent, the probability that the number of free throws he makes exceeds 80 is approximately:____________.
A) 0.2000
B) 0.2266
C) 0.5000
D) 0.7734
Answer:
The probability that the number of free throws he makes exceeds 80 is approximately 0.50
Step-by-step explanation:
According to the given data we have the following:
P(Make a Throw) = 0.80%
n=100
Binomial distribution:
mean: np = 0.80*100= 80
hence, standard deviation=√np(1-p)=√80*0.20=4
Therefore, to calculate the probability that the number of free throws he makes exceeds 80 we would have to make the following calculation:
P(X>80)= 1- P(X<80)
You could calculate this value via a normal distributionapproximation:
P(Z<(80-80)/4)=1-P(Z<0)=1-50=0.50
The probability that the number of free throws he makes exceeds 80 is approximately 0.50
The probability that the number of free throws he makes exceeds 80 is approximately 0.5000.
Given that,
A college basketball player makes 80% of his free throws.
Over the course of the season, he will attempt 100 free throws.
Assuming free throw attempts are independent.
We have to determine,
The probability that the number of free throws he makes exceeds 80 is.
According to the question,
P(Make a Throw) = 80% = 0.80
number of free throws n = 100
Binomial distribution:
Mean: [tex]n \times p = 0.80 \times 100 = 80[/tex]
Then, The standard deviation is determined by using the formula;
[tex]= \sqrt{np(1-p)} \\\\=\sqrt{80\times (1-0.80)}\\\\= \sqrt{80 \times 0.20 } \\\\= \sqrt{16} \\\\= 4[/tex]
Therefore,
To calculate the probability that the number of free throws he makes exceeds 80 we would have to make the following calculation:
[tex]P(X>80)= 1- P(X<80)[/tex]
To calculate this value via a normal distribution approximation:
[tex]P(Z<\dfrac{80-80}{4})=1-P(Z<0)=1-0.50=0.5000[/tex]
Hence, The probability that the number of free throws he makes exceeds 80 is approximately 0.5000.
To know more about Probability click the link given below.
https://brainly.com/question/21586810
Help asap giving branlist!!!
Answer:
Option 2
Step-by-step explanation:
Because the slope is -0.09 the answer is the second option. A negative slope means a decrease.
Which equation does not represent a linear function of x?
a. y = -3 over 4 x
b. y = x over 2
c. y = - 3 + 2x
d. y = 3x2 - 2
2(x+3)+5 simplified expression
Answer:
2x+11
Step-by-step explanation:
2(x+3)+5
Distribute
2x+ 6 +5
Combine like terms
2x+11
Answer:
2x + 11
Step-by-step explanation:
First distribute 2 to the x + 3
2x + 6 + 5
Combine the constants
6+5=11
2x + 11
The simplified expression is 2x + 11
Suppose your total taxable income this year is $75,000 you are taxed a rate of 10 percent on the first 25,000 20 percent on the next 25,000 and 30 percent on the final 25,000 what is your total income tax
According to the U.S. Census Bureau, the mean of the commute time to work for a resident of Boston, Massachusetts, is 27.3 minutes with a standard deviation of 8.1 minutes. What minimum percentage of commuters in Boston has a commute time within 2 standard deviations of the mean
Answer:
By the Chebyshev Theorem, at least 75% of commuters in Boston has a commute time within 2 standard deviations of the mean
Step-by-step explanation:
Chebyshev Theorem
The Chebyshev Theorem can also be applied to non-normal distribution. It states that:
At least 75% of the measures are within 2 standard deviations of the mean.
At least 89% of the measures are within 3 standard deviations of the mean.
An in general terms, the percentage of measures within k standard deviations of the mean is given by [tex]100(1 - \frac{1}{k^{2}})[/tex].
What minimum percentage of commuters in Boston has a commute time within 2 standard deviations of the mean
By the Chebyshev Theorem, at least 75% of commuters in Boston has a commute time within 2 standard deviations of the mean
95% of commuters in Boston has a commute time within 2 standard deviations of the mean
Empirical ruleEmpirical rule states that for a normal distribution, 68% of the values are within one standard deviation from the mean, 95% of the values are within two standard deviation from the mean and 99.7% of the values are within three standard deviation from the mean.
Hence, 95% of commuters in Boston has a commute time within 2 standard deviations of the mean
Find out more on Empirical rule at: https://brainly.com/question/10093236
Solve seven square root three plus two square root nine and explain whether the answer is rational or irrational
Answer:
Step-by-step explanation:
5
The square of a number is 12 less than 7 times the number.what is the number?
Answer:
n = 3 or n = 4
Step-by-step explanation:
Let the unknown number be n.
Then:
n² = 7n - 12
In standard quadratic form, we have:
n² - 7n + 12 = 0
In factored form, we have:
(n - 3)(n - 4) = 0, and so
n = 3 and n = 4
Please help! Correct answer only, please! Find the following product if possible. Explain if it is not possible. A. B. C. D.
Answer: A
Step-by-step explanation:
To multiply matrices, multiply each term in Row 1 of the first matrix with each term in Column 1 of the second matrix and then find their sum. Repeat for Row1×Column2, Row2×Column1, and Row2×Column2.
[tex]\left[\begin{array}{ccc}1&4&-1\\3&2&2\end{array}\right] \times \left[\begin{array}{cc}2&-1\\0&3\\5&2\end{array}\right] \\\\\\=\left[\begin{array}{ccc}1(2)+4(0)-1(5)&1(-1)+4(3)-1(2)\\3(2)+2(0)+2(5)&3(-1)+2(3)+2(2)\end{array}\right] \\\\\\=\left[\begin{array}{cc}-3&9\\16&7\end{array}\right][/tex]
I need help solving this problem. It tells me that I could use any method provided above but I don't really get it. Could someone help?
The Problem:
You have to be careful when using a ladder. If you place the ladder too close to the wall, it could tip over. If you place the ladder too far from the wall, it could slide down. To prevent this, safety experts recommend the 4-to-1 Rule: for every 4 feet you want to go up the wall, place the base of the ladder one foot away from the wall.
The longest ladder available at many hardware stores is 40 feet. What is the highest you could reach with this ladder?
The problem gives me three methods to pick from to solve the problem. Each method had a clue underneath.
Hints:
Method 1: Know that the height must be 4x the base. Also know that hypotenuse is the longest side, so height must be shorter than 40 (and base must be shorter than 10 feet).
Method 2: Base^2+Height^2=40^2
Height= 4 • base
Method 3:
Base^2+Height^2=40^2
Base= 0.25 • height
The answers this problem asks for is:
The base, height and length.
Answer:
The highest you could reach with this ladder is 30 feet or 9.14 meters.
The vertex of this parabola is at (-2,-3). When the x-value is -1, the y-value is -5. What is the coefficient of the squared expression in the parabola’s equation? A. 8 B. -8 C. -2 D. 2
Answer:
Option C is correct
Step-by-step explanation:
Given: vertex of this parabola is at (-2,-3)
To find: coefficient of the squared expression in the parabola’s equation if the x-value is -1, the y-value is -5
Solution:
The equation of parabola is of the form [tex]y=a(x-h)^2+k[/tex]
Here, a is the coefficient of the squared expression in the parabola’s equation.
Put [tex](h,k)=(-2,-3)\,,\,(x,y)=(-1,-5)[/tex]
[tex]-5=a(-1+2)^2-3\\-5+3=a(1)^2\\-2=a\\a=-2[/tex]
So, the coefficient of the squared expression in the parabola’s equation is [tex]-2[/tex]
Suppose that the functions p and q are defined as follows.
Answer:
Step-by-step explanation:
Hello,
qop(2)=q(p(2))
p(2) = 4+3=7
[tex]q(7) = \sqrt{7+2}=\sqrt{9}=3[/tex]
so
qop(2)=3
and poq(2)=p(q(2))
[tex]q(2)=\sqrt{2+2} = \sqrt{4}=2[/tex]
p(2) = 7
so poq(2)=7
thanks
The answer is "[tex]\bold{(q \circ p)(2)= 3}\ and \ \bold{(p \circ q)(2)=7}[/tex]" and the further explanation can be defined as follows;
Given:
[tex]\to \bold{p(x)=x^2+3}\\\\\to \bold{q(x)=\sqrt{x+2}}[/tex]
Find:
[tex]\bold{(q \circ p)(2)=?}\\\\\bold{(p \circ q)(2)=?}[/tex]
Solve the value for [tex]\bold{(q \circ p)(2)}\\\\[/tex]:
[tex]\to \bold{(q \circ p)(2)= q \circ p(2) =q(p(2))}\\\\[/tex]
[tex]\therefore\\\\ \to \bold{p(2)=2^2+3= 4+3=7}\\\\\ \because \\\\ \to \bold{q(p(2))=\sqrt{7+2}=\sqrt{9}=3}[/tex]
Solve the value for [tex]\bold{(p \circ q)(2)}\\\\[/tex]:
[tex]\to \bold{(p \circ q)(2)= p \circ q(2)= p (q(2))}\\\\[/tex]
[tex]\therefore\\\\ \to \bold{q(2)=\sqrt{2+2}=\sqrt{4}=2}\\\\\ \because \\\\ \to \bold{p(q(2))=2^2+3= 4+3=7}[/tex]
Therefore the final answer of "[tex]\bold{(q \circ p)(2)= 3}\ and \ \bold{(p \circ q)(2)=7}[/tex]"
Learn more:
brainly.com/question/14270968
How many real solutions does the function shown on the graph have?
Answer:
2 real solutions
Step-by-step explanation:
Identify which of the following is NOT equivalent to 2 3/4
Answer:
Step-by-step explanation:
mabey its c
The equation which is equivalent to [tex]2^{\frac{2}{3} }[/tex] will be equal to [tex]\sqrt[4]{2^3}[/tex]. Hence, option C is correct.
What is an arithmetic operation?The four basic mathematical operations are the addition, subtraction, multiplication, and division of two or even more integers.
Among them is the examination of integers, particularly the order of actions, which is crucial for all other mathematical topics, including algebra, data organization, and geometry.
As per the given information in the question,
[tex]2^{\frac{2}{3} }[/tex] = 1.68
Now, let's check the options,
A.
[tex](2^{\frac{1}{4} } )^{\frac{1}{2} }[/tex] = 1.09 ≠ 1.68, hence this is incorrect.
B.
[tex]2\frac{1}{4}*2\frac{1}{2}[/tex] = 9/4 × 5/2 = 5.625 ≠ 1.68, hence, this is incorrect.
C.
[tex]\sqrt[4]{2^3}[/tex] = 1.68 = 1.68, hence, this is correct.
D.
√8 = 2.82 ≠ 1.68, hence, this is incorrect.
To know more about arithmetic operations:
https://brainly.com/question/13585407
#SPJ5
fand f are functions.
If f(4) = 2 then f'(2) = ?
Answer:
4
Step-by-step explanation:
[tex] \because \: f(4) = 2 \\ \therefore \: {f}^{ - 1} (f(4)) = {f}^{ - 1} (2) \\ \therefore \: 4 = {f}^{ - 1} (2) \\ \huge \red{ \boxed{{f}^{ - 1} (2) = 4}}[/tex]
Answer:
4 four
Step-by-step explanation:
hope it helps you
Need help finding the answer
Answer:
D
Step-by-step explanation:
When there is an negative sign inside in a radical, then we remove that and put out of the radical classifying as "i". Then, reduce 63 into smallest form and we can write it as 9 and 7. 9 is a perfect square of 3 so we put it outside and the answer is D.
I need help!!!! I don’t understand and it’s very confusing
Answer:
C
Step-by-step explanation:
I explained in my last answer but someone deleted it
g(x)4x^2-16x+7 completing the square
By completing the square the function will be, g(x)=4(x-2)²-9
What is standard form of the equation?The standard form of the quadratic equation will be ax²+bx+c=0.
Equate the given equation with standard form of equation and determine the values of a, b, and c.
a=4
b=-16
c=7
For completing the square, add and subtract [tex]\frac{b^2}{4a}=\frac{(-16)^2}{4\times4}=16[/tex] in the given equation.
g(x)=4x²-16x+16-16+7
g(x)=(4x²-16x+16)-9
g(x)=4(x²-4x+4)-9
The term x²-4x+4 is equivalent to (x-2)².
g(x)=4(x-2)²-9
So, the given function is same as g(x)=4(x-2)²-9.
To learn more about the standard form of equation click:
https://brainly.com/question/29011747
#SPJ2
Little Equipment for Hire is a subsidiary in the Giant Machinery and currently under the liquidation plan due to the severe contraction of operation due to corona virus. The company plans to pay total dividend of $2.5 million now and $ 7.5 million one year from now as a liquidating dividend. The required rate of return for shareholders is 12%. Calculate the current value of the firm’s equity in total and per share if the firm has 1.5 million shares outstanding. (4 marks)
Complete Question:
The Giant Machinery has the current capital structure of 65% equity and 35% debt. Its net income in the current year is $250 000. The company is planning to launch a project that will requires an investment of $175 000 next year. Currently the share of Giant machinery is $25/share. Required: a. How much dividend Giant Machinery can pay its shareholders this year and what is dividend payout ratio of the company. Assume the Residual Dividend Payout Policy applies? b. If the company is paying a dividend of $2.50/share and tomorrow the stock will go ex-dividend. Calculate the ex-dividend price tomorrow morning. Assuming the tax on dividend is 15%? c. Little Equipment for Hire is a subsidiary in the Giant Machinery and currently under the liquidation plan due to the severe contraction of operation due to corona virus. The company plans to pay total dividend of $2.5 million now and $ 7.5 million one year from now as a liquidating dividend. The required rate of return for shareholders is 12%. Calculate the current value of the firm’s equity in total and per share if the firm has 1.5 million shares outstanding?
Answer:
a) Total dividend for the current year = $136,250
Dividend Payout Ratio = 0.545
b) Ex-dividend price = $22.875
c) Total current value = $9,196,428.57
Current value per share = $6.13
Step-by-step explanation:
a) Equity = 65%
Debt = 35%
Net Income for year 0 = $250,000
proposed Investment for year 1= $175,000
Current price = $25/share
Tax on dividend = 15%
Total dividend for year 0 = 250000 - (65% of 175000)
Total dividend for year 0= 250000 - 113750
Total dividend for the current year = $136,250
Dividend Payout Ratio = total dividends/ total earning
Dividend Payout Ratio = 136250/250000
Dividend Payout Ratio = 0.545
b) Dividend = $2.5/ share
Ex-dividend price = current price - Dividend * (1-tax on dividend)
Substituting the appropriate values:
Ex-dividend price = 25 - 2.5 * (1-15%)
Ex-dividend price = 25 - 2.125
Ex-dividend price = $22.875
c) Current value of the firm = Dividend paid in year 0 + (Dividend to be paid in year 1/discount rate)
Dividend paid in year 0 = $2,500,000
Dividend to be paid in year 1 = $7,500,000
Discount rate = 12%
Total current value = 2,500,000 + (7,500,000 / 1.12)
Total current value = $9,196,428.57
Numbe of shares = 1,500,000
Current value per share = Total current value / number of shares
Current value per share = 9,196,428.57/1,500,000
Current value per share = $6.13