Answer:
Step-by-step explanation:
Rearranging the weights in ascending order, it becomes
5.4, 5.7, 5.7, 5.8, 6.0, 6.6, 7.1, 7.1, 7.5, 7.5, 8.1, 8.7, 9.3, 9.4, 9.4
The formula for determining the percentile is expressed as
n = (P/100)N
Where
n represents the value of the given percentile
P represents the given percentile
N represents the number of items(weights)
From the information given, the number of items, n is 15
P = 53
Therefore,
n = (53/100) × 15
n = 7.95
n = 8
Therefore, the weight that represents the 53rd percentile is the 8th value. It becomes 7.1
53rd percentile is 7.1
Please help me with this question, I need it to pass the class!!
Answer:
cos(20°)
Step-by-step explanation:
The "cofunction" is the function having the same value for the complement of the angle that this function has for the angle.
The cofunction of sine is cosine. The complement of 70° is 90° -70° = 20°.
sin(70°) = cos(20°)
A study conducted at a certain high school shows that 72% of its graduates enroll at a college. Find the probability that among 4 randomly selected graduates, at least one of them enrolls in college.
Answer:
[tex] P(X \geq 1) =1-P(X<1) =1-P(X=0) [/tex]
And we can use the probability mass function and we got:
[tex]P(X=0)=(4C0)(0.72)^0 (1-0.72)^{4-0}=0.00615[/tex]
And replacing we got:
[tex] P(X \geq 1) = 1-0.00615 = 0.99385[/tex]
Step-by-step explanation:
Let X the random variable of interest "number of graduates who enroll in college", on this case we now that:
[tex]X \sim Binom(n=4, p=0.72)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
We want to find the following probability:
[tex] P(X \geq 1)[/tex]
And we can use the complement rule and we got:
[tex] P(X \geq 1) =1-P(X<1) =1-P(X=0) [/tex]
And we can use the probability mass function and we got:
[tex]P(X=0)=(4C0)(0.72)^0 (1-0.72)^{4-0}=0.00615[/tex]
And replacing we got:
[tex] P(X \geq 1) = 1-0.00615 = 0.99385[/tex]
Benjamin deposits $3,000 into each of two savings
accounts. The first savings account pays 5% interest
compounded annually. The second savings account
pays 5% simple interest annually. If Benjamin makes
no other deposits or withdrawals, what will be the
difference between the interest earned by the two
savings accounts after 4 years?
Answer:
So I have never stepped foot into this. But I have experience from this. So for the first one we can use the compound intrest formula - A = P(1+r/n)^nt so if we do that we get.
A = 3000(1+0.05/1)^1*4
So then we get A is equal to 3646.52
The next one we need to calculate
A = P (1 + rt)
So now we do A = 3000(1+0.05*1)
A = 3000*1.05 = 3150. We add them together and we get 6796.52.
So we subtract 6000 from that. He earned
796.52 dollars
The graph shows the amount of protein contain in a certain brand of peanut butter. Which statement describes the meaning of the point (6, 30) on the graph?
A.) There are 6 g of protein per tablespoon of peanut butter.
B.) There are 30 g of protein per tablespoon of peanut butter.
C.) There is 6 g of protein in 30 tablespoons of peanut butter.
D.) There are 30 g of protein in 6 tablespoons of peanut butter.
Answer:
D.) There are 30 g of protein in 6 tablespoons of peanut butter.
Step-by-step explanation:
Interpretation of the graph:
x-axis: tablespoons
y-axis: grams of protein.
Which statement describes the meaning of the point (6, 30) on the graph?
(6,30) means that x = 6 and y = 30.
This means that in 6 tablespoons there are 30g of protein.
So the correct answer is:
D.) There are 30 g of protein in 6 tablespoons of peanut butter.
Answer:
The answer is D
how much alcohol must be added to 480grams of hand sanitizer that is 24% alcohol to make it a hand sanitizer that is 40% alcohol?
Answer:
what she/he said
Step-by-step explanation:
The perimeter of the rectangle is below 76 units. Find the length of side AD. AB on rectangle 3y + 3 CB 2y
Answer:
14 units
Step-by-step explanation:
The perimeter of a figure is the sum of the lengths of all the sides.
Here, we know that ABCD is a rectangle, so by definition, AB = CD and AD = BC. We also are given that AB = 3y + 3 and BC = 2y, which means that:
AB = CD = 3y + 3
AD = BC = 2y
Adding up all the side lengths and setting that equal to the perimeter, which is 76 units, we get the expression:
AB + CD + AD + BC = 76
(3y + 3) + (3y + 3) + 2y + 2y = 76
10y + 6 = 76
10y = 70
y = 7
We want to know the length of AD, which is written as 2y. Substitute 7 in for y:
AD = 2y = 2 * 7 = 14
The answer is thus 14 units.
~ an aesthetics lover
Answer:
14
Step-by-step explanation:
The perimeter of a rectangle is found by
P = 2 (l+w)
P = 2( 3y+3+2y)
Combine like terms
P = 2(5y+3)
We know the perimeter is 76
76 = 2(5y+3)
Divide each side by 2
76/2 = 2/2(5y+3)
38 = 5y+3
Subtract 3 from each side
38-3 = 5y+3-3
35 = 5y
Divide each side by 5
35/5 = 5y/5
7 =y
We want the length of AD = BC = 2y
AD = 2y=2*y = 14
nancy will arrive at the hotel on July 8, and will stay three nights. What date will Nancy check out of the hotel?
Answer:
july 11
Step-by-step explanation:
Some scientists believe there is a limit to how long humans can live. One supporting argument is that during the past century, life expectancy from age 65 has increased more slowly than life expectancy from birth, so eventually these two will be equal, at which point, according to these scientists, life expectancy should increase no further. In 1900, life expectancy at birth was 45 years, and life expectancy at age 65 was 75 yr. In 2010, these figures had risen to 78.7 and 84.5, respectively. In both cases, the increase in life expectancy has been linear. Using these assumptions and the data given, find the maximum life expectancy for humans.
Answer:
The maximum life expectancy for humans is approximately 87 years.
Step-by-step explanation:
We have to calculate the point in which both linear functions (Life expectancy from birth and Life expectancy from age 65) intersect, as this is the point in which is estimated to be the maximum life expectancy for humans.
NOTE: to simplify we will consider t=0 to the year 1900, so year 2010 becames t=(2010-1900)=110.
The linear function for Life expectancy from birth can be calculated as:
[tex]t=0\rightarrow y=45\\\\t=110\rightarrow y=78.7\\\\\\m=\dfrac{\Delta y}{\Delta t}=\dfrac{78.7-45}{110-0}=\dfrac{33.7}{110}=0.3064\\\\\\y=0.3064t+45[/tex]
The linear function for Life expectancy from age 65 can be calculated as:
[tex]t=0\rightarrow y=75\\\\t=110\rightarrow y=84.5\\\\\\m=\dfrac{\Delta y}{\Delta t}=\dfrac{84.5-75}{110-0}=\dfrac{9.5}{110}=0.0864\\\\\\y=0.0864t+75[/tex]
Then, the time t where both functions intersect is:
[tex]0.3064t+45=0.0864t+75\\\\(0.3064-0.0864)t=75-45\\\\0.22t=30\\\\t=30/0.22\\\\t=136.36[/tex]
The time t=136.36 corresponds to the year 1900+136.36=2036.36.
Now, we can calculate with any of both functions the maximum life expectancy:
[tex]y=0.0864(136.36)+75\\\\y=11.78+75\\\\y=86.78\approx87[/tex]
The maximum life expectancy for humans is approximately 87 years.
Please answer this correctly
Answer:
Area of the figure = 254.5 cm²
Step-by-step explanation:
Area of rectangle = Length × Width
Area of triangle = 1/2(base × Height)
Dividing the figure into parts for convenience
So,
Rectangle 1 (the uppermost):
4 × 6 = 24 cm²
Rectangle 2 (below rectangle 1):
15 × 8 = 120 cm²
Rectangle 3 (with rectangle 2):
11 × 4 = 44 cm²
Triangle 1 :
1/2(7 × 19) = 133/2 = 66.5 cm²
Now adding up all to get the area of the figure:
Area of the figure = 24 + 120 + 44 + 66.5
Area of the figure = 254.5 cm²
Analyze the diagram below and answer the question that follows.
Dustin is buying carpet for the living room. How many square feet of carpet will he need to buy?
Complete Question:
Dustin is buying carpet for the living room. If the length of the room is 21 ft and the width
is 11 ft, how many square feet of carpet does he need to buy?
Answer:
231 ft²
Step-by-step explanation:
==>GIVEN:
Length of room (L) = 21 ft
Width of room (W) = 11 ft
==>REQUIRED:
Square feet of carpet to be bought = area of the rectangular room
==>SOLUTION:
The room to be covered with carpet is rectangular in shape. In order to ascertain the square feet of carpet to be bought, we need to calculate the area of the room by using the formula for area of rectangle.
Thus, area of rectangle (A) = Length (L) × Width (W)
A = 21 × 11
A = 231 ft²
Square feet of carpet to be bought = 231 ft²
sarah can complete a project in 90 minutes and her sister betty can complete it in 120 minutes if they both work on the project at the same time how long will it take them to complete the project
Answer:
It will take them approximately 51.43 minutes to complete the project together
Step-by-step explanation:
This is what is called a "shared job" problem.
The best way to work on them is to start by finding the "portion" of the job done by each of the people in the unit of time.
So, for example, Sarah completes the project in 90 minutes, so in the unit of time (that is 1 minute) she completed 1/90 of the total project
Betty completes the project in 120 minutes, so in the unit of time (1 minute) she completes 1/120 of the total project.
We don't know how long it would take for them to complete the project when working together, so we call that time "x" (our unknown).
Now, when they work together completing the entire job in x minutes, in the unit of time they would have done 1/x of the total project.
In the unite of time, the fraction of the job done together (1/x) should equal the fraction of the job done by Sarah (1/90) plus the fraction of the job done by Betty. This in mathematical form becomes:
[tex]\frac{1}{x} =\frac{1}{90} +\frac{1}{120}\\\frac{1}{x} =\frac{4}{360} +\frac{3}{360}\\\frac{1}{x} =\frac{7}{360} \\x=\frac{360}{7} \\x=51.43\,\,min[/tex]
So it will take them approximately 51.43 minutes to complete the project together.
1. Find the equation of the line passing through the point (2,−4) that is parallel to the line y=3x+2 y= 2. Find the equation of the line passing through the point (1,−5) and perpendicular to y=18x+2 y=
Answer:
Step-by-step explanation:
1) Parallel lines have same slope
y = 3x + 2
m = 3
(2, -4) ; m = 3
equation: y - y1 = m (x - x1)
y - [-4] = 3(x - 2)
y + 4 = 3x - 6
y = 3x - 6 - 4
y = 3x - 10
2) y = 18x + 2
m1 = 18
Slope the line perpendicular to y = 18x + 2, m2 = -1/m1 = -1/18
m2 = -1/18
(1 , -5)
[tex]y-[-5]=\frac{-1/18}(x-1)\\\\y+5=\frac{-1}{18}x + \frac{1}{18}\\\\y=\frac{-1}{18}x+\frac{1}{18}-5\\\\y=\frac{-1}{18}x+\frac{1}{18}-\frac{5*18}{1*18}\\\\y=\frac{-1}{18}x+\frac{1}{18}-\frac{90}{18}\\\\y=\frac{-1}{18}x-\frac{89}{18}\\\\[/tex]
I need the answers for 21 and 22
Answer:
21.b
22.c
Step-by-step explanation:
idk how to explain it lol I did mental math
Math Activity #1
The number of the day is 1,853,604,297.
Write this number in word form:
Does this table represent a function? Why or why not?
A.
B.
C.
D.
Answer:C
Step-by-step explanation:
the x value 5 corresponds to two difference y-values.
Ruby has a bird feeder which is visited by an average of 13 birds every 2 hours during daylight hours. What is the probability that the bird feeder will be visited by more than 3 birds in a 40 minute period during daylight hours? Round your answer to three decimal places.
Answer:
62.93%
Step-by-step explanation:
We have to solve it by a Poisson distribution, where:
p (x = n) = e ^ (- l) * l ^ (x) / x!
Where he would come being the number of birds that there would be in 40 minutes, we know that in 2 hours, that is 120 minutes there are 13, therefore in 40 there would be:
l = 13 * 40/120
l = 4,333
Now, we have p (x> 3) and that is equal to:
p (x> 3) = 1 - p (x <= 3)
So, we calculate the probability from 0 to 3:
p (x = 0) = 2.72 ^ (- 4.33) * 4.33 ^ (0) / 0! = 0.01313
p (x = 1) = 2.72 ^ (- 4.33) * 4.33 ^ (1) / 1! = 0.0568
p (x = 2) = 2.72 ^ (- 4.33) * 4.33 ^ (2) / 2! = 0.12310
p (x = 3) = 2.72 ^ (- 4.33) * 4.33 ^ (3) / 3! = 0.17767
If we add each one:
0.01313 + 0.0568 + 0.12310 + 0.17767 = 0.3707
replacing:
p (x> 3) = 1 - 0.3707
p (x> 3) = 0.6293
Which means that the probability is 62.93%
Chris Evans drives 300 miles per week in his Honda Civic that gets 22 miles per gallon of gas. He
is considering buying a new fuel-efficient car for $20,000 (after trade-in of your Honda Civic)
that gets 50 miles per gallon. Insurance prerniums for the new car and old care are $900 and
$500 per year respectively. If he decides to keep his car, he will need to spend $1200 on repairs
per year. Assume gas costs $3.50 per gallon over a 5-year period,
a, what is the cost of the old car?
b. what is the cost of the new car?
Answer:
old car $20,909new car: $29,960Step-by-step explanation:
At 300 miles per week, Chris drives 300×52 = 15,600 miles per year. His gas cost can be figured as ...
(5 years)×(miles per year)÷(miles/gallon)×($ per gallon) = $273,000/(miles per gallon)
__
a) old car cost = repair cost + gas cost + insurance cost
= 5($1200) + $273,000/22 + 5($500) ≈ $20,909 . . . over 5 years
__
b) new car cost = purchase cost + gas cost + insurance cost
= $20,000 + $273,000/50 +5($900) = $29,960 . . . over 5 years
URGENT!! EASY IM DUMB MY LAST QUESTION WILL FOREVER BE GRATEFUL PLS HELP WILL GIVE BRANLIEST!! AT LEAST TAKE A LOOK!!!! PLS I AM BEGGING!!!
18. Using the diagram below as reference, write a paragraph proof to prove that the symmetric property of congruence exists for any two angles. (IMAGE BELOW)
Given: ∠A is congruent to ∠B
Prove: ∠B is congruent to ∠A
Plan: Show that ∠A and ∠B have the same measure, thus ∠B and ∠A have the same measure under symmetry for equality. Conclude with ∠B being congruent to ∠A.
Answer:
Below.
Step-by-step explanation:
Since A is congruent to B, you can conclude that B is congruent to A by the Reflexive Property of Congruence.
Researchers want to know about the true proportion of adults with at least a high school education. 1000 adults are surveyed, and 710 of them have at least a high school education. Create a 95% confidence interval for the true population proportion of adults with at least a high school education. Interpret this interval in context of the problem.
Answer:
The 95% confidence interval for the true population proportion of adults with at least a high school education is (0.6819, 0.7381). This means that we are 95% sure that the true proportion of adults in the entire population surveyed with at least a high school education is (0.6819, 0.7381).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 1000, \pi = \frac{710}{1000} = 0.71[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.71 - 1.96\sqrt{\frac{0.71*0.29}{1000}} = 0.6819[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.71 + 1.96\sqrt{\frac{0.71*0.29}{1000}} = 0.7381[/tex]
The 95% confidence interval for the true population proportion of adults with at least a high school education is (0.6819, 0.7381). This means that we are 95% sure that the true proportion of adults in the entire population surveyed with at least a high school education is (0.6819, 0.7381).
what is the greatest common factor of 36 and 90?
Answer:
18
Step-by-step explanation:
The greatest common factor is 18. All of the common factors are: 1, 2, 3, 6, 9, 18.
Answer:
There is only one greatest common factor of 36 and 90 which is 18. There are also a number of common factors including 1, 2, 3, 6, 9, 18.
Step-by-step explanation:
Rebecca Pearson is a widow and needs to take care of the expenses in her household. Her budget is below.
Find her net monthly cash flow. (Assume 1 month = 4 weeks)
Income Expenses
Salary: $2300/month
Rent: $1090/month
Groceries: $200/week
Utilities: $125/month
Car Insurance: $525 semiannually
Gasoline: $25/week
Miscellaneous: $200/month
Phone: $50/month
Hey there!
First, let's take all of the expenses and change the ones that aren't monthly into monthly.
Groceries: $800/month
Car insurance: $87.5/month
Gasoline: $100/month
Now, let's add together all of our expenses
1090+800+125+87.5+100+200+50=2452.5
Now, we subtract that from her salary.
2300-2452.5=-152.5
Therefore, Rebecca's net monthly cash flow is -$152.5. She should spend a bit less on groceries, not do so much miscellaneous, find a place that charges less rent, drive less, etc. so she isn't spending more than she earns.
I hope that this helps! Have a wonderful day!
what is 2/3 of 460? Just a little easy one for points
Answer:
2/3 * 460 = 306 and 2/3
Multiply 460 by 2/3 by first multiplying 460 by 2, then divide that by 3:
460 x 2 = 920
920 /3 = 306 2/3
The answer is 306 2/3
A number cube with faces labeled from 1 to 6 will be rolled once. The number rolled will be recorded as the outcome. Give the sample space describing all possible outcomes. Then give all of the outcomes for the event of rolling the number 1, 3, or 4. If there is more than one element in the set, separate them with commas. Sample space: {} Event of rolling the number 1 3, or 4 :
Answer:
Sample space: [tex]\Omega=\{1,2,3,4,5,6\}[/tex]
Event of rolling the number 1 3, or 4 : A={1,3,4}
Step-by-step explanation:
When you roll a number cube with faces labeled from 1 to 6 once.
The possible outcomes are: 1,2,3,4,5 or 6.
Therefore, the sample space of this event is:
Sample space: [tex]\Omega=\{1,2,3,4,5,6\}[/tex]Given the event of rolling the numbers 1, 3, or 4.
Now we are required to give the outcomes for the event of rolling number 1,3 or 4. Let's call the event A. The set of possible outcomes for A has all the numbers 1, 3 and 4 as follows
Event of rolling the number 1 3, or 4 :A= {1,3,4}determine whether these two functions are inverses.
Answer:
Yes,these two functions are the inverse of each other.
Step-by-step explanation:
They way of finding if two functions ([tex]f(x)\,\,and\,\,g(x)[/tex] ) are the inverse of each other is by studying if their composition renders in fact the identity. That is, we see if:
[tex]f(x) \,o \,g(x)=f(g(x))=x[/tex]
in our case:
[tex]f(g(x))=\frac{1}{g(x)+4} -9\\f(g(x))=\frac{1}{(\frac{1}{x+9} -4)+4}-9\\f(g(x))=\frac{1}{\frac{1}{x+9} }-9\\f(g(x))={x+9} -9\\f(g(x))=x[/tex]
The composition does render the identity, therefore, these two functions are indeed the inverse of each other
For each of the following research scenarios, decide whether the design uses a related sample. If the design uses a related sample, identify whether it uses matched subjects or repeated measures.
1. You are interested in a potential treatment for compulsive hoarding. You treat a group of 50 compulsive hoarders and compare their scores on the Hoarding Severity scale before and after the treatment. You want to see if the treatment will lead to lower hoarding scores. The design described__________a, b, or c________.
a. uses a related sample - repeated measures
b. uses a related sample - matched subjects
c. does not use a related sample
2. John Caccioppo was interested in possible mechanisms by which loneliness may have deterious effects of health. He compared the sleep quality of a random sample to lonely people to the sleep quality of a random sample of nonlonely people. The design described______a, b, or c_______.
a. does not use a related sample
b. uses a related sample (repeated measures)
c. uses a related sample (matched subjects)
Answer:1. uses a related sample - repeated measures
2. . does not use a related sample--a
Step-by-step explanation:
Question 1.
step1 A repeated measure design is a design which measures a given sample repeatedly over a given time using different conditions or related measures.
step 2:In the treatment for compulsive hoarding, Here, measures are taken two times ie before and after treatment on the same 50 hoarders which shows a repeated measure, also the design is a within related sample of the same 50 hoarders to give measurement at different conditions of treatment for high and low hoarding scores so the design describes a related sample - repeated measures
Question 2:
step 1 ; An unrelated sample occurs when Samples being measured do not depend on each other
Step 2; 1st Sample for comparison by John are random lonely people and Second Sample are random non lonely people. so the two samples are independent on each other and will give different measurement based on quality of sleep. So the design does not use a related sample
Mr. Dylan asks his students throughout the year to record the number of hours per week they spend practicing math at
home. At the end of the year, he creates a scatter plot that models the relationship between exam score and time spent
practicing. Which line of best fit will give Mr. Dylan the most accurate linear equation in order to make predictions about
this relationship?
Answer:
see the attachment
Step-by-step explanation:
A "line of best fit" generally has about as much data above the line as below it. If the data has any trend, it generally follows the trend.
The best choice here is B.
Answer:Answer:
see the attachment
Step-by-step explanation:
A "line of best fit" generally has about as much data above the line as below it. If the data has any trend, it generally follows the trend.
The best choice here is B.
Step-by-step explanation:
Use the substitution and to rewrite the equations in the system in terms of the variables and . Solve the system in terms of u and v . Then back substitute to determine the solution set to the original system in terms of x and y.
-3/x+4/y=11
1/x-2/y=-5
Answer:
x = -1 and y = 1/2
Step-by-step explanation:
Let u = 1/x, and v = 1/y
Then the pair of equations
-3/x + 4/y = 11
1/x - 2/y = -5
Can be written as
-3u + 4v = 11 .................................(1)
u - 2v = -5......................................(2)
From (2)
u = 2v - 5 .......................................(3)
Substituting (3) into (1)
-3(2v - 5) + 4v = 11
-6v + 15 + 4v = 11
-6v + 4v = 11 - 15
-2v = -4
v = 4/2 = 2
Substituting this value of v in (3)
u = 2v - 5
u = 2(2) - 5
= 4 - 5
= -1
That is
u = -1, v = 2
Since u = 1/x, and v = 1/y, we have
1/x = -1
=> x = -1
And
1/y = 2
=> y = 1/2
Therefore
x = -1 and y = 1/2
Adam drew a line that was 6 4/10 inches long. If he drew a second line that was 2 2/3
inches longer, what is the length of the second line? Answer as a mixed number.
Answer:
The length of the second line is [tex]9\frac{1}{15}[/tex] inches
Step-by-step explanation:
Given
Length of first line = [tex]6\frac{4}{10}[/tex] inches
Length of second line = [tex]2\frac{2}{3}[/tex] inches longer
Required
Length of second line.
Let the length of the second line be represented by x.
From the question, x is [tex]2\frac{2}{3}[/tex] inches longer than the first line;
This implies that:
[tex]x = 2\frac{2}{3} + 6\frac{4}{10}[/tex]
Convert both fractions to improper fractions
[tex]x = \frac{8}{3} + \frac{64}{10}[/tex]
Take LCM
[tex]x = \frac{80 + 192}{30}[/tex]
[tex]x = \frac{272}{30}[/tex]
Convert to mixed fraction
[tex]x = 9\frac{2}{30}[/tex]
Reduce fraction to lowest term
[tex]x = 9\frac{1}{15}[/tex]
Hence, the length of the second line is [tex]9\frac{1}{15}[/tex] inches
Which of the following sequence of transformations takes point J(9, 1) to J'(-3, 7)?
Answer:
Translate point J 12 units down and 6 units right.