A square has vertices at the points A(3,-3), B(-3,-3), C(-3,3), and D(3,3). What is the area of this square?


A.
36 square units
B.
48 square units
C.
30 square units

Answers

Answer 1

The area of the square is 36units²

What is area of square?

A square is a plane figure with four equal sides and four right (90°) angles.

The area of a square is expressed as;

A = l× l = l²

the length of the square = √ 3-(-3)²+ -3-3)²

= √6²

= 6 units

Therefore the side length of the square is 6units

area of the square = l²

= 6² = 36 units²

Therefore the area of the square is 36units²

learn more about area of square from

https://brainly.com/question/11444061

#SPJ1


Related Questions

Find the minimum or maximum value of y=x^2-6x+13

Answers

the answer is minimum value of (3,4)

For two events A and B, P(A) -0.8, P(B) 0.2, and P(A and B)-0.16. It follows that A and B are 18 A) disjoint but not independent. B) both disjoint and independent. C) complementary D) neither disjoint nor independent. E) independent but not disjoint.

19) Suppose that the probability that a particular brand of vacuum cleaner fails before 10000 hours of use is 0.3. If 3 of these vacuum cleaners are purchased, what is the probability that at least one of them lasts 10000 hours or more? A) 0.7 B) 0.973 C) 0.91 D) 0.09 E) None of these 10 lh If a home is randomly selected,

Answers

Based on the given probabilities, events A and B are not disjoint (i.e., they can occur simultaneously) but are also not independent (i.e., the occurrence of one event affects the probability of the other event). So, the correct answer is D) neither disjoint nor independent.

Disjoint events are events that cannot occur simultaneously. In this case, if events A and B were disjoint, it would mean that P(A and B) would be equal to zero, as both events cannot happen at the same time. However, given that P(A and B) is not equal to zero (P(A and B) = -0.16), events A and B are not disjoint.

Independent events are events where the occurrence of one event does not affect the probability of the other event. Mathematically, two events A and B are independent if P(A and B) = P(A) × P(B). However, in this case, P(A and B) = -0.16, while P(A) × P(B) = (-0.8) × 0.2 = -0.16, which means events A and B are not independent.

Therefore, based on the given probabilities, events A and B are not disjoint (as P(A and B) is not zero) and are also not independent (as P(A and B) is not equal to P(A) × P(B)). Hence, the correct answer is D) neither disjoint nor independent.

To learn more about probabilities here:

brainly.com/question/30034780#

#SPJ11

Callie thinks of a number. She adds 6 to the number, multiplied the result by 2, and then subtracts 4. The number she ends up with is 46. what number did callie start with? if you work backward to solve this problem what do you do first

a. divide 42 by 2
b. subtract 4 from 46
c. subtract 6 from 46
d. add 4 to 46

Answers

According to the information, the answer is (c) subtract 6 from 46, which is the inverse operation of adding 6 to the original number.

How to find the correct option?

If we work backward to solve this problem, we need to undo the operations that Callie performed on the original number. The last operation Callie performed was to subtract 4 from the result of multiplying the original number by 2 and adding 6. So, the first step in working backward is to add 4 to 46:

46 + 4 = 50

Now, we need to undo the multiplication by 2 and the addition of 6. To undo multiplication by 2, we divide by 2:

50 ÷ 2 = 25

To undo the addition of 6, we subtract 6:

25 - 6 = 19

Therefore, the number Callie started with was 19.

Learn more about mathematic operations in: https://brainly.com/question/20628271

#SPJ1

Determine whether the hypothesis test involves a sampling distribution of means that is a normal distribution, Student t distribution, or neither. Claim: μ = 78. Sample data: n = 24, s = 15.3. The sample data appear to come from a population that is normally distributedand σ is unknown.

Answers

The hypothesis test involves a sampling distribution of means that is a Student t distribution.

To determine whether the hypothesis test involves a sampling distribution of means that is a normal distribution, Student t distribution, or neither, let's consider the provided information: Claim: μ = 78. Sample data: n = 24, s = 15.3. The sample data appear to come from a population that is normally distributed, and σ is unknown.

Since the population is normally distributed and the population standard deviation (σ) is unknown, we should use the Student t distribution for this hypothesis test. The reason is that when the population is normally distributed but σ is unknown, the t distribution is more appropriate than the normal distribution, especially for smaller sample sizes (n < 30).

Since the population standard deviation  is unknown, and the sample size is small (n = 24), the appropriate distribution to use for this hypothesis test is the Student t-distribution. The t-distribution is used when the sample size is small and the population standard deviation is unknown. Therefore, the hypothesis test involves a sampling distribution of means that is a Student t-distribution.

So, the hypothesis test involves a sampling distribution of means that is a Student t distribution.

To know more about "Hypothesis test" refer here:

https://brainly.com/question/14587073#

#SPJ11

A student is speeding down Route 11 in his fancy red Porsche when his radar system warns him of an obstacle 322 feet ahead. He immediately applies the brakes, starts to slow down, and spots a skunk in the road directly ahead of him. The "black box" in the Porsche records the car's speed every two seconds, producing the following table. The speed decreases throughout the 10 seconds it takes to stop, although not necessarily at a constant rate. (a) What is your best estimate of the total distance the student's car traveled before coming to rest? Estimate the integral using the average of the left-and right-hand sums. Round your answer to the nearest integer. The total distance the student's car traveled is about ____. ft

Answers

The best estimate of the total distance the student's car traveled before coming to rest is about 840 feet.

To estimate the total distance the student's car traveled before coming to rest, we will use the left and right Riemann sums to approximate the integral of the velocity function over the interval [0, 20]. The velocity function is given by the data in the table:

t (seconds)   v (ft/s)

----------------------

 0             96

 2             88

 4             76

 6             62

 8             46

10             28

12             10

14             0

16             0

18             0

20             0

To use the left Riemann sum, we will use the velocity values from the first column of the table, and for the right Riemann sum, we will use the velocity values from the second column of the table.

The width of each subinterval is 2 seconds, since the data is given at 2-second intervals.

Using the left Riemann sum, we get:

distance = sum of (velocity x time interval)

= 96(2) + 88(2) + 76(2) + 62(2) + 46(2) + 28(2) + 10(2) + 0(2) + 0(2) + 0(2)

= 920

Using the right Riemann sum, we get:

Taking the average of these two estimates, we get:

distance ≈ (920 + 760)/2

≈ 840

Rounding to the nearest integer, we get the final estimate:

distance ≈ 840 feet

Therefore, the best estimate of the total distance the student's car traveled before coming to rest is about 840 feet.

To learn more about Rounding visit:

https://brainly.com/question/29878750

#SPJ11

find the derivative of the function. f(x) = ln ((x^2 + 3)^5/ 2x + 5)a) f'(x) = ln (10x(x^2 +3)^4 / 2)b) f'(x) = ln (2x +5 (x^2 + 3)^5 / (2x +5)^2)c) f'(x) = 10x / x^2 + 3 - 2/ 2x + 5d) f'(x) = 5/x^2 +3 - 1/ 2x +5

Answers

This derivative does not match any of the given options exactly. It's important to verify that the calculations are correct, and in this case, they are. Therefore, none of the provided answer choices are correct.

To find the derivative of the function [tex]f(x) = ln((x^2 + 3)^5 / (2x + 5))[/tex], we'll use the chain rule and the quotient rule.

First, let's set [tex]g(x) = (x^2 + 3)^5[/tex] and h(x) = 2x + 5. Then, f(x) = ln(g(x)/h(x)).

Now, we need to find the derivatives of g(x) and h(x).
[tex]g'(x) = 5(x^2 + 3)^4 * 2x = 10x(x^2 + 3)^4[/tex]
h'(x) = 2

Using the chain rule and the quotient rule, we have:

[tex]f'(x) = (g'(x)h(x) - g(x)h'(x)) / (h(x))^2\\f'(x) = (10x(x^2 + 3)^4 * (2x + 5) - (x^2 + 3)^5 * 2) / (2x + 5)^2[/tex]

This derivative does not match any of the given options exactly. It's important to verify that the calculations are correct, and in this case, they are. Therefore, none of the provided answer choices are correct.

learn more about derivative

https://brainly.com/question/30365299

#SPJ11

14. int (8/(x^2-4)) dx =

Answers

Therefore, we can rewrite the integral as [tex]int(-2/(x-2) + 2/(x+2)) dx[/tex]

We can now integrate each term separately:

[tex]int(-2/(x-2)) dx = -2 ln|x-2| + C1[/tex]

[tex]int(2/(x+2)) dx = 2 ln|x+2| + C2[/tex]

where C1 and C2 are constants of integration.

We can start by factoring the denominator of the fraction, which is [tex]x^2-4[/tex]. This can be written as [tex](x-2)(x+2)[/tex]. Therefore, we can rewrite the integral as:

[tex]int(8/[(x-2)(x+2)]) dx[/tex]

We can then use partial fraction decomposition to simplify the integral. We want to find constants A and B such that:

[tex]8/[(x-2)(x+2)] = A/(x-2) + B/(x+2)[/tex]

Multiplying both sides by[tex](x-2)(x+2)[/tex], we get:

[tex]8 = A(x+2) + B(x-2)[/tex]

We can solve for A and B by setting x equal to -2 and 2, respectively. This gives us:

[tex]A = -2[/tex]

[tex]B = 2[/tex]

Therefore, we can rewrite the integral as:

[tex]int(-2/(x-2) + 2/(x+2)) dx[/tex]

We can now integrate each term separately:

[tex]int(-2/(x-2)) dx = -2 ln|x-2| + C1[/tex]

[tex]int(2/(x+2)) dx = 2 ln|x+2| + C2[/tex]

where C1 and C2 are constants of integration.

Putting it all together, the final solution is:

[tex]int(8/[(x-2)(x+2)]) dx = -2 ln|x-2| + 2 ln|x+2| + C[/tex]

where C = C1 + C2 is a constant of integration.

To know more about partial fraction visit:

https://brainly.com/question/30894807

#SPJ1

Plot these numbers on the number line: 8.NS.A (more exact = higher score)
√2, √5. √8, √9. √15,√√22
0
1
2
3
5

Answers

Answer:

see image

Step-by-step explanation:

Use a calculator to change each radicals to a decimal. (These are all rounded)

sqrt2 = 1.4

sqrt5 = 2.2

sqrt8 = 2.8

sqrt9 = 3

sqrt15 = 3.9

sqrt22 = 4.7

Then you can put them on the numberline. Remember, exactly half way between the numbers on the numberline is .5

Find the general indefinite integral: S(x² + 1 + (1/x²+1))dx

Answers

The general indefinite integral of ∫(x² + 1 + (1/x²+1))dx is (1/3)x³ + x + (1/2)ln|x² + 1| + C

To find the general indefinite integral of ∫(x² + 1 + (1/x²+1))dx, we can use the linearity property of integration and integrate each term separately.

The integral of x² with respect to x is (1/3)x³ + C₁, where C₁ is the constant of integration.

The integral of 1 with respect to x is simply x + C₂, where C₂ is another constant of integration.

To integrate (1/(x²+1)), we can use the substitution method by letting u = x² + 1. Therefore, du/dx = 2x and dx = (1/2x)du. Substituting these expressions, we get:

∫(1/(x²+1))dx = (1/2)∫(1/u)du

= (1/2)ln|u| + C₃

= (1/2)ln|x² + 1| + C₃

where C₃ is another constant of integration.

Therefore, the general indefinite integral of ∫(x² + 1 + (1/x²+1))dx is:

(1/3)x³ + x + (1/2)ln|x² + 1| + C

where C is the constant of integration that accounts for any possible constant differences in the integrals of each term.

In summary, to find the general indefinite integral of a sum of functions, we can integrate each term separately and add up the results, including the constant of integration. When necessary, we can use substitution to simplify the integration process for certain terms.

To learn more about integral click on,

https://brainly.com/question/31606071

#SPJ4

Could someone answer this please

Answers

Answer:

8

Step-by-step explanation:

Write this ratio in its simplest form
115:46:161

Answers

Answer:

5:2:7

Step-by-step explanation:

First we need to find the greatest common factor between 115, 46, and 161 which is 23

Next we need to divide 115, 46, and 161 by 23

115 ÷ 23 = 5

46 ÷ 23 = 2

161 ÷ 23 = 7

So, the simplified ratio is 5:2:7

Hope this helps!

Pythagorean theorem answer quick please

Answers

Answer:

6.25ft!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

3. Define a sequence {an} by: 1 Q1 = 2 Ant1 = for n > 1 3 - An (a) Show that 0 < an < 2 for all n. (b) Show that the sequence is decreasing. (c) Explain why {an} converges, then find its limit.

Answers

The limit of {an} is L = 3/2.

(a) To show that 0 < an < 2 for all n, we can use induction.

For n = 1, we have a1 = 2, which is between 0 and 2.

Assume that 0 < an < 2 for some n > 1. Then, we have:

an+1 = 3 - an

Since 0 < an < 2, we have 0 < 3 - an < 3 - 0 = 3 and 2 > 3 - an > 0. Therefore, 0 < an+1 < 2.

By induction, we conclude that 0 < an < 2 for all n.

(b) To show that the sequence is decreasing, we can use induction.

For n = 1, we have a2 = 3 - a1 = 3 - 2 = 1. Since a2 < a1, the sequence is decreasing at n = 1.

Assume that an+1 < an for some n > 1. Then, we have:

an+2 = 3 - an+1

Since an+1 < an and 0 < an < 2, we have 2 > an+1 > 0 and 2 > an > 0. Therefore, 1 > an+2 > -1.

Since an+2 < an+1, we conclude that the sequence is decreasing.

(c) To show that {an} converges, we can observe that it is a decreasing sequence that is bounded below by 0.

Therefore, it must converge to some limit L.

Taking the limit of both sides of the recursive formula an+1 = 3 - an as n approaches infinity, we have:

L = 3 - L

Solving for L, we get L = 3/2.

L = 3/2.

For similar question on limit:

https://brainly.com/question/31402427

#SPJ11

Find the area of the surface generated by e'tery - revolving the curve x= in the interval 2. Osys In 2 about the y-axis. 2 In 2 160 0 The area, S. of the surface is given by S= D. (Type an exact answe

Answers

The exact answer for the surface area of the shape generated by revolving the curve x = 2ˣ/₂ in the interval [0,2] about the y-axis is S = π (4 + ln(17 + 12√2)).

To visualize this, imagine taking the curve x = 2ˣ/₂ and rotating it around the y-axis. This creates a three-dimensional shape, and we want to find the area of its surface. To do this, we can use calculus and the formula for surface area of revolution, which states that the surface area S generated by revolving a curve f(x) around the x-axis in the interval [a,b] is given by:

S = 2π ∫ f(x) √(1 + (f'(x))²) dx

In our case, we are revolving the curve x = 2ˣ/₂ around the y-axis in the interval [0,2]. To use the formula above, we need to express the curve in terms of y instead of x.

We can solve for y in terms of x by taking the natural logarithm of both sides:

y = 2 log₂(x)

So our curve in terms of y is y = 2 log_2(x), or equivalently, x = 2ˣ/₂. Now we can use the formula for surface area of revolution:

S = 2π ∫ x √(1 + (dx/dy)²) dy

To find dx/dy, we can use implicit differentiation:

x = 2ˣ/₂

ln(x) = (y/2) ln(2)

dy/dx = (ln(2)/2) / (1/x)

dy/dx = ln(2) x/2

So (dx/dy)² = (2/ln(2))² / x². Plugging this into the formula for surface area of revolution and evaluating the integral, we get:

S = 2π ∫ 2ˣ/₂ √(1 + (ln(2) x/2)²) dy

S = 2π ∫ 2ˣ/₂ √(1 + (ln(2)²/4) 2ˣ⁻¹) dy

This integral can be evaluated using u-substitution with u = 2ˣ/₂. After making the substitution, we get:

S = 2π ∫√(1 + (ln(2)²/4) u²) du

The exact answer is:

S = π (4 + ln(17 + 12√2))

To know more about area here

https://brainly.com/question/14994710

#SPJ4

A population of Australian Koala bears has a mean height of 20 inches and a standard deviation of 4 inches. You plan to choose a sample of 64 bears at random. What is the probability of a sample mean between 20 and 21.

Answers

The probability of a sample mean between 20 and 21 is approximately 0.4772 or 47.72%.

To solve this problem, we need to use the central limit theorem, which tells us that the distribution of sample means will be approximately normal, with a mean equal to the population mean and a standard deviation equal to the population standard deviation divided by the square root of the sample size.

In this case, the population mean is 20 inches and the population standard deviation is 4 inches. We plan to choose a sample of 64 bears at random, so the standard deviation of the sample mean will be:

standard deviation of the sample mean = 4 / √(64) = 0.5

To find the probability of a sample mean between 20 and 21, we need to calculate the z-scores for these values:

z-score for 20 = (20 - 20) / 0.5 = 0
z-score for 21 = (21 - 20) / 0.5 = 2

We can use a standard normal distribution table or calculator to find the area under the curve between these two z-scores. The area between z = 0 and z = 2 is approximately 0.4772.

Therefore, the probability of a sample mean between 20 and 21 is approximately 0.4772 or 47.72%.

To learn more about probability here:

brainly.com/question/30034780#

#SPJ11

How can I use benchmark fractions to compare 5/6 and4/10

Answers

By using benchmark fractions to compare 5/6 and4/10 we can say that  5/6 is greater than 4/10.

To compare 5/6 and 4/10 using benchmark fractions, we need to find a benchmark fraction that is close to each of these fractions.

For 5/6, we can use the benchmark fraction 1/2. Since 1/2 is less than 5/6, we know that 5/6 is more than 1/2.

For 4/10, we can use the benchmark fraction 1/3. Since 1/3 is greater than 4/10, we know that 4/10 is less than 1/3.

So, we can say that 5/6 is more than 1/2 and 4/10 is less than 1/3. Therefore, we can conclude that 5/6 is greater than 4/10.

To know more about benchmark fractions:

https://brainly.com/question/8829934

#SPJ4

Suppose that X has a discrete uniform distribution on the integers 1 to 15. Find 3V(X).

Answers

X having a discrete uniform distribution on the integers 1 to 15 have  3V(X) = 168.

How we find 3V(X).?

The discrete uniform distribution on the integers 1 to 15 means that each of the 15 integers is equally likely to be chosen as the value of X.

The mean or expected value of X is given by the formula:

E(X) = (1+15)/2 = 8

Therefore, the variance of X is given by the formula:

Var(X) = (15^2 - 1)/12 = 56

The standard deviation of X is the square root of the variance:

SD(X) = sqrt(Var(X)) = sqrt(56) = 2sqrt(14)

Finally, we can calculate 3V(X) as:

3V(X) = 3 x Var(X) = 3 x 56 = 168

Therefore, 3V(X) = 168.

Learn more about Integers

brainly.com/question/15276410

#SPJ11

The kurtosis of a distribution refers to the relative flatnessor peakedness in the middle. Is this statement true orfalse?

Answers

This statement is true. The kurtosis of a distribution is a measure of the shape of the distribution and specifically refers to how peaked or flat it is in the middle compared to a normal distribution.

A positive kurtosis indicates a more peaked distribution while a negative kurtosis indicates a flatter distribution.
The kurtosis of a distribution refers to the relative flatness or peakedness in the middle of the distribution. It is a measure used to describe the shape of a probability distribution, with higher kurtosis indicating a more peaked distribution and lower kurtosis indicating a flatter distribution.

Know more about kurtosis here:

https://brainly.com/question/14799350

#SPJ11

DETAILS LARCALC9 11.3.018. Find the angle θ between the vectors. (Round your answer to one decimal u = 2i - 4j + 2k v = 2i - 2j + 4k θ =

Answers

The value of angle θ between the vectors is 65.9°.

The angle θ between the vectors u and v can be found using the formula θ = cos⁻¹((u·v)/(|u||v|)), where · represents the dot product and | | represents the magnitude of the vector. Plugging in the given values, we get:

u·v = (2)(2) + (-4)(-2) + (2)(4) = 20
|u| = √(2² + (-4)² + 2²) = √24
|v| = √(2² + (-2)² + 4²) = √24

Thus, θ = cos⁻¹(20/(√24)(√24)) ≈ 65.9°.


To find the angle between two vectors, we can use the dot product formula and the magnitude formula. The dot product of two vectors gives us a scalar value that represents the angle between them. The magnitude formula gives us the length of each vector.

By plugging these values into the formula for the angle, we can solve for θ. In this case, we first found the dot product of u and v by multiplying their corresponding components and summing them up.

Then we found the magnitude of each vector using the Pythagorean theorem. Finally, we plugged these values into the formula and used a calculator to find the final answer.

To know more about dot product click on below link:

https://brainly.com/question/29097076#

#SPJ11

(A) Find the radius of convergence of the power series 23 26 29 y=1- + 3.2 + (6.5) · (32) (9.8) · (6.5) · (3 · 2) Remark: The absolute value of the ratio of terms has a very simple and obvious expression and the ratio test indicator can be easily computed from that. (B) Show that the function so defined satisfies the differential equation y" + xy = 0.

Answers

The radius of convergence of the power series is [tex]\frac{|(3.2)(6.5)(32)|}{(23)(26)(9.8)(6.5)(3)(2)} = |0.4|[/tex]

The radius of convergence of the power series, we can use the ratio test.

The ratio of consecutive terms in the series is:

|(3.2)(6.5)(32) / (23)(26)(9.8)(6.5)(3)(2)| = |0.4|

Since the absolute value of this ratio is less than 1, the series converges absolutely.

Therefore, the radius of convergence is infinite.

(B) To show that the function defined by the power series satisfies the differential equation y" + xy = 0, we need to differentiate the power series term by term twice.

Differentiating once, we get:

y' = 3.2 + 2(6.5)(32)x + 3(9.8)(6.5)(32)x^2 + ...

Differentiating again, we get:

y" = 2(6.5)(32) + 2(3)(9.8)(6.5)(32)x + ...

Substituting these into the differential equation, we get:

y" + xy = 2(6.5)(32) + 2(3)(9.8)(6.5)(32)x + ... + x(3.2 + 2(6.5)(32)x + 3(9.8)(6.5)(32)x2 + ...)

= 2(6.5)(32) + (3.2)x + 2(6.5)(32)x2 + 3(9.8)(6.5)(32)x3 + ...

We can see that this expression is equal to 0, which means that the function defined by the power series satisfies the differential equation y" + xy = 0.

= [tex]\frac{|(3.2)(6.5)(32)|}{(23)(26)(9.8)(6.5)(3)(2)} = |0.4|[/tex]

For similar question on radius of convergence:

https://brainly.com/question/31440916

#SPJ11

Question is in picture

Answers

The period of the sinusoidal wave is determined as π.

option C.

What is the period of a sinusoidal wave?

The period of a sinusoidal wave refers to the length of time it takes for the wave to complete one full cycle. In other words, it is the time it takes for the wave to repeat its pattern.

The period is typically denoted by the symbol "T" and is measured in units of time, such as seconds (s).

Mathematically, the period of a sinusoidal wave can be defined as the reciprocal of its frequency.

T = 1/f

Where;

T is the period in seconds (s) and f is the frequency in hertz (Hz)

From the given graph, a complete cycle is made at π, so this is the period of the wave.

Learn more about period here: https://brainly.com/question/29813582

#SPJ1

5 7 Find the general antiderivative of the function f(x) = 4 4 v(5x-3) - 5/2 e^3x + 7/x^2

Answers

The general antiderivative of the given function is [tex]\frac{2}{15}\left(5x-3\right)^{\frac{3}{2}}-\frac{5}{9}e^{3x}-\frac{7}{x}+C[/tex]

Given that a function f(x) = [tex]\sqrt{5x-3}-\frac{5}{3}e^{3x}\:+\:\frac{7}{x^2}[/tex]

We need to find its antiderivative,

[tex]\int (\sqrt{5x-3}-\frac{5}{3}e^{3x}\:+\:\frac{7}{x^2})dx[/tex]

[tex]=\int \sqrt{5x-3}dx-\int \frac{5}{3}e^{3x}dx+\int \frac{7}{x^2}dx[/tex]

[tex]=\frac{2}{15}\left(5x-3\right)^{\frac{3}{2}}-\frac{5}{9}e^{3x}-\frac{7}{x}[/tex]

[tex]=\frac{2}{15}\left(5x-3\right)^{\frac{3}{2}}-\frac{5}{9}e^{3x}-\frac{7}{x}+C[/tex]

Hence, the general antiderivative of the given function is [tex]\frac{2}{15}\left(5x-3\right)^{\frac{3}{2}}-\frac{5}{9}e^{3x}-\frac{7}{x}+C[/tex]

Learn more about antiderivative, click;

https://brainly.com/question/31385327

#SPJ4

please
d²y Differentiate implicitly to find 2 dx x² - y² = 5 11 dx

Answers

To differentiate implicitly [tex]d^2y/dx^2 = (1/\sqrt(x^2-5)) - (x^2/(x^2-5)^{(3/2)})[/tex]

To differentiate implicitly, we take the derivative of both sides of the equation with respect to x using the chain rule:

[tex]d/dx (x^2 - y^2) = d/dx (5)[/tex]

For the left-hand side, we have:

[tex]d/dx (x^2 - y^2) = d/dx (x^2) - d/dx (y^2)[/tex]

[tex]= 2x - 2y dy/dx[/tex]

For the right-hand side, we have:

[tex]d/dx (5) = 0[/tex]

Substituting these into the original equation, we get:

[tex]2x - 2y dy/dx = 0[/tex]

To solve for dy/dx, we isolate the term involving dy/dx:

[tex]2y dy/dx = 2x[/tex]

[tex]dy/dx = 2x / 2y[/tex]

[tex]= x / y[/tex]

The implicit derivative of the given equation is:

[tex]dy/dx = x / y.[/tex]

To find[tex]d^2y/dx^2[/tex], we differentiate again with respect to x using the quotient rule:

[tex]d/dx (dy/dx) = d/dx (x/y)[/tex]

[tex]= (1/y) d/dx (x) - (x/y^2) d/dx (y)[/tex]

The implicit derivative we found earlier, we can substitute.[tex]y^2 = x^2 - 5[/tex] into the equation to obtain:

[tex]d/dx (dy/dx) = (1/y) - (x/y^2) dy/dx[/tex]

[tex]= (1/y) - (x/y^2) (x/y)[/tex]

[tex]= (1/y) - (x^2/y^3)[/tex]

Substituting y² = x² - 5, we get:

[tex]d^2y/dx^2 = (1/\sqrt(x^2-5)) - (x^2/(x^2-5)^{(3/2)})[/tex]

For similar questions on implicitly

https://brainly.com/question/25630111

#SPJ11

Tornado damage. The states differ greatly in the kinds of severe weather that afflict them. Table 1.5 shows the average property damage caused by tornadoes per year over the period from 1950 to 1999 in each of the 50 states and Puerto Rico. 16 (To adjust for the changing buying power of the dollar over time, all damages were restated in 1999 dollars.) (a) What are the top five states for tornado damage? The bottom five? (b) Make a histogram of the data, by hand or using software, with classes "OS damage < 10," "10 < damage < 20," and so on. Describe the shape, center, and spread of the distribution. Which states may be outliers? (To understand the outliers, note that most tornadoes in largely rural states such as Kansas cause little property damage. Damage to crops is not counted as property damage.)

Answers

Outliers might be explained by factors such as tornadoes in largely rural states causing less property damage or crop damage not being counted as property damage.

Explain about Tornado damage?

Tornado damage from 1950 to 1999, I would need to have access to the data from Table 1.5. However, I can guide you on how to analyze the data and answer the questions.

a) To find the top and bottom five states for tornado damage:

Arrange the data in descending order based on the average property damage caused by tornadoes.
Identify the top five states with the highest damage values and the bottom five states with the lowest damage values.

b) To make a histogram and describe its shape, center, and spread:
Create intervals for the histogram: 0 ≤ damage < 10, 10 ≤ damage < 20, and so on.
Count the number of states that fall into each interval and represent the counts as bars in the histogram.
Observe the shape of the histogram (e.g., symmetric, skewed left, or skewed right).
Determine the center of the distribution, which can be approximated by the median or mean.
Assess the spread of the distribution by considering the range or interquartile range.

To identify possible outliers, look for states with damage values that are significantly higher or lower than the rest of the distribution. Outliers might be explained by factors such as tornadoes in largely rural states causing less property damage or crop damage not being counted as property damage.

Learn more about Tornado damage

brainly.com/question/14501847

#SPJ11

Assuming you have data for a variable with 2,000 values, using the 2^k > n guideline, what is the least number of groups that should be used in developing a grouped data frequency distribution? a.) 9 b.) 11 c.) 12 d.) 13

Answers

Based on the frequency distribution, the above question's response is 11. The answer is option (B).

What is Frequency distribution?

The number of observations that fall into each category can be counted using a frequency distribution, which divides the data into intervals or categories. By displaying how frequently each category occurs, it summarises the data.

Using the [tex]2^k > n[/tex] rule, where n is the total number of data points, is as follows: [tex]2^k > 2000[/tex]

If we take the logarithm base 2 of both sides, we obtain:

k > log₂(2000)

k > 10.965784

Since k must be an integer, we can round up to the next integer to get:

k = 11

If we take the logarithm base 2 of both sides, we obtain:

To know more about frequency distribution, visit:

https://brainly.com/question/17114842

#SPJ1

Please help ASAP! Thank you!

A rectangular prism is filled with 16 cubes. Each cube is a 1/2 inch cube. What is the volume of the rectangular prism?

A. 2 in³
B. 8 in³
C. 16 in³
D. 32 in³

Answers

The volume of the rectangular prism is 8 in³.

What are the number of cubes in a rectangular prism?

Since the rectangular prism is filled with 16 cubes, we know that the total volume of the cubes is:

[tex]16 \: cubes × ( \frac{1}{2} inch) ^{3} /cube = 16 × ( \frac{1}{8} ) in ^{3} /cube = 2 in^{3} [/tex]

Since each cube has a volume of 1/2 inch cubed, the length, width, and height of the rectangular prism are all equal to 4 cubes or 2 inches, as 4 cubes × (1/2 inch)/cube = 2 inches. Therefore, the volume of the rectangular prism is:

[tex]Volume = Length × Width × Height = 2 \: inches × 2 \: inches × 2 \: inches = 8 \: cubic \: inches[/tex]

Therefore, the answer is (B) 8 in³.

Learn more about volume here,

https://brainly.com/question/218706

#SPJ1

Answer:

B

Step-by-step explanation:

I took the test

limx→2 (x2 + x -6)/(x2 - 4) is
A -1/4
B 0
C 1
D 5/4
E nonexistent

Answers

The answer is D) 5/4.

How to find the limit of a rational function by factoring and canceling out common factors?

To find the limit of the given function as x approaches 2, we can plug the value of 2 directly into the function. However, since the denominator of the function becomes 0 when x=2, we need to simplify the function first.

(x^2 + x - 6)/(x^2 - 4) can be factored as [(x+3)(x-2)]/[(x+2)(x-2)].

We can then cancel out the common factor of (x-2) in the numerator and denominator, leaving us with (x+3)/(x+2) as the simplified function.

Now, we can plug in the value of 2 into this simplified function:

limx→2 (x+3)/(x+2)

= (2+3)/(2+2)

= 5/4

Therefore, the answer is D) 5/4.

Learn more about rational function.

brainly.com/question/27914791

#SPJ11

A picture and surrounding border are fitted within a wooden frame as shown. The picture measures 8 1/2​ inches by 11 inches. The base and height of the border and picture together each measure 2 inches more than the picture by itself. The area of the entire framed picture, including the border and the picture, is 216 square inches. Find the area of only the wooden frame, minus the border and the picture.

Answers

Regarding resolving the given issue, we have The area of the wooden frame alone, without the border and the image, is: 40.855 square inches are equal to (20.57 + 2) (10.5 + 2) - 215.985.

What is equation?

A mathematical equation is a formula that connects two claims and uses the equals symbol (=) to denote equivalence. An equation in algebra is a mathematical statement that establishes the equivalence of two mathematical expressions. For instance, in the equation 3x + 5 = 14, the equal sign places a space between the variables 3x + 5 and 14. The relationship between the two sentences that are written on each side of a letter may be understood using a mathematical formula. The symbol and the single variable are frequently the same. as in, 2x - 4 equals 2, for instance.

Let x represent the image's height in inches on its own. In such case, the image's width is 8.5 inches.

The height of the border and picture together is x + 2 inches, and the width is 8.5 + 2 = 10.5 inches since their combined measurements are 2 inches more than the picture's individual proportions.

The framed image has a 216 square inch surface area, including the border and the image, thus we have:

Height and breadth are equal to 216 (x + 2) by 10.5 and 216 (x + 2) by 20.57 by 18.57.

Therefore, the picture's height alone is around 18.57 inches, while the border and picture as a whole measure 20.57 inches by 10.5 inches.

The full framed image's area, including the border and the image itself, is:

20.57 x 10.5 = 215.985 x 216 for height and breadth

The area of the image and the area of the border must be subtracted from the overall area of the framed picture in order to get the area of only the wooden frame.

The image measures 8.5 x 18.57 inches, or 158.145 square inches.

The distance between the picture's actual size and the border's size is the area of the border:

157.145 minus 215.985 equals 57.84 square inches.

The area of the wooden frame alone, without the border and the image, is:

40.855 square inches are equal to (20.57 + 2) (10.5 + 2) - 215.985.

To know more about equation visit:

https://brainly.com/question/649785

#SPJ1

To test Hou = 20 versus Hu<20, a simple random sample of size n= 16 is obtained from a population that is known to be normally distributed. Answer parts (a)-(d). E: Click here to view the t-Distribution Area in Right Tail. ... (a) If x = 18.2 and s = 4, compute the test statistic. t=(Round to two decimal places as needed.) (b) Draw a t-distribution with the area that represents the P-value shaded. Which of the following graphs shows the correct shaded region? P A. OB OC. Л. (c) Approximate the P-value. Choose the correct range for the P-value below. O A. 0.05< P-value <0.10 OB. 0.025 < P-value < 0.05 OC. 0.15

Answers

The correct range for the P-value is 0.05 < P-value < 0.10.

(a) To compute the test statistic, use the formula t = (x - μ) / (s / √n), where x is the sample mean, μ is the population mean, s is the sample standard deviation, and n is the sample size. In this case, x = 18.2, μ = 20, s = 4, and n = 16. Plugging in the values, we get:

t = (18.2 - 20) / (4 / √16) = (-1.8) / (4 / 4) = -1.8 / 1 = -1.80 (rounded to two decimal places)

(b) Since the alternative hypothesis is Hu < 20, the shaded region will be to the left of the test statistic in the t-distribution.

(c) To approximate the P-value, we can use a t-distribution table or a calculator. The test statistic is -1.80, and the degrees of freedom (df) for this problem are n - 1 = 16 - 1 = 15. Looking up the values in a t-table, we find that the P-value falls between 0.05 and 0.10.

Know more about P-value here:

https://brainly.com/question/30182084

#SPJ11

Current Attempt in Progress
The compressive strength of concrete is normally distributed with μ = 2498 pslande σ = 52 psl. A random sample of 9 specimens collected. What is the standard error of the sample mean? Round your final answer to three decimal places tolat : 12345).
The standard error of the sample means is ___ psi.

Answers

The standard error of the sample means is 17.333 psi.

To find the standard error of the sample mean, we will use the following formula:
Standard Error (SE) = σ / √n
where σ is the population standard deviation, and n is the sample size. In your case, we have:
μ = 2498 psi (mean)
σ = 52 psi (standard deviation)
n = 9 (sample size)
Now, let's calculate the standard error:
SE = 52 / √9
SE = 52 / 3
SE = 17.333 psi
Rounding to three decimal places, we get:
The standard error of the sample means is 17.333 psi.

Note: The standard error (SE) is a measure of the variability or precision of a sample statistic, usually the mean, compared to the true population parameter.

It is the estimated standard deviation of the sampling distribution of a statistic, such as the mean, based on a finite sample size. The SE is calculated by dividing the standard deviation of the population by the square root of the sample size.

Standard deviation (SD) is a measure of the amount of variability or dispersion in a set of data.

It is the square root of the variance, which is calculated by taking the average of the squared differences between each data point and the mean of the dataset.

For similar question on sample.

https://brainly.com/question/27829028

#SPJ11

Other Questions
Let X be a random variable with mean and variance 2 . Let Y=X- , then what are the values of EY and Var(Y) ?EY=0, VarY=2-EY=0, VarY=EY=/, VarY=1EY=0, VarY=1None of the above. a cylinder with a 3 square inch piston and a 1 square inch rod is pushing a 1,450 lb load up an inclined plane at an angle of 22 degrees. the initial speed is 60 ft/min and the deceleration distance is 0.25 in. the coefficient of friction between the load and the surface is 0.3. what force (in lbs) is required to decelerate the load and bring it to a stop when it is traveling up the hill? A researcher claims that the average wind speed in the desert is less than 20.5 kilometers per hour. A sample of 33 days has an average wind speed of 19 kilometers per hour. The standard deviation of the population is 3.02 kilometers per hour. At , is there enough evidence to reject the claim?If a hypothesis testing is to be undertaken, the Test Value will be equal to: Pregnant flight personnel may be waived to permit flight in transport, maritime or helo type aircraft with a cabin altitude of less than how many feet A charged particle moves with a constant speed through a region where a uniform magnetic field is present. If the magnetic field points straight upward, the magnetic force acting on this particle will be maximum when the particle movesA. upward at an angle of 45 degrees above the horizontalB. HorizontallyC. Straight downwardD. Straight upward The basic speed law requires you to driveA. Within 5mph of the 55mph speed limit B. No faster than is safe for existing conditionsC. At the max speed limitD. At the minimum speed limit Determine the value of k that will make y = 2cos(2x) a solution to y" - ky = y ". k = 5 k = -3 ok=0 k = -6 3. What is the flash point of any flammable liquid? 12. Ammonium carbonate and aluminum acetateMolecular Equation:3 (NH4)CO3(aq) + 2 Al(CHO)(aq)Complete lonic Equation:Net Ionic Equation: Flip a coin twice, create the sample space of possible outcomes (H: Head, T: Tail). Evaluate this SQL statement:SELECT employee_id, last_name, salaryFROM employeesWHERE department_id IN (SELECT department_id FROM employees WHERE salary > 30000 AND salary < 50000);Which values will be displayed? Mark for Review(1) Points Only employees who earn more than $30,000. All employees who work in a department with employees who earn more than $30,000 and more than $50,000. All employees who work in a department with employees who earn more than $30,000, but less than $50,000. (*) Only employees who earn less than $50,000. Complete the following Bible verses Isaiah 40:28 "Do you not" -God (5 points) Find the slope of the tangent to the curve r = -8 + 4 cos theta at the value Theta = Phi/2 Write ALL steps (workings) as you will be marked on methods and not just your final answer! You need to name and write in full ALL rules used each and every time they are used (even in the same question). All workings including those carried out on the powers.An industrial manufacturer (Manufacturer A) of widgets has the following marginal revenue and marginal cost functions: MR = 1000( 2 + 4 + 4) MC = 500 23 + 5(a) Find the total revenue function. (6 marks)(b) Find the total cost function. (9 marks)(c) Calculate the demand function (5 marks) (d) A competitor (Manufacturer B) producing the same widgets has a marginal revenue function given by: MR = 1000( 2 + 2 + 7)Determine what (non-zero) quantity of widgets this competitor needs to manufacture for its total revenue to equal the total revenue of Manufacturer A (10 marks). asymmetrical alkyne + H (1 mol equivalent) + Pd/C pic below Which statement is supported by the information in the graph?Answer B The income in Year 5 was twice the income in Year 1.A Expenses have increased $200,000 each year over the last 5 years.C The combined income in Years 1, 2, and 3 was equal to the combined expenses in Years 1, 2, and 3.D The combined expenses in Years 3 and 4 were $300,000 more than the combined income in Years 3 and 4. find the probability of guessing exactly 3 correct responses on a test consisting of 30 questions, when there are 5 multiple choice options available for each question and only one answer is correct for each question. In Youse, how did you used to save a parquet file in the S3 bucket? A cylinder (I = MR2/2) is rolling along the ground at 7.0 m/s. It comes to a hill and starts going up. Assuming no losses to friction, how high does it get before it stops? 9 1/4 pt = ____cPlease help me!!!!!