At an instant when a soccer ball is in contact with the foot of the player kicking it, the horizontal or x component of the ball's acceleration is 950 m/s2 and the vertical or y component of its acceleration is 750 m/s2. The ball's mass is 0.35 kg. What is the magnitude of the net force acting on the soccer ball at this instant?

Answers

Answer 1

Answer:

F = 423.63 N

Explanation:

Since, the x-component and y-components of the acceleration of ball are given. Therefore, we need to find the resultant or net acceleration of the soccer ball first. For that purpose we use to the formula for the resultant of rectangular components of a vector:

a = √(ax² + ay²)

where,

a = net acceleration = ?

ax = x - component of acceleration = 950 m/s²

ay = y - component of acceleration = 750 m/s²

Therefore,

a = √[(950 m/s²)² + (750 m/s²)²]

a = 1210.4 m/s²

Now, from Newton's Second Law, we know that:

F = ma

where,

m = mass of ball = 0.35 kg

F = Net force acting on ball = ?

F = (0.35 kg)(1210.4 m/s²)

F = 423.63 N


Related Questions

1. How is it possible to use pools to model apparent weightlessness, similar to what astronauts
experience on the Moon or on the space station? Explain ​

Answers

Answer:

by using it's buoyant or floating effect by Archimedes.

the buoyant force act on the astronauts body and make he/ she feels like in low gravity.

the buoyant force equation is

F = Density of liquid x earth gravitational field x volume of astronauts body and suit.

the Weight of astronauts in the pools will be less than in the land or air.

Weight in water = weight in air/land - buoyant force

so the astronauts will feel like in the outer space with low gravity.

wheel rotates from rest with constant angular acceleration. Part A If it rotates through 8.00 revolutions in the first 2.50 s, how many more revolutions will it rotate through in the next 5.00 s?

Answers

Answer:

x2 = 64 revolutions.

it rotate through 64 revolutions in the next 5.00 s

Explanation:

Given;

wheel rotates from rest with constant angular acceleration.

Initial angular speed v = 0

Time t = 2.50

Distance x = 8 rev

Applying equation of motion;

x = vt +0.5at^2 ........1

Since v = 0

x = 0.5at^2

making a the subject of formula;

a = x/0.5t^2 = 2x/t^2

a = angular acceleration

t = time taken

x = angular distance

Substituting the values;

a = 2(8)/2.5^2

a = 2.56 rev/s^2

velocity at t = 2.50

v1 = a×t = 2.56×2.50 = 6.4 rev/s

Through the next 5 second;

t2 = 5 seconds

a2 = 2.56 rev/s^2

v2 = 6.4 rev/s

From equation 1;

x = vt +0.5at^2

Substituting the values;

x2 = 6.4(5) + 0.5×2.56×5^2

x2 = 64 revolutions.

it rotate through 64 revolutions in the next 5.00 s

Which of the following best describes the current age of the Sun?

A.) It is near the end of its lifespan.

B.) It is about halfway through its lifespan.

C.) It is early in its lifespan.

D.) We do not have a good understanding of the Sun's age.

Answers

Answer:  Its b, The only problem with this is is there supposed to be a picture?

Explanation: NASA has used there fancy gadgets to figure this out but if there was a picture, this answer could be different.

A 15.0-kg bucket of water is suspended by a very light rope wrapped around a solid uniform cylinder 0.300 m in diameter with mass 12.0 kg. The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls 10.0 m to the water. (a) What is the tension in the rope while the bucket is falling? (b) With what speed does the bucket strike the water? (c) What is the time of fall? (d) While the bucket is falling, what is the force exerted on the cylinder by the axle?

Answers

Answer:

a. 42N

b. 11.8m/s

c. 1.69s

d. 160N

Explanation:

a)  The tension of the rope is 130.66 N.

b) The speed of the bucket while strike the water = 4.64 m/s.

c) The time of fall is  = 4.303 second.

d)  While the bucket is falling, what is the force exerted on the cylinder by the axle is  130.66 N.

Mass of the water bucket; M = 15.0 kg

Mass of the cylinder; m =  12.0 kg

Height of the bucket; h = 10.0 m.

They are connected by a rope and a pivots.

So, acceleration of them is same and let it be a.

So equation of motion of both of them be:

Mg - T = Ma

and, T - mg = ma

Hence, a = g(M-m)/(M+m)

= 9.8(15-12)/(15+12)

= 1.08 m/s²

And, T = m(g+a)

= 12.0(9.8+1.08)

= 130.66 N.

a) so tension of the rope is 130.66 N.

b) speed of the bucket while strike the water = √2ah =√(2×1.08×10.0) m/s = 4.64 m/s.

c) The time of fall is = √2h/a = √(2×10/1.08) second = 4.303 second.

d) While the bucket is falling, what is the force exerted on the cylinder by the axle is tension of the rope, that is, 130.66 N.

Learn more about speed here:

https://brainly.com/question/28224010

#SPJ5

An aluminium pot whose thermal conductivity is 237 W/m.K has a flat, circular bottom

with diameter 15 cm and thickness 0.4 cm. Heat is transferred steadily to boiling water in

the pot through its bottom at a rate of 1400 W. If the inner surface of the bottom of the pot

is at 105 °C, determine the temperature at the outer surface of the bottom of the pot

Answers

Answer:

T₁ = 378.33 k = 105.33°C

Explanation:

From Fourier's Law of heat conduction, we know that:

Q = - KAΔT/t

where,

Q = Heat Transfer Rate = 1400 W

K = Thermal Conductivity of Material (Aluminum) = 237 W/m.k

A =Surface Area through which heat transfer is taking place=circular bottom

A = π(radius)² = π(0.15 m)² =  0.0707 m²

ΔT = Difference in Temperature of both sides of surface = T₂ - T₁

T₁ = Temperature of outer surface = ?

T₂ = Temperature of inner surface = 105°C + 273 = 378 k

ΔT = 388 k - T₁

t = thickness of the surface (Bottom of Pot) = 0.4 cm = 0.004 m

Therefore,

1400 W = - (237 W/m.k)(0.0707 m²)(378 k - T₁)/0.004 m

(1400 W)/(4188.14 W/k) = - (378 k - T₁)

T₁ = 0.33 k + 378 k

T₁ = 378.33 k = 105.33°C

Astronauts are testing the gravity on a new planet. A rock is dropped between two photogates that are 0.5 meters apart. The first photogate reads a velocity of 1.2 m/s and the the second photogate reads a velocity of 4.3 m/s . What is the acceleration of gravity on this new planet?

Answers

Answer:

a = 17 m / s²

Explanation:

For this experiment that the astronauts are carrying out, the value of the relation of gravity is cosecant, therefore we can use the kinematic relations

         v² = v₀² + 2a y

They indicate the initial speed 1.2 m / s the final speed 4.3 m / s and the distance remembered 0.5 m

we clear

        a = (v² - v₀²) / 2y

we calculate

       a = (4.3² -1.2²) / 2 0.5

       a = 17 m / s²

this is the gravity of the new planet

4. A neutrally charged conductor has a negatively charged rod brought close to it, and thus has an induced positive charge on the surface closest to the rod. What can we say about the overall charge on the conductor

Answers

Answer:

Overall charge still remains zero on conductor until touched by charged rod.

Explanation:

Here, we want to know what has happened to the overall charge on the conductor.

Since the conductor is neutral, the overall charge on the conductor must remain zero because positive charge is induced on close end to rod then equal and negaitve charge is induced on far end to rod.

Thus, overall charge still remains zero on conductor until touched by charged rod.

Q.1- Find the distance travelled by a particle moving in a straight line with uniform acceleration, in the 10th unit of time.

Answers

Answer:

If the acceleration is constant, the movements equations are:

a(t) = A.

for the velocity we can integrate over time:

v(t) = A*t + v0

where v0 is a constant of integration (the initial velocity), for the distance traveled between t = 0 units and t = 10 units, we can solve the integral:

[tex]\int\limits^{10}_0 {A*t + v0} \, dt = ((A/2)10^2 + v0*10) = (A*50 + v0*10)[/tex]

Where to obtain the actual distance you can replace the constant acceleration A and the initial velocity v0.

A gas in a closed container is heated with 12J of energy, causing the lid of the container to rise 3m with 5N of force. What is the total change in energy?

Answers

Answer:

27J

Explanation:

From conservation of Thermal energy, the total internal energy is the total sum of energy supplied or taken from the system plus work done for or on the system.

Now the change in internal energy would be the sum of the received energy substended in the gas plus the work done by the system which is workdone that it will sustend in pushing the lid. This is expressed mathematically as;

U = Q + (F×d);

U- change in internal energy

Q is the energy received by the system and is positive when energy is received by the system.

Fxd is the workdone and is positive since the gas pushes up the lid- the system does work.

U=12+(3×5)= 27J

A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.90 m/s2. The car makes it one quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and track.

Required:
Determine the coefficient of static friction between the car and the track.

Answers

Answer:

Approximately [tex]0.608[/tex] (assuming that [tex]g = 9.81\; \rm N\cdot kg^{-1}[/tex].)

Explanation:

The question provided very little information about this motion. Therefore, replace these quantities with letters. These unknown quantities should not appear in the conclusion if this question is actually solvable.

Let [tex]m[/tex] represent the mass of this car.Let [tex]r[/tex] represent the radius of the circular track.

This answer will approach this question in two steps:

Step one: determine the centripetal force when the car is about to skid.Step two: calculate the coefficient of static friction.

For simplicity, let [tex]a_{T}[/tex] represent the tangential acceleration ([tex]1.90\; \rm m \cdot s^{-2}[/tex]) of this car.

Centripetal Force when the car is about to skid

The question gave no information about the distance that the car has travelled before it skidded. However, information about the angular displacement is indeed available: the car travelled (without skidding) one-quarter of a circle, which corresponds to [tex]90^\circ[/tex] or [tex]\displaystyle \frac{\pi}{2}[/tex] radians.

The angular acceleration of this car can be found as [tex]\displaystyle \alpha = \frac{a_{T}}{r}[/tex]. ([tex]a_T[/tex] is the tangential acceleration of the car, and [tex]r[/tex] is the radius of this circular track.)

Consider the SUVAT equation that relates initial and final (tangential) velocity ([tex]u[/tex] and [tex]v[/tex]) to (tangential) acceleration [tex]a_{T}[/tex] and displacement [tex]x[/tex]:

[tex]v^2 - u^2 = 2\, a_{T}\cdot x[/tex].

The idea is to solve for the final angular velocity using the angular analogy of that equation:

[tex]\left(\omega(\text{final})\right)^2 - \left(\omega(\text{initial})\right)^2 = 2\, \alpha\, \theta[/tex].

In this equation, [tex]\theta[/tex] represents angular displacement. For this motion in particular:

[tex]\omega(\text{initial}) = 0[/tex] since the car was initially not moving.[tex]\theta = \displaystyle \frac{\pi}{2}[/tex] since the car travelled one-quarter of the circle.

Solve this equation for [tex]\omega(\text{final})[/tex] in terms of [tex]a_T[/tex] and [tex]r[/tex]:

[tex]\begin{aligned}\omega(\text{final}) &= \sqrt{2\cdot \frac{a_T}{r} \cdot \frac{\pi}{2}} = \sqrt{\frac{\pi\, a_T}{r}}\end{aligned}[/tex].

Let [tex]m[/tex] represent the mass of this car. The centripetal force at this moment would be:

[tex]\begin{aligned}F_C &= m\, \omega^2\, r \\ &=m\cdot \left(\frac{\pi\, a_T}{r}\right)\cdot r = \pi\, m\, a_T\end{aligned}[/tex].

Coefficient of static friction between the car and the track

Since the track is flat (not banked,) the only force on the car in the horizontal direction would be the static friction between the tires and the track. Also, the size of the normal force on the car should be equal to its weight, [tex]m\, g[/tex].

Note that even if the size of the normal force does not change, the size of the static friction between the surfaces can vary. However, when the car is just about to skid, the centripetal force at that very moment should be equal to the maximum static friction between these surfaces. It is the largest-possible static friction that depends on the coefficient of static friction.

Let [tex]\mu_s[/tex] denote the coefficient of static friction. The size of the largest-possible static friction between the car and the track would be:

[tex]F(\text{static, max}) = \mu_s\, N = \mu_s\, m\, g[/tex].

The size of this force should be equal to that of the centripetal force when the car is about to skid:

[tex]\mu_s\, m\, g = \pi\, m\, a_{T}[/tex].

Solve this equation for [tex]\mu_s[/tex]:

[tex]\mu_s = \displaystyle \frac{\pi\, a_T}{g}[/tex].

Indeed, the expression for [tex]\mu_s[/tex] does not include any unknown letter. Let [tex]g = 9.81\; \rm N\cdot kg^{-1}[/tex]. Evaluate this expression for [tex]a_T = 1.90\;\rm m \cdot s^{-2}[/tex]:

[tex]\mu_s = \displaystyle \frac{\pi\, a_T}{g} \approx 0.608[/tex].

(Three significant figures.)

In which situation is chemical energy being converted to another form of energy?

Answers

Answer:

A burning candle. (chemical energy into energy of heat and light, i.e. thermal and wave)

Explanation:

A 72.0 kg swimmer jumps into the old swimming hole from a tree limb that is 3.90 m above the water.
A. Use energy conservation to find his speed just as he hits the water if he just holds his nose and drops in.
b) Use energy conservation to find his speed just he hits the water if he bravely jumps straight up (but just beyond the board!) at 2.90 m/s .
c) Use energy conservation to find his speed just he hits the water if he manages to jump downward at 2.90 m/s .

Answers

You didn’t put a queston

Answer:

Explanation:

The Law of Energy Conservation states that K1 + U1 = K2 + U2

m= 72.0 kg

h= 3.90 m

a)

K1 + U1 = K2 + U2

0 + mgh = 1/2mvf^2 + 0

mass cancels out so gh=1/2vf^2

(9.8 m/s^2)(3.9 m)=(.5)(vf^2)

vf= 8.74 m/s

b)

1/2mv^2 + mgh = 1/2mv^2 + 0

mass cancels again

(.5)(2.9^2 m/s) + (9.8 m/s^2)(3.9 m) = (.5)(vf^2)

vf= 9.21 m/s

c)

This would be the same as the past problem as the velocity gets squared so direction along the axis doesn't matter. Thus, vf= 9.21 m/s

An experiment invilves three charges objects: A, B, and C. Object A repels object B and attracts onject C. object C ir repelled by ebonite charged with fur. What is the charge on the object?

Answers

Answer:

A and B is positive charge

C_negative

Explanation:

because when an ebonite is rubbed with fur produce negative charge due to law of electrostatic like charge repel and unlike attract

Representar con una escala de 1cm = 10N dos fuerzas que tengan igual dirección, distinto sentido y sus intensidades son de 40n y 60n, respectivamente.


Alguien que me lo hagaaaaaaa

Answers

Answer:

To solve this problem we just need to graph two forces with same direction, pointing to different sides with intensities of 40 N and 60 N.

The image attached shows these forces.

Notice that the vectors are parallel, that's because they have the same direction, but they point to different sides, and their magnitudes have a difference of 20 N.

5.Which of the following does not affect rate of evaporation?
O Wind speed
O Surface area
O Temperature
O Insoluble heavy impurities

Answers

Insoluble heavy impurities

Answer:

D

Explanation:

Insoluble impurities would not change the constituent of the substance. Soluble would for example salt water takes longer time for the water to become vapour when subjected to the same temperature that normal water.

Wind would affect, the more windy the tendency for particles of the liquid to be moved into the atmosphere.

With an increase in surface area, the evaporation rate increase . Take a clue from water placed on the ground and exposed to the atmosphere and that same quantity of water is placed in a cup. That on the floor would evaporate faster.

Similarly the higher the temperature a substance is subjected to the easier is it's rate of evaporation. Take for instance water in a cup placed in the sun and that same placed in a room with mild temperatures than that of the sun.With time that in the sun decreases in volume faster than that in the room.

On a brisk walk, a person burns about 331 Cal/h. If the brisk walk were done at 3.0 mi/h, how far would a person have to walk
to burn off 1 lb of body fat? (A pound of body fat stores an amount of chemical energy equivalent to 3,500 Cal.)
mi?​

Answers

Answer:

32mi

Explanation:

If 1lb contains 3,500 Cal

It means the number of hours required to burn 3500cal would be;

3500/331 = 10.57hours

But a brisk walk is 3.0 mi/h,

It means a distance of 3.0 × 10.57 mi would be covered = 31.71 miles

32miles{ approximated to the nearest whole}

Note Distance = speed × time

You measure the power delivered by a battery to be 1.15 W when it is connected in series with two equal resistors. How much power will the same battery deliver if the resistors are now connected in parallel across it

Answers

Answer:

The power is  [tex]P_p = 4.6 \ W[/tex]

Explanation:

From the question we are told that

   The power delivered is  [tex]P_{s} = 1.15 \ W[/tex]

   Let it resistance be denoted as R

    The resistors are connected in series so the equivalent resistance is  

     [tex]R_{eqv} = R+ R = 2 R[/tex]

Considering when it is connected in series    

Generally power is mathematically represented as

     [tex]P_s = V * I[/tex]

Here I is the current which is mathematically represented as

       [tex]I = \frac{V}{2R}[/tex]

The power becomes

     [tex]P_s = V * \frac{V}{2R}[/tex]

     [tex]P_s = \frac{V^2}{2R}[/tex]

substituting value

    [tex]1.15 = \frac{V^2}{2R}[/tex]

Considering when resistance is connected in parallel

  The equivalent resistance becomes

    [tex]R_{eqv} = \frac{R}{2}[/tex]

So The current  becomes

       [tex]I = \frac{V}{\frac{R}{2} } = \frac{2V}{R}[/tex]

And the power becomes

     [tex]P_p = V * \frac{2V}{R} = \frac{2V^2}{R} = \frac{4 V^2}{2 R} = 4 * P_s[/tex]

 substituting values

     [tex]P_p = 4 * 1.15[/tex]

     [tex]P_p = 4.6 \ W[/tex]

     

what statement is true according to newton’s first law of motion?

a. in the absence of unbalanced force an object at rest will stay at rest and an object in motion will come to a stop.

b. in the absence of an unbalanced force, an object will start moving and an object in motion will come to a stop.

c. in the absence of an unbalanced force, an object at rest will stay at rest and an object in motion will stay in motion.

d. in the absence of an unbalanced force, an object will start moving and an object in motion will stay in motion.

Answers

Answer:

  c.  in the absence of an unbalanced force, an object at rest will stay at rest and an object in motion will stay in motion.

Explanation:

First law: things keep doing what they are doing, unless force is applied.

Plaskett's binary system consists of two stars that revolve In a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal . Assume the orbital speed of each star is |v | = 240 km/s and the orbital period of each is 12.5 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 times 1030 kg Your answer cannot be understood or graded.

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The mass is    [tex]M =1.43 *10^{32} \ kg[/tex]

Explanation:

From the  question we are told that

       The mass of the stars are [tex]m_1 = m_2 =M[/tex]

        The orbital speed of each star is  [tex]v_s = 240 \ km/s =240000 \ m/s[/tex]

         The orbital period is [tex]T = 12.5 \ days = 12.5 * 2 4 * 60 *60 = 1080000\ s[/tex]

The centripetal force acting on these stars is mathematically represented as

      [tex]F_c = \frac{Mv^2}{r}[/tex]

The gravitational force acting on these stars is mathematically represented as

      [tex]F_g = \frac{GM^2 }{d^2}[/tex]

So  [tex]F_c = F_g[/tex]

=>        [tex]\frac{mv^2}{r} = \frac{Gm_1 * m_2 }{d^2}[/tex]

=>      [tex]\frac{v^2}{r} = \frac{GM}{(2r)^2}[/tex]

=>      [tex]\frac{v^2}{r} = \frac{GM}{4r^2}[/tex]

=>    [tex]M = \frac{v^2*4r}{G}[/tex]

The distance traveled by each sun in one cycle is mathematically represented as

     [tex]D = v * T[/tex]

      [tex]D = 240000 * 1080000[/tex]

      [tex]D = 2.592*10^{11} \ m[/tex]

Now this can also be represented as

      [tex]D = 2 \pi r[/tex]

Therefore

                  [tex]2 \pi r= 2.592*10^{11} \ m[/tex]

=>   [tex]r= \frac{2.592*10^{11}}{2 \pi }[/tex]

=>    [tex]r= 4.124 *10^{10} \ m[/tex]

So  

       [tex]M = \frac{v^2*4r}{G}[/tex]

=>    [tex]M = \frac{(240000)^2*4*(4.124*10^{10})}{6.67*10^{-11}}[/tex]

=>    [tex]M =1.43 *10^{32} \ kg[/tex]

       

     

During a football game, a receiver has just caught a pass and is standing still. Before he can move, a tackler, running at a velocity of 2.60 m/s, grabs and holds onto him so that they move off together with a velocity of 1.30 m/s. If the mass of the tackler is 122 kg, determine the mass of the receiver. Assume momentum is conserved.

Answers

Answer:

122kg

Explanation:

Using the law of conservation of momentum which states that 'the sum of momentum of bodies before collision is equal to their sum after collision. The bodies will move together with a common velocity after collision.

Momentum = Mass * Velocity

Before collision;

Momentum of receiver m1u1= 0 kgm/s (since the receiver is standing still)

Momentum of the tackler

m2u2 = 2.60*122 = 317.2 kgm/s

where m2 and u2 are the mass and velocity of the tacker respectively.

Sum of momentum before collision = 0+317.2 = 317.2 kgm/s

After collision

Momentum of the bodies = (m1+m2)v

v = their common velocity

m1 = mass of the receiver

Momentum of the bodies = (122+m1)(1.30)

Momentum of the bodies = 158.6+1.30m1

According to the law above;

317.2 = 158.6+1.30m1

317.2-158.6 = 1.30m1

158.6 = 1.30m1

m1 = 158.6/1.30

m1 = 122kg

The mas of the receiver is 122kg

Thana reminds Alston that because the electric field is uniform, a constant electric force is exerted on the electron. Alston recognizes that, in this case, they can use the kinematic equations to describe the motion of the charged particle while it is inside the region containing the electric field. He asks Thana to write down an equation they can use to calculate the acceleration of the particle while it is inside the region containing a uniform electric field. Which of These equations is correct?

Answers

Answer:

  a = - e E / m

a = - 1,758 10¹¹ E

Explanation:

For this exercise we can use Newton's second law

        F = m a

where the force is electric

 the forces given by the product of the charge by the electric field

         F = q E

in this case tell us that the charge is the charge of the electron

         q = -e = - 1.6 10⁻¹⁹ C

we substitute

        - e E = m a

          a = - e E / m

we calculate

           a = - 1.6 10⁻¹⁹ / 9.1 10⁻³¹ E

           a = - 1,758 10¹¹ E

The negative sign indicates that the acceleration is in the opposite direction to the electric field

a steel ball is dropped from a diving platform use the approximate value of g as 10 m/s^2 to solve the following problem what is the velocity of the ball 0.9 seconds after its released

Answers

Answer:

The final speed of the ball is 9 m/s.

Explanation:

We have,

A steel ball is dropped from a diving platform. It is required to find the velocity of the ball 0.9 seconds after its released. It will move under the action of gravity. Using equation of motion to find it as :

[tex]v=u+at[/tex]

u = 0 (at rest), a = g

[tex]v=gt\\\\v=10\times 0.9\\\\v=9\ m/s[/tex]

So, the final speed of the ball is 9 m/s.

Assuming 100% efficient energy conversion, how much water stored behind a 50 centimetre high hydroelectric dam would be required to charge battery

Answers

Complete question is;

Assuming 100% efficient energy conversion how much water stored behind a 50 centimeter high hydroelectric dam would be required to charge the battery with power rating, 12 V, 50 Ampere-minutes

Answer:

Amount of water required to charge the battery = 7.35 m³

Explanation:

The formula for Potential energy of the water at that height = mgh

Where;

m = mass of the water

g = acceleration due to gravity = 9.8 m/s²

H = height of water = 50 cm = 0.5 m

We know that in density, m = ρV

Where;

ρ = density of water = 1000 kg/m³

V = volume of water

So, potential energy is now given as;

Potential energy = ρVgH = 1000 × V × 9.8 × 0.5 = (4900V) J

Now, formula for energy of the battery is given as;

E = qV

We are given;

q = 50 A.min = 50 × 60 = 3,000 C

V = 12 V

Thus;

qV = 3,000 × 12 = 36,000 J

E = 36,000 J

At a 100% conversion rate, the energy of the water totally powers the battery.

Thus;

(4900V) = (36,000)

4900V = 36,000

V = 36,000/4900

V = 7.35 m³

As your bus rounds a flat curve at constant speed, a package with mass 0.900 kg , suspended from the luggage compartment of the bus by a string 50.0 cm long, is found to hang at rest relative to the bus, with the string making an angle of 30.0 â with the vertical. In this position, the package is 55.0 m from the center of curvature of the curve.

Required:
a. What is the radial acceleration of the bus?
b. What is the radius of the curve?

Answers

Answer:

a.[tex]5.66ms^{-2}[/tex]

b.55 m

Explanation:

We are given that

Mass ,m=0.9 kg

Length of string,l=50 cm=[tex]\frac{50}{100}=0.50 m[/tex]

1 m=100 cm

[tex]\theta=30^{\circ}[/tex]

R=55 m

a.Centripetal acceleration

[tex]a_c=gtan\theta[/tex]

[tex]a_c=9.8tan30^{\circ}[/tex]

[tex]a_c=5.66 m/s^2[/tex]

Hence, the radial acceleration of the bus=[tex]5.66m/s^2[/tex]

b. Radius of curve,R=55 m

A mass of 5.00 kg pulls down vertically on a string that is wound around a rod of radius 0.100 m and negligible moment of inertia. The rod is fixed in the center of a disk. The disk has mass 125 kg and radius 0.2 m. They turn freely about a fixed axis through the center. What is the angular acceleration of the rod, in radians/s 2

Answers

Answer:

0.981 rad/sec^2

Explanation:

mass that pulls on string = 5 kg

weight due to mass = 5 x 9.81 = 49.05 N

radius of rod = 0.1 m

torque produced by this force on the rod = force x radius

torque = 49.05 x 0.1 = 4.905 N-m

mass of disk = 125 kg

radius of disk = 0.2 m

moment of inertia of the disk I = m[tex]r^{2}[/tex]

I = 125 x [tex]0.2^{2}[/tex] = 5 kg-m^2

from the equation, T = Iα

where T is torque

I is moment of inertia

α is angular acceleration

imputing values,

4.905 = 5α

α = 4.905/5 = 0.981 rad/sec^2

Assuming 100% efficient energy conversion, how much water stored behind a 50
centimeter high hydroelectric dam would be required to charge the battery?

Answers

Answer:

Explanation:

The power rating of the battery isn't provided. But let us assume that it is one of the common batteries with ratings of 12 V and 50 A.h

Potential energy possessed by water at that height = mgh

m = mass of the water = ρV

ρ = density of water = 1000 kg/m³

V = volume of water = ?

g = acceleration due to gravity = 9.8 m/s²

h = height of water = 50 cm = 0.5 m

Potential energy = ρVgh = 1000 × V × 9.8 × 0.5 = (4900V) J

Energy of the battery = qV

q = 50 A.h = 50 × 3600 = 180,000 C

V = 12 V

qV = 180,000 × 12 = 2,160,000 J

Energy = 2,160,000 J

At a 100% conversion rate, the energy of the water totally powers the battery

(4900V) = (2,160,000)

4900V = 2,160,000

V = (2,160,000/4900)

V = 440.82 m³

Hence, with our assumed power ratings for the battery (12 V and 50 A.h), 440.82 m³ of water at the given height of 50 cm would power the battery.

Incase the power ratings of the battery in the complete question is different, this solution provides you with how to obtain the correct answer, given any battery power rating.

Hope this Helps!!!

g Tether ball is a game children play in which a ball hangs from a rope attached to the top of a tall pole. The children hit the ball, causing it to swing around the pole. What is the total initial acceleration of a tether ball on a 2.0 m rope whose angular velocity changes from 13 rad/s to 7.0 rad/s in 15 s

Answers

Answer:

a = -0.8 m/s²

Here, negative sign indicates that the acceleration has opposite direction to the direction of motion.

Explanation:

First we find the angular acceleration of the ball from the following formula:

α = (ωf - ωi)/t

where,

α = angular acceleration = ?

ωf = final angular velocity = 7 rad/s

ωi = initial angular velocity = 13 rad/s

t = Time taken = 15 s

Therefore,

α = (7 rad/s - 13 rad/s)/15 s

α = - 0.4 rad/s

negative sign shows that acceleration is in opposite direction to the direction of motion.

Now, for the linear acceleration, we use the formula:

a = rα

where,

a = linear acceleration = ?

r = radius of circular path = length of rope = 2 m

therefore,

a = (2 m)(- 0.4 rad/s²)

a = -0.8 m/s²

Here, negative sign indicates that the acceleration has opposite direction to the direction of motion.

1. An object with a mass of 15 kilograms is pushed by a force of 30 Newtons. How much does
it accelerate?

Answers

Answer: [tex]2m/s^2[/tex]

Explanation:

[tex]Formula: F=ma[/tex]

Where;

F = force

m = mass

a = acceleration

Solve for a;

[tex]a=\frac{F}{m}[/tex]

[tex]a=\frac{30N}{15kg}\\ a=2m/s^2[/tex]

A cheetah bites into its prey. One tooth exerts a force of 320 N. The area of the point of the tooth is 0.5 cm². The pressure of the tooth on the prey, in N/cm², is
a) 0.0013 N/cm²
b) 128 N/cm²
c) 320 N/cm²
d) 640 N/cm²

Answers

Answer:

640N/cm^2

Answer D is correct

Explanation:

[tex]pressure = \frac{force}{area} \\ = \frac{320}{0.5} \\ = 640[/tex]

hope this helps

brainliest appreciated

good luck! have a nice day!

Use Hooke's Law to determine the work done by the variable force in the spring problem. Nine joules of work is required to stretch a spring 0.5 meter from its natural length. Find the work required to stretch the spring an additional 0.40 meter.

Answers

Answer:

29.16 J

Explanation:

From Hook's law,

W = 1/2(ke²)..................... Equation 1

Where W = work done, k = Spring constant, e = extension.

Given: W = 9 J, e = 0.5 m.

Substitute into equation 1

9 = 1/2(k×0.5²)

Solve for k

k = 18/0.5²

k = 72 N/m.

The work done required to stretch the spring by additional 0.4 m is

W = 1/2(72)(0.4+0.5)²

W = 36(0.9²)

W = 29.16 J.

Other Questions
A jar contains 3 black marbles, 4 white marbles and 5 striped marbles. If a marble is picked at random, what is the probability that it is black? Give your answer as a fraction in lowest terms.Please help!!! Esteban's credit card issuing bank charges him an APR of 16% on new purchases, and 24% oncash advances. What would the bank charge Esteban monthly in finance charges for a $700 cashadvance? What is the image of the point (-5, 2) under the translation T3,-4? If f(x) = 8 5x, what is f(4)? Who is the dictator of USSR Letts Corporation manufactures and sells a single product. The company uses units as the measure of activity in its budgets and performance reports. During January, the company budgeted for 7,000 units, but its actual level of activity was 6,970 units. The company has provided the following data concerning the formulas to be used in its budgeting: Fixed element per month Variable element per unit Revenue $ 30.40 Direct labor $ 0 $ 6.10 Direct materials 0 8.70 Manufacturing overhead 46,700 1.80 Selling and administrative expenses 27,800 0.20 Total expenses $ 74,500 $ 16.80 The selling and administrative expenses in the planning budget for January would be closest to: Eric and Simon each go for a morning jog before work. Eric's joggingpace is represented by the equation y=6x, where y is the number ofmiles he jogs and x is the number of hours he jogs. Simon's pace isgiven by the graph. Choose the statement that correctly compares theirunit rates. At the beginning of "The Necklace," what is Mathilde like?O A. She is weary and defeated.O B. She is pretty and vain.O C. She is grateful and kind.O D. She is experienced and wise. What is the rate of change/slope?Miles per hour 2 hours= 70 miles 4 hours= 140 miles6 hours= 210 miles8 hours = 280 miles Which source would be most appropriate for researching the question "How does social media affect personal relationships?" What is the solution to the system of linear equations?{2x + 4y = 20{3x + 2y = 26Enter your answer in the boxes. Please help me please As newts' poison became more toxic, the garter snake's resistance to it became more efficient. This is an example ofconvergent evolutioncoevolutiondivergent evolutionadaptive radiation Please help me with this math problem Which sentence is punctuated correctly? A. I scored a higher grade, on this test, than any other I've taken in my entire life. B. I scored a higher grade on this test than any other, I've taken in my entire life. C. I scored a higher grade on this test, than any other I've taken in my entire life. D. I scored a higher grade on this test than any other I've taken in my entire life. Please answer this correctly a farmer selles 9.3 kilograms of apples and pears at a farmers market 3/4 of its wheight is apples the rest are pairs how many kilograms of pair did he sell A 2-kilogram toy car is traveling forward at 1 meter per second when it is hit in the rear by a 3-kilogram toy truck that was traveling at 3 meters per second just before impact. If the two toys stick together, their speed immediately after the collision is Solve |4x +2|= 6 a.1 or -2b.-1 or 2c.1s.2 I cant tell if my answer is correct , please help !!!!!! Will mark brainliest !!!!!!!!!!!!