Answer:
False
Step-by-step explanation:
AAS is one of the POSTULATE to prove triangles' congruency.
Answer:n
Step-by-step explanation:
Perform the indicated operation and write the result in the form a + bi i^100
[tex]i^{100}=i^{4\cdot25}=\left(i^4\right)^{25}[/tex]
Recall that [tex]i^4=1[/tex], since [tex]i^2=-1[/tex]. Then
[tex]i^{100}=1^{25}=1[/tex]
so that in the form [tex]a+bi[/tex], we have [tex]a=1[/tex] and [tex]b=0[/tex].
Answer:
D) 1
Step-by-step explanation:
Correct on edg
What is the average rate of change for this function for the interval from x= 1
to x = 3?
Answer:
The average rate of change is 12x=12.0x.
Description:
Function: x= 1x = 3 convert to short form: x 1x 3
Interval: x= 1 , x 3
Steps:
Input: Find the average rate of change of f(x)=3x2 on the interval [x,3x].
We have that a=x, b=3x, f(x)=3x2
Thus, f(b)−f(a)b−a=3((3x))2−(3(x)2)3x−(x)=12x.
Answer: the average rate of change is 12x=12.0x.
Please mark brainliest
Hope this helps.
Answer:
3
Step-by-step explanation:
A P E X
(like Ross 6.28) The time that it takes to service a car is an exponential random variable with rate 1. (a) If Lightning McQueen (L.M.) brings his car in at time 0 and Sally Carrera (S.C) brings her car in at time t, what is the probability that S.C.’s car is ready before L.M.’s car? Assume that service times are independent and service begins upon arrival of the car.
Answer: provided in the explanation section
Step-by-step explanation:
The complete question says:
The time that it takes to service a car is an exponential random variable with rate 1. (a) If Lightning McQueen (L.M.) brings his car in at time 0 and Sally Carrera (S.C) brings her car in at time t, what is the probability that S.C.'s car is ready before L.M.'s car? Assume that service times are independent and service begins upon arrival of the car Be sure to: 1) define all random variables used, 2) explain how independence of service times plays a part in your solution, 3) show all integration steps. (b) If both cars are brought in at time 0, with work starting on S.C. 's car only when L.M.'s car has been completely serviced, what is the probability that S.C.'s car is ready before time 2?
Ans to this is provided in the images uploaded as it is not possible to put the symbols here...
i hope you find this helpful.
cheers !!
The percent, X, of shrinkage on drying for a certain type of plastic clay has an average shrinkage percentage :, where parameter : is unknown. A random sample of 45 specimens from this clay showed an average shrinking percentage of 18.4 and a standard deviation of 2.2. est at 5% level of significance whether the true average shrinkage percentage : is greater than 17.5 and write your conclusion. Report the p-value.
Answer:
[tex]t=\frac{18.4-17.5}{\frac{2.2}{\sqrt{45}}}=2.744[/tex]
The degrees of freedom are given by:
[tex]df=n-1=45-1=44[/tex]
The critical value for this case is [tex]t_{\alpha}=1.68[/tex] since the calculated value is higher than the critical we have enough evidence to reject the null hypothesis and we can conclude that the true mean is significantly higher than 18.4
[tex]p_v =P(t_{(44)}>2.744)=0.0044[/tex]
We see that the p value is lower than the significance level so then we can reject the null hypothesis in favor of the alternative.
Step-by-step explanation:
Information given
[tex]\bar X=18.4[/tex] represent the sample mean
[tex]s=2.2[/tex] represent the sample standard deviation
[tex]n=45[/tex] sample size
[tex]\mu_o =17.5[/tex] represent the value to verify
[tex]\alpha=0.05[/tex] represent the significance level
t would represent the statistic
[tex]p_v[/tex] represent the p value
We want to test if the true mean is higher than 17.5, the system of hypothesis would be:
Null hypothesis:[tex]\mu \leq 17.5[/tex]
Alternative hypothesis:[tex]\mu > 17.5[/tex]
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
And replacing we got:
[tex]t=\frac{18.4-17.5}{\frac{2.2}{\sqrt{45}}}=2.744[/tex]
The degrees of freedom are given by:
[tex]df=n-1=45-1=44[/tex]
The critical value for this case is [tex]t_{\alpha}=1.68[/tex] since the calculated value is higher than the critical we have enough evidence to reject the null hypothesis and we can conclude that the true mean is significantly higher than 18.4
The p value would be given by:
[tex]p_v =P(t_{(44)}>2.744)=0.0044[/tex]
We see that the p value is lower than the significance level so then we can reject the null hypothesis in favor of the alternative.
A high school student took two college entrance exams, scoring 1070 on the SAT and 25 on the ACT. Suppose that SAT scores have a mean of 950 and a standard deviation of 155 while the ACT scores have a mean of 22 and a standard deviation of 4. Assuming the performance on both tests follows a normal distribution, determine which test the student did better on.
Answer:
Due to the higher z-score, he did better on the SAT.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Determine which test the student did better on.
He did better on whichever test he had the higher z-score.
SAT:
Scored 1070, so [tex]X = 1070[/tex]
SAT scores have a mean of 950 and a standard deviation of 155. This means that [tex]\mu = 950, \sigma = 155[/tex].
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1070 - 950}{155}[/tex]
[tex]Z = 0.77[/tex]
ACT:
Scored 25, so [tex]X = 25[/tex]
ACT scores have a mean of 22 and a standard deviation of 4. This means that [tex]\mu = 22, \sigma = 4[/tex]
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{25 - 22}{4}[/tex]
[tex]Z = 0.75[/tex]
Due to the higher z-score, he did better on the SAT.
Which of the following statements is the converse of the statement, "If each of two angles has a measure of 28 degrees, then the two angles are equal in measure"? 1.) If two angles have equal measures, then the measure of each is 28 degrees. 2.) If two angles do not have equal measures, then each of the two angles does not have a measure of 28 degrees. 3.) If each of two angles does not have a measure of 28 degrees, then the two angles do not have equal measures. 4.) If each of two angles does not have a measure of 28 degrees, then the two angles have equal measures.
Answer:
1.) If two angles have equal measures, then the measure of each is 28 degrees.
Step-by-step explanation:
The converse of a statement simply swaps the positions of the "if" and "then" clauses. Without any modification for clarity or readability, the converse would be ...
if two angles are equal in measure, then each of the two angles has a measure of 28 degrees.
Please answer this correctly
Answer:
d = 2
the diagonals are the different lengths
Step-by-step explanation:
Ari thinks the perfect milkshake has
3
33 ounces of caramel for every
5
55 scoops of ice cream. Freeze Zone makes batches of milkshakes with
6
66 ounces of caramel and
8
88 scoops of ice cream.
What will Ari think about Freeze Zone's milkshakes?
Answer:
too much caramel
Step-by-step explanation:
3 ounces : 5 scoops = 3·2 ounces : 5·2 scoops = 6 ounces : 10 scoops
If the Freeze Zone shakes have 6 ounces : 8 scoops, then Ari will think they need more ice cream (2 scoops per shake) or less caramel.
As is, the ratio of caramel to ice cream is too high.
MARY PUT IN A TOTAL OF 16-1/2 8 FEET LONG. A NEARBY POLE IS 72 HOURS BABYSITTING DURING 5 DAYS FEET HIGH. HOW LONG IS ITS OF THE PAST WEEK. WHAT WAS HER SHADOW? AVERAGE WORK DAY?
Answer: 3 hours and 18 minutes.
Step-by-step explanation:
Answer pls need help
The pressure p(in lbs/in^2) that a 160 pound persons shoe exerts on the ground when walking varies inversely with the area A(in in^2) of the sole of the shoe when the shoes have a sole area of 40 in^2 The pressure is 4 lbs/in^2 find equation that relates these variables
A=
Based on the type of equations in the system, what is the greatest possible number of solutions? StartLayout Enlarged left-brace 1st Row x squared + y squared = 9 2nd row 9 x + 2 y = 16 EndLayout
Answer:
2
Step-by-step explanation:
Given the system of equations:
[Tex]x^2+y^2=9\\9x+2y=16[/tex]
Comparing [Tex]x^2+y^2=9[/tex] with the general standard equation of a circle [Tex](x-h)^2+(y-k)^2=r^2[/tex].
The first equation is an equation of a circle centred at (0,0) with a Radius of 3.
The second equation 9x+2y=16 is a straight line equation.
A straight line can only intersect a circle at a maximum of 2 points.
Therefore the greatest possible number of solutions to the equations in the system is 2.
Answer:
2
Step-by-step explanation:
and jj is gay of outer banks
"How much room is there to spread frosting on the cookie?" Clare says, "The radius of the cookie is about 3 cm, so the space for frosting is about 6 cm." Andre says, "The diameter of the cookie is about 3 inches, so the space for frosting is about 2.25 sq. in."
A. Is this question talking about area or circumference? Pick one. Why?
B. Which person is most likely correct, Clare or Andre? Why?
Answer:
(a)Area
(b)Andre is Right
Step-by-step explanation:
(a)Frost is spread on the surface of a cookie, therefore the question is talking about the area of the circular cookie.
(b)
Andre says, "The diameter of the cookie is about 3 inches, so the space for frosting is about 2.25 sq. in
Area of a Circle[tex]=\pi r^2[/tex]
Radius =Diameter/2 =3/2=1.5 Inches
Therefore, Space for frosting on the cookie
[tex]=\pi *1.5^2\\=2.25\pi$ in^2[/tex]
Andre is right.
Calculo el area del búmeran tomando en cuenta que su diámetro es 20 cm
Answer:
50π cm²
Step-by-step explanation:
In this case we have that the area of the boomerang has been the area of the largest semicircle minus the area of the smaller semicircles.
We know that the radius is half the diameter:
r = d / 2 = 20/2
r = 10
Now we have to:
Alargest = π · r²
Alargest = π · (10 cm) ²
Alargest = 100π cm²
Asmaller = π · r²
Asmaller = π · (5 cm) ²
Asmaller = 25π cm²
Finally, the boomerang area has been:
Aboomerang = 100π cm² - 2 · (25π cm²)
Aboomerang = 50π cm²
A children's roller coaster is limited to riders whose height is at least 30 inches and at most 48 inches. Write two inequalities that represent the height h of riders for the roller coaster.
Answer:
h≤48 h≥30
Step-by-step explanation:
f(x)<0 over (-∞, -3) and what other interval?
O (-2.4, - 1.1)
O (-3, - 1.1)
O (-1.1, 2)
O (-1.1, 0.9)
Answer:
Option (4). (-1.1, 0.9)
Step-by-step explanation:
In a graph of any function, values of f(x) are represented by the values on the y-axis for the different input values on x-axis.
For the given graph, values of f(x) are less than zero.
That means interval in which the values of the function are negative for the different values of x.
Negative values of the given function are in the intervals (-∞, -3), (-1.1, 9).
Therefore, from the given options, Option (4) will be the answer.
Answer is (-1.1,0.9)
Step-by-step explanation:
At the beginning of the season,jamie pays full price for a ticket to see the panthers,her favorite baseball team.
Corrected Question
At the beginning of the season, Jamie pays full price($49.64) for a ticket to see the panthers, her favorite baseball team. Ticket prices decrease $0.41 for every game the panthers lose this season. the panthers currently have 33 wins and 31 losses.
(a)Represent the total change in the cost of a ticket given their losses.
(b) What is the cost of a ticket for the next game they play?
Answer:
(a)$(49.64-0.41x)
(b)$36.93
Step-by-step explanation:
(a)Cost of a Full Ticket =$49.64
Let x be the number of losses
The ticket price reduces by $0.41 for every loss
Therefore:
Ticket Price after x losses =$(49.64-0.41x)
Therefore, total change in the cost of a ticket given their losses=$(49.64-0.41x)
(b)For this season the Panthers has suffered 31 losses.
Number of Losses, x=31
Therefore, cost of a ticket for the next game they play
= $(49.64-0.41*31)
=49.64-12.71
=$36.93
Suppose that a random sample of adult males has a sample mean heart mass of x¯=310.1 grams, with a sample standard deviation of s=6.6 grams. Since adult male heart masses are generally symmetric and bell-shaped, we can apply the Empirical Rule. Between what two masses do approximately 68% of the data occur? Round your answer to the nearest tenth.
Answer:
Between 303.5 grams and 316.7 grams
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 310.1 grams
Standard deviation = 6.6 grams
Between what two masses do approximately 68% of the data occur?
By the Empirical Rule, within 1 standard deviation of the mean.
310.1 - 6.6 = 303.5 grams
310.1 + 6.6 = 316.7 grams
Between 303.5 grams and 316.7 grams
A factory produces 1085 nuts per day. Then find the number of nuts that can be
produced in 17days?
Answer:
1085 nuts per day x 17 days = 18,445 nuts in 17 days
Step-by-step explanation:
Please hurry
On each bounce, a ball dropped from 100 feet rises to the height
from which it has fallen. How high does the ball rise, in feet, on the 10th bounce?
Answer:
D
Step-by-step explanation:
divide 10 times starting with 100.
The answer is 25/256 or 0.09765625
The height of the ball dropped from 100 feet on the 10th bounce is 0.09766 feet
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
Let y represent the height of the ball after x bounce. Given that the ball rises to the height from which it has fallen, hence:
y = 100(1/2)ˣ
After the 10th bounce:
y = 100(1/2)¹⁰ = 0.09766
The height of the ball dropped from 100 feet on the 10th bounce is 0.09766 feet.
Find out more on equation at: https://brainly.com/question/2972832
A quick quiz consists of a multiple-choice question with 5 possible answers followed by a multiple-choice question with 5 possible answers. If both questions are answered with random guesses, find the probability that both responses are correct. Report the answer as a percent rounded to two decimal place accuracy. You need not enter the "%" symbol. Probability = %
Answer:
Probability = 4%
Step-by-step explanation:
For each answer, there are only two possible outcomes. Either it is correct, or it is not. The probability of an answer being correct is independent of other answers. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Each question has 5 possible answer:
The person guesses, so [tex]p = \frac{1}{5} = 0.2[/tex]
2 questions:
This means that [tex]n = 2[/tex]
Find the probability that both responses are correct.
This is P(X = 2).
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 2) = C_{2,2}.(0.2)^{2}.(0.8)^{0} = 0.04[/tex]
As a percent:
Probability = 4%
What is the slope intercept form.
Answer:
y = 1/4x + 2
Step-by-step explanation:
Since they gave you point slope form already, all you need to do is convert that into slope-intercept form. Just distribute the parenthesis and move the 4 over. Once you do so, you should get C/3rd option as your answer.
85% of z is 106,250. What is z?
Answer:
z=12500
Step-by-step explanation:
Of means multiply and is means equals
85% *z = 106250
Change to decimal form
.85z = 106250
Divide each side by .85
.85z/.85 = 106250 /.85
z=12500
A fuel oil company claims that one-fifth of the homes in a certain city are heated by oil. Do we have reason to believe that fewer than one-fifth are heated by oil if, in a random sample of 1000 homes in this city, 136 are heated by oil? Please show all 4 steps of the classical approach clearly using α = 0.05.
Answer:
Yes, we have reason to believe that fewer than one-fifth are heated by oil.
Step-by-step explanation:
A one-sample proportion test is to be performed to determine whether fewer than one-fifth of the homes in a certain city are heated by oil.
The hypothesis can be defined as follows:
H₀: The proportion of homes in a certain city that are heated by oil is not less than one-fifth, i.e. p ≥ 0.20.
Hₐ: The proportion of homes in a certain city that are heated by oil is less than one-fifth, i.e. p < 0.20.
The information provided is:
n = 1000
x = 136
α = 0.05
Compute the sample proportion as follows:
[tex]\hat p=\frac{x}{n}=\frac{136}{1000}=0.136[/tex]
Compute the test statistic as follows:
[tex]z=\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]
[tex]=\frac{0.136-0.20}{\sqrt{\frac{0.136(1-0.136)}{1000}}}\\\\=-5.9041\\\\\approx -5.90[/tex]
The test statistic value is, -5.90.
Decision rule:
Reject the null hypothesis if the p-value of the test is less than the significance level.
Compute the p-value as follows:
[tex]p-value=P(Z<-5.90)\\\\=1-P(Z<5.90)\\\\=1-(\approx 1)\\\\=0[/tex]
The p-value of the test is, 0.
p-value = 0 < α = 0.05
The null hypothesis will be rejected at 5% level of significance.
Conclusion:
The proportion of homes in a certain city that are heated by oil is less than one-fifth.
Find the area of the trapezoid to the nearest tenth.
Answer:
2.2 metres squared
Step-by-step explanation:
We need to find the area of this trapezoid.
The area of a trapezoid is denoted by:
[tex]A=\frac{(b_1+b_2)h}{2}[/tex], where [tex]b_1[/tex] and [tex]b_2[/tex] are the parallel bases and h is the height
Here, we already know the lengths of the two bases; they are 0.9 metres and 2.3 metres. However, we need to find the length of the height.
Notice that one of the angles is marked 45 degrees. Let's draw a perpendicular line from top endpoint of the segment labelled 0.9 to the side labelled 2.3. We now have a 45-45-90 triangle with hypotenuse 2.0 metres. As one of such a triangle's properties, we can divide 2.0 by √2 to get the length of both legs:
2.0 ÷ √2 = √2 ≈ 1.414 ≈ 1.4
Thus, the height is h = 1.4 metres. Now plug all these values we know into the equation to find the area:
[tex]A=\frac{(b_1+b_2)h}{2}[/tex]
[tex]A=\frac{(0.9+2.3)*1.4}{2}=2.2[/tex]
The answer is thus 2.2 metres squared.
~ an aesthetics lover
PLEASE HURRY! Circle B is shown. Line segments A B and C B are radii. The length of A B is 6. Sector A B C is shaded. The measure of central angle ABC is StartFraction pi Over 2 EndFraction radians. What is the area of the shaded sector? 6Pi units squared 9Pi units squared 18Pi units squared 36Pi units squared
Answer:
(B)[tex]9 \pi $ units squared[/tex]
Step-by-step explanation:
In circle B, AB is one of the radii; and
AB=6
Central Angle of ABC [tex]=\dfrac{\pi}{2}$ radians[/tex]
Now, Area of a Sector
[tex]\text{Area of a Sector}=\dfrac{\theta}{2\pi} \times \pi r^2 \\=\dfrac{\frac{\pi}{2}}{2\pi} \times \pi \times 6^2\\=\dfrac{\pi}{4\pi} \times \pi \times 6^2\\=\dfrac{36}{4} \times \pi \\= 9 \pi $ units squared[/tex]
Answer:
b
Step-by-step explanation:
SOMEONE PLEASE HELP ME ASAP PLEASE!!!
Answer:
3.6
Step-by-step explanation:
d = sqrt(3^2+2^2) = sqrt(13) = 3.6
[tex]x = \frac{b + - \sqrt{{b}^{2} - 4ac } }{2a} [/tex]
O True
O False
If it is asking if that equation is the quadratic formula, then the answer is false. The reason why is that the first 'b' should be negative
The quadratic formula is
[tex]x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
A ball is thrown downward from the top of a 240-foot building with an initial velocity of 20 feet per second. The height of the ball h in feet after t seconds is given by the equation h= -16t^2 - 20t + 240. How long after the ball is thrown will it strike the ground?
Answer:
3.29 s
Step-by-step explanation:
We are given that
Height of building=240
Initial velocity=20ft/s
The height of the ball after t seconds is given by
[tex]h(t)=-16t^2-20t+240[/tex]
When the ball strike the ground then
h(t)=0
[tex]-16t^2-20t+240=0[/tex]
[tex]4t^2+5t-60=0[/tex]
Quadratic formula:
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Using the quadratic formula
[tex]t=\frac{-5\pm\sqrt{25+960}}{8}[/tex]
[tex]t=\frac{-5\pm\sqrt{985}}{8}[/tex]
[tex]t=\frac{-5+31.28}{8}=3.29 s[/tex]
[tex]t=\frac{-5-31.38}{8}=-4.5[/tex]
Time cannot be negative .Therefore,
t=3.29 s
If we divide the numerator and denominator of (6/8) by 2, will its value be changed?
(50 points)
1.No
2.Yes
3.sometimes
4.Maybe
Answer:
Step-by-step explanation:
6/8 in simplest form is 3/4 but value is still the same so
1. no
What type of infection is controlled with antibiotics?
Answer:
Bacterial infection
Step-by-step explanation:
Antibiotics are most effective against bacterial infections.
Answer:
Bacterial infection
Antibiotics are most effective against bacterial infections