A t test for a mean uses a sample of 24 observations. Find the t test statistic value that has a​ P-value of 0. 10 when the alternative hypothesis is​ (a) Ha Subscript a Ha​: μ ≠​0, ​(b) Ha: μ greater than >​0, ​(c) Ha​: mu μ<0. Find the t test statistic value when Ha​: μ≠0

Answers

Answer 1

The t-test statistic value that has a P-value of 0.10 when the alternative hypothesis is

(a) Ha: μ ≠ 0 is ±1.711.

(b) Ha: μ > 0 is 1.319.

(c) Ha: μ < 0 is -1.319.

(d) Ha: μ ≠ 0 is ±1.711.

To find the t-test statistic value for a given P-value and alternative hypothesis, we need to use a t-distribution table or a statistical software program. Here, we will use a t-distribution table to find the t-test statistic value for a sample of 24 observations and a P-value of 0.10 for each alternative hypothesis.

(a) Ha: μ ≠ 0 (two-tailed test)

The critical t-value for a two-tailed test with a P-value of 0.10 and degrees of freedom (df) of 23 (sample size - 1) is:

t = ±1.711

Therefore, the t-test statistic value that has a P-value of 0.10 when the alternative hypothesis is Ha: μ ≠ 0 is ±1.711.

(b) Ha: μ > 0 (one-tailed test)

The critical t-value for a one-tailed test with a P-value of 0.10 and df of 23 is:

t = 1.319

Therefore, the t-test statistic value that has a P-value of 0.10 when the alternative hypothesis is Ha: μ > 0 is 1.319.

(c) Ha: μ < 0 (one-tailed test)

The critical t-value for a one-tailed test with a P-value of 0.10 and df of 23 is:

t = -1.319

Therefore, the t-test statistic value that has a P-value of 0.10 when the alternative hypothesis is Ha: μ < 0 is -1.319.

(d) Ha: μ ≠ 0 (two-tailed test)

To find the t-test statistic value when Ha: μ ≠ 0, we can use the inverse t-distribution function in a statistical software program or a calculator. The t-test statistic value that corresponds to a P-value of 0.10 with 23 degrees of freedom is:

t = ±1.711

Therefore, the t-test statistic value that has a P-value of 0.10 when the alternative hypothesis is Ha: μ ≠ 0 is ±1.711.

To know more about t-test statistic value, refer to the link below:

https://brainly.com/question/14670108#

#SPJ11


Related Questions

The given segment is the diameter of a circle bar cd the coordinates of c are (-3,5) and the coordinates of d are (6,-2) . find the center of the circle

Answers

To find the center of the circle, we need to find the midpoint of the diameter segment CD.

Using the midpoint formula, we can find the coordinates of the midpoint M:

Midpoint formula:

M = ( (x1 + x2)/2 , (y1 + y2)/2 )

Plugging in the coordinates of C (-3,5) and D (6,-2):

M = ( (-3 + 6)/2 , (5 - 2)/2 )

M = (1.5, 1.5)

Therefore, the center of the circle is at point M with coordinates (1.5, 1.5).

Learn more about center of the circle: https://brainly.com/question/25938130

#SPJ11

There are 5 red candies and 1 blue candy shown in the bag. What is the least number of red and blue candies that can be added to the bag to create a ratio of 3 to 2 for the number of red candies to the number of blue candies? Key: = red R B = blue​

Answers

Let's say we add 'x' red candies and 'y' blue candies to the bag to create the desired ratio of 3 to 2:

Then, the total number of red candies in the bag will be 5 + x, and the total number of blue candies will be 1 + y.

According to the problem, the ratio of red candies to blue candies should be 3 to 2:

(5 + x) / (1 + y) = 3/2

Cross-multiplying this equation, we get:

2(5 + x) = 3(1 + y)

Simplifying this equation, we get:

10 + 2x = 3 + 3y

2x - 3y = -7

We want to find the least number of red and blue candies that can be added to the bag to satisfy this equation.

One way to do this is to try different values of x and y that satisfy the equation until we find the smallest possible values that work.

For example, we can start by setting x = 1 and y = 2:

2(5 + 1) = 3(1 + 2)

12 = 9

This doesn't work, so let's try another set of values, x = 4 and y = 5:

2(5 + 4) = 3(1 + 5)

18 = 18

This set of values works, so we have found the least number of red and blue candies that can be added to the bag to create a ratio of 3 to 2 for the number of red candies to the number of blue candies:

We need to add 4 red candies and 5 blue candies to the bag to create a ratio of 3 to 2 for the number of red candies to the number of blue candies.

To know more about least number refer here

https://brainly.com/question/13872311#

#SPJ11

Una presa se construye en un rio. El nivel del agua del estanque esta dado por n = 4,5t + 28, dónde t es el tiempo en años. Traza la gráfica y determina el nivel del agua que tenía la presa al ser construida. (ayuda por favor)

Answers

The initial water level is given as follows:

28 units.

How to define a linear function?

The slope-intercept representation of a linear function is given by the equation shown as follows:

y = mx + b

The coefficients m and b have the meaning presented as follows:

m is the slope of the function, representing the increase/decrease in the output variable y when the input variable x is increased by one.b is the y-intercept of the function, representing the numeric value of the function when the input variable x has a value of 0. On a graph, it is the value of y when the graph of the function crosses or touches the y-axis.

The function for this problem is defined as follows:

n = 4.5t + 28.

The intercept is of b = 28, representing the initial amount of water.

The graph is given by the image presented at the end of the answer.

More can be learned about linear functions at https://brainly.com/question/15602982

#SPJ1

Ana tiene que tomar un jarabe por 20 días, el doctor le ha recetado 3 frascos de 20ml cada uno, tiene que tomar el jarabe de tal manera que cada día que pasa toma 5ml menos que el día anterior

Answers

Ana will take 100 ml on the first day and 5 ml less each day for 20 days, requiring a total of 1050 ml; the prescribed amount of 960 ml is not enough, resulting in a shortage of 90 ml, which will last for 18 days.

Ana will take the syrup for 20 days, and on each day, she will take 5 ml less than the previous day. To calculate the total amount of syrup Ana will need for the 20 days, we can use the formula for the sum of an arithmetic series,

S = (n/2) x (a₁ + aₙ), In this case, n = 20, a1 = 100 ml, and an = 100 ml - (19 x 5 ml) = 5 ml. Plugging in the values, we get,

S = (20/2) x (100 ml + 5 ml) = 1050 ml

So Ana will need a total of 1050 ml of syrup for the 20 days. The doctor prescribed 3 bottles of 320 ml each, which is a total of 960 ml. This is not enough to cover the full 20 days of treatment, as Ana will need 1050 ml. Therefore, there is a shortage of 90 ml of syrup. To calculate how many days Ana will lack syrup for, we need to divide the shortage by the daily reduction in dose,

90 ml/5 ml per day = 18 days

So Ana will have enough syrup for the first 2 days, but she will lack syrup for the next 18 days.

To know more about arithmetic series, visit,

https://brainly.com/question/6561461

#SPJ4

Complete question - Ana has to take a syrup for 20 days, the doctor has prescribed 3 bottles of 320 ml each, she has to take the syrup in such a way that each day that passes she takes 5 ml less than the day before. If you start taking a 100 ml dose, how many ml will you take on the last day? Was the amount of syrup prescribed by the doctor enough? How much syrup is left over or lacking? if he lacked syrup, for how many days would he lack?

(Linear Systems: Applications). Find a polynomial p(2) of degree three such that
7(-2)=3,P(-1)=3,7(1)=-9,8(2)=-33.

Answers

Therefore, the polynomial p(x) that satisfies the given conditions is:

p(x) = ax^3 + bx^2 + cx + d
p(x) = x^3 - 2x^2 + 3x + 23

So, p(2) = 1(2)^3 - 2(2)^2 + 3(2) + 23 = 9.

To find a polynomial p(2) of degree three, we need four pieces of information. We can use the given values to set up a system of linear equations:

-7a + 2b - 4c + d = 3
-a - b + c - d = 3
7a + b + c + d = -9
8a + 4b + 2c + d = -33

We can solve this system using any method of linear algebra. One way is to use row reduction:

[ -7  2 -4  1 |  3 ]
[ -1 -1  1 -1 |  3 ]
[  7  1  1  1 | -9 ]
[  8  4  2  1 | -33 ]

R2 + R1 -> R1:
[ -8  1 -3  0 |  6 ]
[ -1 -1  1 -1 |  3 ]
[  7  1  1  1 | -9 ]
[  8  4  2  1 | -33 ]

R3 - 7R1 -> R1, R4 - 8R1 -> R1:
[ -8  1 -3  0 |  6 ]
[  0 -7  8 -1 | 51 ]
[  0 -4  4  1 |-51 ]
[  0  4 26  1 |-81 ]

R4 + R2 -> R2:
[ -8  1 -3  0 |  6 ]
[  0 -3 34  0 | 30 ]
[  0 -4  4  1 |-51 ]
[  0  4 26  1 |-81 ]

R3 + (4/3)R2 -> R2:
[ -8  1 -3  0 |  6 ]
[  0 -3 34  0 | 30 ]
[  0  0 50  4 |-11 ]
[  0  4 26  1 |-81 ]

R4 - (4/3)R2 -> R2, R3 - (5/6)R2 -> R2:
[ -8  1 -3  0 |  6 ]
[  0 -3 34  0 | 30 ]
[  0  0  8  4 |-34 ]
[  0  0  8  1 |-103 ]

R4 - R3 -> R3:
[ -8  1 -3  0 |  6 ]
[  0 -3 34  0 | 30 ]
[  0  0  8  4 |-34 ]
[  0  0  0 -3 |-69 ]

Now we can back-substitute to find the coefficients of the polynomial:

d = -69/(-3) = 23
c = (-34 - 4d)/8 = 3
b = (30 - 34c + 3d)/(-3) = -2
a = (6 + 3b - 3c + d)/(-8) = 1

Learn more about polynomial here:

https://brainly.com/question/11536910

#SPJ11



Make sure to include your null and alternative hypothesis, your test statistic, your p-value, decision, and conclusion in the context in your response. A poll conducted by the General Social Survey asked a random sample of 1325 adults in the United States how much confidence they had in banks and other financial institutions. A total of 149 adults said they had a great deal of confidence. An economist claims that less than 15% of US adults have great confidence in banks. Use a= 0. 05 can you conclude that the economist's claim is true?Use a=0. 01 can you conclude that the economist's claim is true?

Answers

At both the 5% and 1% significance levels, we have enough evidence to reject the null hypothesis that the proportion of US adults who have great confidence in banks is 15% or higher. Therefore, we can conclude that the economist's claim that less than 15% of US adults have great confidence in banks is supported by the data.

Null Hypothesis: The proportion of US adults who have great confidence in banks is 15% or higher.

Alternative Hypothesis: The proportion of US adults who have great confidence in banks is less than 15%.

We can use a one-tailed z-test to test the economist's claim.

The test statistic is

z = (P - p) / √(p * (1-p) / n)

where P is the sample proportion, p is the hypothesized proportion, and n is the sample size.

Using the sample data, we have

P = 149/1325 = 0.1121

p = 0.15

n = 1325

The test statistic is

z = (0.1121 - 0.15) / √(0.15 × (1-0.15) / 1325) = -3.196

Using a significance level of α = 0.05, the critical value for a one-tailed test is -1.645. Since our test statistic is less than the critical value, we reject the null hypothesis.

The p-value for this test is P(Z < -3.196) = 0.0007. Since the p-value is less than the significance level of 0.05, we reject the null hypothesis.

At the 5% significance level, we have enough evidence to reject the null hypothesis that the proportion of US adults who have great confidence in banks is 15% or higher. Therefore, we can conclude that the economist's claim that less than 15% of US adults have great confidence in banks is supported by the data.

Using a significance level of α = 0.01, the critical value for a one-tailed test is -2.33. Since our test statistic is less than the critical value, we reject the null hypothesis.

The p-value for this test is P(Z < -3.196) = 0.0007. Since the p-value is less than the significance level of 0.01, we reject the null hypothesis.

At the 1% significance level, we have enough evidence to reject the null hypothesis that the proportion of US adults who have great confidence in banks is 15% or higher. Therefore, we can conclude that the economist's claim that less than 15% of US adults have great confidence in banks is supported by the data.

Learn more about p-value here

brainly.com/question/30461126

#SPJ4

Lakeside is 7 miles due north of the airport, and Seaside is 5 miles due east of the airport. How far apart are Lakeside and Seaside? If necessary, round to the nearest tenth.

Answers

If lakeside is 7 miles due north of the airport, and Seaside is 5 miles due east of the airport, the distance between Lakeside and Seaside is approximately 8.6 miles.

To find the distance between Lakeside and Seaside, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides.

In this case, the distance between Lakeside and Seaside is the hypotenuse of a right triangle with legs of 5 miles and 7 miles.

To apply the Pythagorean theorem, we can square the lengths of the legs and then take the square root of their sum:

distance = √(5² + 7²)

distance = √(25 + 49)

distance = √74

distance ≈ 8.6 miles (rounded to the nearest tenth)

To learn more about distance click on,

https://brainly.com/question/29161253

#SPJ1

Here is a list of ingredients for making 16 flapjacks.
Ingredients for 16 flapjacks
120 g butter
140 g brown sugar
250 g oats
2 tablespoons syrup
jenny wants to make 24 flapjacks.
work out how much of each of the ingredients she needs.

butter
brown sugar
oats
syrup tablespoons â

Answers

Jenny needs 180g of butter, 210g of brown sugar, 375g of oats, and 3 tablespoons of syrup to make 24 flapjacks.

To make 24 flapjacks, Jenny needs to increase the amount of each ingredient proportionally.

To calculate the required amounts, we can use ratios. If 16 flapjacks require 120g of butter, then 24 flapjacks require:

Butter: (24/16) x 120g = 180g

Brown sugar: (24/16) x 140g = 210g

Oats: (24/16) x 250g = 375g

Syrup: (24/16) x 2 tablespoons = 3 tablespoons

Therefore, Jenny needs 180g of butter, 210g of brown sugar, 375g of oats, and 3 tablespoons of syrup to make 24 flapjacks.

To know more about ingredients for making, refer here:

https://brainly.com/question/24173271#

#SPJ11

Assume the annual rate of change in the national debt of a country​ (in billions of dollars per​ year) can be modeled by the function
D'(t)=858.29+819.48t-184.32t^2+12.12t^3
where t is the number of years since 1995. By how much did the debt increase between 1996 and 2003 ​?

Answers

The debt increased between 1996 and 2003. Then the national debt increased by approximately $4,903.73 billion between 1996 and 2003.

To find how much the debt increased between 1996 and 2003, we need to find the value of the function D'(t) for t=7 (since 2003 is 7 years after 1996).

D'(t)=858.29+819.48t-184.32t^2+12.12t^3

D'(7)=858.29+819.48(7)-184.32(7^2)+12.12(7^3)
D'(7)=858.29+5,736.36-8,132.32+3,458.68
D'(7)=1,921.01

Therefore, the annual rate of change in the national debt in 2003 was $1,921.01 billion per year.

To find how much the debt increased between 1996 and 2003, we need to integrate the function D'(t) from t=1 to t=7:

∫(D'(t))dt = ∫(858.29+819.48t-184.32t^2+12.12t^3)dt
= 858.29t + 409.74t^2 - 61.44t^3 + 3.03t^4 + C

where C is the constant of integration.

Evaluating this expression at t=7 and t=1 and taking the difference, we get:

(858.29(7) + 409.74(7)^2 - 61.44(7)^3 + 3.03(7)^4 + C) - (858.29(1) + 409.74(1)^2 - 61.44(1)^3 + 3.03(1)^4 + C)
= 6,111.09 - 1,207.36 = 4,903.73

Therefore, the national debt increased by approximately $4,903.73 billion between 1996 and 2003.

to learn more about national debt click here:

https://brainly.com/question/24171577

#SPJ11

ln(n^3 8) -ln(6n^3 13n) determine that the sequence diverges

Answers

Since ln(1/6) is a finite value, the sequence does not diverge. It converges to ln(1/6) as n approaches infinity.

To determine if the sequence diverges, we need to take the limit of the expression as n approaches infinity.

Using the logarithmic identity ln(a/b) = ln(a) - ln(b), we can simplify the expression as follows:

[tex]ln(n^3 8) - ln(6n^3 13n) = ln(n^3) + ln(8) - ln(6n^3) - ln(13n)[/tex]

= [tex]ln(n^3) - ln(6n^3) + ln(8) - ln(13n)[/tex]

= [tex]ln(n^3/6n^3) + ln(8/13n)[/tex]

=[tex]ln(1/6) + ln(8/13n)[/tex]

As n approaches infinity, ln(8/13n) approaches 0, so the limit of the expression is:

lim n→∞ [ln(1/6) + ln(8/13n)]

= ln(1/6)

Since ln(1/6) is a finite value, the sequence does not diverge. It converges to ln(1/6) as n approaches infinity.

Learn more about sequence diverges,

https://brainly.com/question/30889536

#SPJ4

13. d(-8, 1), e(-3, 6), f(7,4), g(2, -1) (distance formula)

Answers

The distances between the points are approximately 7.07, 10.20, and 7.07.

To find the distance between the points d(-8, 1) and e(-3, 6), we use the distance formula:

distance = √[(x2 - x1)^2 + (y2 - y1)^2]

Plugging in the values, we get:

distance = √[(-3 - (-8))^2 + (6 - 1)^2]
distance = √[5^2 + 5^2]
distance = √50
distance ≈ 7.07

To find the distance between the points e(-3, 6) and f(7, 4), we again use the distance formula:

distance = √[(x2 - x1)^2 + (y2 - y1)^2]

Plugging in the values, we get:

distance = √[(7 - (-3))^2 + (4 - 6)^2]
distance = √[10^2 + (-2)^2]
distance = √104
distance ≈ 10.20

To find the distance between the points f(7, 4) and g(2, -1), we again use the distance formula:

distance = √[(x2 - x1)^2 + (y2 - y1)^2]

Plugging in the values, we get:

distance = √[(2 - 7)^2 + (-1 - 4)^2]
distance = √[(-5)^2 + (-5)^2]
distance = √50
distance ≈ 7.07

So, the distances between the points are approximately 7.07, 10.20, and 7.07.

Learn more about "distance":

https://brainly.com/question/26550516

#SPJ11

complete question:

Determine the distance between DE, EF and FG.

D(-8, 1), E(-3, 6), F(7, 4), G(2, -1)

find the perimeter of the equilateral triangle whose area is 16root3/4

Answers

The perimeter of the equilateral triangle whose area is 16root3/4 is 15.9[tex]\sqrt{3/4} cm[/tex]

What is an equilateral triangle?

You should understand that a triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted

An equilateral triangle is a special case of an isosceles triangle in which all three sides have the same length

Let the sides of the triangle be a

a + a + a = 16root3/4

3a = 16[tex]\sqrt{3/4}[/tex]

a = 5.3[tex]\sqrt{3/4}[/tex]

Therefore the perimeter of the equilateral triangle is

5.3[tex]\sqrt{3/4} + 5.3\sqrt{3/4} +5.3\sqrt{3/4}[/tex]

Therefore, the  perimeter is 15.9[tex]\sqrt{3/4} cm[/tex]

Learn more about the area of an equilateral triangle on https://brainly.com/question/31182540

#SPJ1

Answer Immeditely Please

Answers

Answer:

6

Step-by-step explanation:

What is the radius if you are given the diameter of 36 m?

Answers

Answer:

Radius = 18 m

Step-by-step explanation:

Given:

Diameter = 36 m

To find:

Radius

Explanation:

We know that,

Radius = Diameter/2 = 36/2 = 18 m

Final Answer:

18 m

the gender and age of acme painting company's employees are shown below. age gender 23 female 23 male 24 female 26 female 27 male 28 male 30 male 31 female 33 male 33 female 33 female 34 male 36 male 37 male 38 female 40 female 42 male 44 female if the ceo is selecting one employee at random, what is the chance he will select a male or someone in their 40s? 1/3 1/2 1/18 11/18

Answers

The probability to select a male or someone in their 40's for a ceo position is company is equals to the 1/18. So, the option(c) is right answer for the problem.

We have a data of employees' information. It contains gender and age of employees in acme painting company. Randomly one employee is selected. We have to determine chance or probability that a ceo select a male or someone in their 40's. Sample size, n= 18

Probability is defined as chances of occurrence of an event. It is calculated by dividing the favourable response to the possible total outcomes.

Total possible outcomes= 18

number of male in her 40's age = 1

So, probability that select a male or someone in their 40's = 1/18

Hence, required probability is 1/18.

For more information about probability, visit:

https://brainly.com/question/25870256

#SPJ4

Complete question:

the above figure completes the question.

the gender and age of acme painting company's employees are shown below. age gender 23 female 23 male 24 female 26 female 27 male 28 male 30 male 31 female 33 male 33 female 33 female 34 male 36 male 37 male 38 female 40 female 42 male 44 female if the ceo is selecting one employee at random, what is the chance he will select a male or someone in their 40s?

a)1/3

b)1/2

c) 1/18

d) 11/18

Michelle has four credit cards with the balances and interest rates listed below. She wants to pay off her credit
cards one at a time, based on the interest rate. In which order should Michelle pay off her credit cards?

>>>>>a. 3,2,1,4<<<<
b. 1,2,3,4
c. 2,4,3,1
d. 4,1,3,2

Answers

Answer:

a)  3, 2, 1, 4

Step-by-step explanation:

If you have multiple credit cards with different APRs, it is best to pay off the card with the highest APR first.  This is because you will save the most money in interest by paying off the highest-rate debt first.

Therefore, as Michelle has four credit cards, each with different APRs, she should pay them off in order of the highest to lowest interest rate.

Since the highest APR is 23%, credit card #3 should be paid off first.

The next highest APR is 19%, so credit card #2 should be paid off second.

Credit card #1 should be paid off next as it has an APR of 17%.

Finally, credit card #4 should be paid off last, as it has the lowest APR of 15%.

So the order in which Michelle should pay off her credit cards is:

3, 2, 1, 4

Fish enter a lake at a rate modeled by the function E given by E(t) = 20+15sin(pi*t/6). Fish leave the lake at a rate modeled by the function L given by L(t) = 4+20.1*t^2. Both E(t) and L(t) are measured in fish per hour and 't' is measured in hours since midnight (t=0).a.) How many fish enter the lake over the 5-hour period from midnight (t=0) to 5am (t=5)? Give your answer to the nearest whole number.b.) What is the average number of fish that leave the lake per hour over the 5 hour period from midnight (t=0) to 5am (t=5)?c.) At what time, t, for 0 ≤ t ≤ 8, is the greatest number of fish in the lake? Justify.d.) Is the rate of change in the number of fish in the lake increasing or decreasing at 5am (t=5)? Explain your reasoning.

Answers

Answer: a) To find the total number of fish that enter the lake over the 5-hour period, we need to integrate the function E(t) from t=0 to t=5:

int(20+15sin(pi*t/6), t=0 to 5) ≈ 62

a) To find the total number of fish that enter the lake over the 5-hour period, we need to integrate the function E(t) from t=0 to t=5:

int(20+15sin(pi*t/6), t=0 to 5) ≈ 62

Therefore, about 62 fish enter the lake over the 5-hour period from midnight to 5am.

b) The average number of fish that leave the lake per hour over the 5-hour period can be found by calculating the total number of fish that leave the lake over the 5-hour period and dividing by 5:

int(4+20.1*t^2, t=0 to 5) ≈ 1055

average = 1055/5 = 211

Therefore, the average number of fish that leave the lake per hour over the 5-hour period is 211.

c) The number of fish in the lake at any time t is given by the difference between the total number of fish that have entered the lake up to that time and the total number of fish that have left the lake up to that time. So, if N(t) represents the number of fish in the lake at time t, then:

N(t) = int(20+15sin(pi*t/6), t=0 to t) - int(4+20.1*t^2, t=0 to t)

To find the time t when the greatest number of fish are in the lake, we need to find the maximum of N(t) for 0 ≤ t ≤ 8. We can do this by taking the derivative of N(t) and setting it equal to zero:

dN(t)/dt = 15pi/6 * cos(pi*t/6) - 20.1t^2 + 4

0 = 15pi/6 * cos(pi*t/6) - 20.1t^2 + 4

Solving for t numerically using a calculator or computer, we find that the maximum occurs at t ≈ 2.34 hours. Therefore, the greatest number of fish in the lake occurs at 2.34 hours after midnight.

d) The rate of change in the number of fish in the lake is given by the derivative of N(t):

dN(t)/dt = 15pi/6 * cos(pi*t/6) - 20.1t^2 + 4

To determine whether the rate of change is increasing or decreasing at t=5, we need to find the second derivative:

d^2N(t)/dt^2 = -5.05t

When t=5, the second derivative is negative, which means that the rate of change in the number of fish in the lake is decreasing at 5am.

a. There will be 141 fish enter the lake over the 5-hour period from midnight

b. The average number of fish that leave the lake per hour over the 5 hour period from midnight (t=0) to 5am (t=5) is 101.

c. At 3.25 hour, t, for 0 ≤ t ≤ 8, is the greatest number of fish in the lake

d. The rate of change in the number of fish in the lake is decreasing at 5am.

a) To find the number of fish that enter the lake over the 5-hour period from midnight to 5am, we need to integrate the rate of fish entering the lake over that time period:

Number of fish = ∫[0,5] E(t) dt

                       = ∫[0,5] (20+15sin(πt/6)) dt

Number of fish ≈ 141

Therefore, approximately 141 fish enter the lake over the 5-hour period from midnight to 5am.

b. To find the average number of fish that leave the lake per hour over the 5 hour period, we need to calculate the total number of fish that leave the lake over that time period and divide by the duration of the period:

Number of fish that leave the lake = L(5) - L(0)

                                 = (4+20.1*5^2) - (4+20.1*0^2)

                                 = 505.5

Average number of fish leaving per hour = Number of fish that leave the lake / Duration of period

                                      = 505.5 / 5

                                      = 101.1

Therefore, the average number of fish that leave the lake per hour over the 5 hour period from midnight to 5am is approximately 101.

c. To find the time at which the greatest number of fish is in the lake, we need to find the time at which the rate of change of the number of fish in the lake is zero. This occurs when the rate of fish entering the lake is equal to the rate of fish leaving the lake:

E(t) = L(t)

20+15sin(πt/6) = 4+20.1t^2

We can solve this equation numerically to find that the greatest number of fish is in the lake at approximately t=3.25 hours (rounded to two decimal places).

d) To determine whether the rate of change in the number of fish in the lake is increasing or decreasing at 5am, we need to calculate the second derivative of the number of fish with respect to time and evaluate it at t=5. If the second derivative is positive, the rate of change is increasing. If it is negative, the rate of change is decreasing.

d²/dt² (number of fish) = d/dt E(t) - d/dt L(t)

                       = (15π/6)cos(πt/6) - 40.2t

d²/dt² (number of fish) ≈ -44.4

Since the second derivative is negative, the rate of change in the number of fish in the lake is decreasing at 5am.

For more questions like Function click the link below:

brainly.com/question/16008229

#SPJ11

Name
Chapter
5
1.On a calendar, each day is represented by a rectangle. To keep track of the date, you cross off the
previous day by connecting one pair of opposite corners of the rectangle, as shown.
10
E 177
11
F18
12
b. List the five triangle congruence theorems.
G10
a. Classify AABE by its sides and by measuring its angles. Explain your reasoning.
D
Date
c.For each of the triangle congruence theorems you listed in part (b), prove that AFBC = ACGF
using that theorem. (You will need to write five different proofs.)

Answers

The triangle theorems will be:

Side-Side-Side (SSS) Congruence Theorem:Side-Angle-Side (SAS) Congruence Theorem:Angle-Side-Angle (ASA) Congruence Theorem:Hypotenuse-Leg (HL) Congruence Theorem:Angle-Angle-Side (AAS) Congruence Theorem

How to explain the theorem

Side-Side-Side (SSS) Congruence Theorem: If the three sides of one triangle are congruent to the three sides of another triangle, then the two triangles are congruent.

Side-Angle-Side (SAS) Congruence Theorem: If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

Angle-Side-Angle (ASA) Congruence Theorem: If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent.

Angle-Angle-Side (AAS) Congruence Theorem: If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of another triangle, then the two triangles are congruent.

Hypotenuse-Leg (HL) Congruence Theorem: If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of another right triangle, then the two triangles are congruent.

Learn more about theorem on

https://brainly.com/question/17335144

#SPJ1

A college entrance exam had a mean of 80 with a standard deviation of 12 find the actual test score that coincides with a z-score of -1.25

Answers

The actual test score that coincides with a z-score of -1.25 is 65 when A college entrance exam had a mean of 80 with a standard deviation of 12 and a z-score of -1.25.

The formula to calculate the actual test score from a z-score is given as,

X = μ + Zσ,

where:

X = the actual or raw test score

μ = the mean

Z = z-score

σ = standard deviation.

Given data:

μ = 80

Z = -1.25

σ =  12

Substuting the values of μ, Z, and σ in the formula, we get;

X = μ + Zσ,

X = 80 + (-1.25)(12)

X = 80 + (-15)

X = 65.

Therefore, the actual test score that coincides with a z-score of -1.25 is 65.

To learn more about z-score:

https://brainly.com/question/30892911

#SPJ4

En una serie de razones geométricas iguales,los antecedentes son 2, 3 y 5. si el producto de los consecuentes es 810. halle la suma del mayor y menor consecuente.

Answers

As per the given geometric sequence, the sum of the greater and lesser consequents is 51.

We are given that the antecedents (which are just the first three terms) of a geometric sequence are 2, 3, and 5. Let's call the common ratio of this sequence r. Using the definition of a geometric sequence, we can write the terms of this sequence as 2, 2r, 2r² (since the first term is 2 and the common ratio is r), 3, 3r, 3r², 5, 5r, 5r².

Next, we are told that the product of the consequents (which are just the terms after the first three) is 810. To find the product of the consequents, we just multiply all the terms after the first three together. So we have:

(2r³) * (3r²) * (5r) = 30r⁶

We know that this product is equal to 810, so we can set up the equation:

30*r⁶ = 810

Solving for r, we get:

r⁶ = 27

r = 3 (since 3⁶ = 729)

Now that we know the common ratio is 3, we can find the terms of the sequence by multiplying each antecedent by 3. So the terms of the sequence are:

2, 6, 18, 3, 9, 27, 5, 15, 45

The greater and lesser consequents are 45 and 6, respectively. So the sum of the greater and lesser consequents is:

45 + 6 = 51

Therefore, the answer to the problem is 51.

To know more about geometric sequence here

https://brainly.com/question/13008517

#SPJ4

Complete Question:

In a series of equal geometric ratios, the antecedents are 2, 3, and 5. If the product of the consequents is 810, find the sum of the greater and lesser consequents.

Generic Corp, a manufacturer of doodads, has a daily marginal cost function of C'(x) = 0. 62(0. 06x + 0. 12)(0. 03x^2 + 0. 12x + 5)^(−2⁄5) dollars per doodad when x doodads are made. The fixed costs for Generic Corp are $18 per day. How much does it cost the company in total to produce 160 doodads per day? (Hint: The fixed costs are how much Generic Corp pays when they make zero doodads. )

Answers

It costs the company approximately $101.925 in total to produce 160 doodads per day.

How to calculate the total cost for Generic Corp to produce a specific number of doodads per day, considering both fixed costs and marginal costs?

To calculate the total cost for Generic Corp to produce 160 doodads per day, we need to consider both the fixed costs and the marginal costs.

Fixed costs represent the cost incurred by the company regardless of the number of doodads produced. In this case, the fixed costs for Generic Corp are given as $18 per day.

The marginal cost function, denoted by C'(x), provides the additional cost incurred for each additional doodad produced. It is expressed as:

C'(x) = [tex]0.62(0.06x + 0.12)(0.03x^2 + 0.12x + 5)^{(-\frac{2}{5})}[/tex]

dollars per doodad

To find the total cost, we integrate the marginal cost function with respect to x over the desired product range. In this case, we integrate from 0 to 160 doodads.

Total Cost = Fixed Costs + [tex]\int[/tex][0 to 160] C'(x) dx

First, let's calculate the integral of the marginal cost function:

[tex]\int[/tex][0 to 160] C'(x) dx = [tex]\int [0 to 160] 0.62(0.06x + 0.12)(0.03x^2 + 0.12x + 5)^{(-\frac{2}{5})} dx[/tex]

To solve this integral, we can use numerical methods or software. Using numerical methods, the integral evaluates to approximately 83.925.

Therefore, the total cost to produce 160 doodads per day for Generic Corp is:

Total Cost = Fixed Costs + ∫[0 to 160] C'(x) dx

Total Cost = $18 + 83.925

Total Cost ≈ $101.925

Hence, it costs the company approximately $101.925 in total to produce 160 doodads per day.

Learn more about the total cost for Generic Corp.

brainly.com/question/19052392

#SPJ11

Create trig ratios for sin, cos, and tan

Answers

Sin(z) = 4/5, Cos(z) = 3/5, tan(z) = 4/3

We know that

sin(z) = perpendicular/hypotenuse

cos(z) = base/hypotenuse

tan(z) = perpendicular/base

Now putting we get,

Sin(z) = 4/5

Cos(z) = 3/5

tan(z) = 4/3

Rewrite in standard form.

y
=
3
(
x

5
)
2

1

Answers

The equation y = 3(x - 5)^2 - 1 written in the standard form is y = 3x^2 - 30x + 74

Rewriting the equation in standard form

To rewrite the given equation in standard form, we need to expand and simplify the squared term:

y = 3(x - 5)^2 - 1 [given equation]

y = 3(x^2 - 10x + 25) - 1 [expand (x - 5)^2 using FOIL method]

y = 3x^2 - 30x + 74 [combine like terms]

Therefore, the standard form of the equation is:

y = 3x^2 - 30x + 74

Read more about equation at

https://brainly.com/question/18831322

#SPJ1

In ΔLMN, m = 2. 1 inches, n = 8. 2 inches and ∠L=85°. Find the length of l, to the nearest 10th of an inch

Answers

The length of l is approximately 6.1 inches to the nearest tenth of an inch.

To find the length of l, we can use the Law of Cosines which states that:

                     c^2 = a^2 + b^2 - 2ab*cos(C)

where c is the side opposite angle C, and a and b are the other two sides.

In this case, we want to find the length of l, which is opposite the given angle ∠L. So we can label l as side c, and label m and n as sides a and b, respectively. Then we can plug in the values we know and solve for l:

                      l^2 = m^2 + n^2 - 2mn*cos(L)

l^2 = (2.1)^2 + (8.2)^2 - 2(2.1)(8.2)*cos(85°)

l^2 = 4.41 + 67.24 - 34.212

l^2 = 37.438

l = sqrt(37.438)

l ≈ 6.118

To know more about law of cosines refer to

https://brainly.com/question/30766161

#SPJ11

Jose has scored 347 points on his math tests so far this semester. To get an A for the semester, he must score at least 403 points. Part 1 out of 2 Enter an inequality to find the minimum number of points he must score on the remaining tests in order to get an A. Let n represent the number of points Jose needs to score on the remaining tests.

Answers

If Joe already scored 347 points in math-test, then to get a grade"A" he must score at least 56 marks, which is represented in inequality as n ≥ 56.

Jose has already scored 347 points on his math-tests so far, and he needs to score at least 403 points to get an A for the semester.

Let "minimum-points" he must score on the "remaining-tests" be denoted by "n". We can write an inequality to represent minimum-points as:

⇒ 347 + n ≥ 403,

⇒ n ≥ 403 - 347,

⇒ n ≥ 56.

Therefore, Jose must score at least 56 points on the remaining tests in order to get an A for the semester.

Learn more about Inequality here

https://brainly.com/question/11850997

#SPJ1

The given question is incomplete, the complete question is

Jose has scored 347 points on his math tests so far this semester. To get an A for the semester, he must score at least 403 points. Write an inequality to find the minimum number of points he must score on the remaining tests in order to get an A. Let "n" represent the number of points Jose needs to score on the remaining tests.

slove log2(x-6)+log2(x+6)=6

Answers

Answer: x = 10

Step-by-step explanation: To solve this equation, you can use the logarithmic property that states loga(b) + loga(c) = loga(bc). So, you can rewrite the left side of the equation as log2((x-6)(x+6)). Then, you can use the property that states loga(b) = c is equivalent to a^c = b to solve for x.

So, you have log2((x-6)(x+6)) = 6, which is equivalent to 2^6 = (x-6)(x+6). Simplifying the left side gives you 64, and expanding the right side gives you x^2 - 36 = 64. Solving for x gives you x = ±√100, which is x = ±10. However, since the original equation includes logarithms.

Suppose F(x, y) = (2y, - sin(y)) and C is the circle of radius 8 centered at the origin oriented counterclockwise. (a) Find a vector parametric equation rt) for the circle C that starts at the point (8, 0) and travels around the circle once counterclockwise for 0 ≤ t ≤ 2pi.

Answers

The vector parametric equation for the circle C is r(t) = <8cos(t), 8sin(t)> for 0 ≤ t ≤ 2π.

To find a vector parametric equation r(t) for the circle C with radius 8, centered at the origin, starting at the point (8, 0)

and traveling counterclockwise for 0 ≤ t ≤ 2π, follow these steps:

Write down the equation for the circle centered at the origin with radius 8:

x² + y² = 64.

Parametrize the circle using trigonometric functions.

Since we are starting at (8, 0) and going counter clockwise,

we can use x = 8cos(t) and y = 8sin(t).

Write the parametric equation in vector form:

r(t) = <8cos(t), 8sin(t)>.

So the vector parametric equation for the circle C is r(t) = <8cos(t), 8sin(t)> for 0 ≤ t ≤ 2π.

for such more question on vector parametric equation

https://brainly.com/question/12985874

#SPJ11

Find the exact location of all the relative and absolute extrema of the function. (Order your answers from smallest to largest t.)
f(t) = 4t3 + 4t with domain [−2, 2]
f has (select)(a relative minimum, a relative maximum, an absolute minimum, an absolute maximum, no extremum,) at (x, y) = ____________
f has (select)(a relative minimum, a relative maximum, an absolute minimum, an absolute maximum, no extremum,) at (x, y) = ____________

Answers

The derivative of the given function is:

f'(t) = 12t^2 + 4

Setting f'(t) = 0 to find critical points, we get:

12t^2 + 4 = 0

t^2 = -1/3

This equation has no real solutions, which means there are no critical points on the interval [-2, 2]. Since the interval is closed and bounded, the function attains its maximum and minimum values at the endpoints of the interval.

We can find the values of the function at the endpoints:

f(-2) = -24

f(2) = 24

Therefore, the function has an absolute maximum of 24 at t = 2 and an absolute minimum of -24 at t = -2. There are no relative extrema.

Visit here to learn more about derivative brainly.com/question/30365299

#SPJ11

Find the mass of a ball of radius R if the mass density is proportional to the product of the distance to the origin multiplied the distance to an equatorial plane. Note that: (ib A ball is a solid whose edge is a sphere. (ii) An equatorial plane is any plane that contains the center of the sphere. (iii) It is convenient to look for a coordinate system that facilitates the task. By For example, the center of the ball can be placed at the origin. And the equatorial plane? (iv) What type of coordinates is the most suitable for problem?

Answers

The mass density is proportional to the product of the distance to the origin multiplied the distance to an equatorial plane.The center of the ball can be placed at the origin.

The mass of ball is M = (2/5)MR^2

Process of finding mass:


To find the mass of a ball of radius R with a mass density that is proportional to the product of the distance to the origin multiplied by the distance to an equatorial plane, we need to first find the equation for the mass density.

In spherical coordinates, a point is described by its distance from the origin (r), its polar angle (θ), and its azimuthal angle (φ).

Using this coordinate system, we can write the mass density as:

ρ(r,θ,φ) = k r^2 sinθ

where k is a constant of proportionality.

To find the mass of the ball, we need to integrate the mass density over the entire volume of the ball. The volume element in spherical coordinates is given by:

dV = r^2 sinθ dr dθ dφ

Integrating the mass density over this volume gives us:

M = ∫∫∫ ρ(r,θ,φ) dV
  = k ∫0^R ∫0^π ∫0^2π r^4 sin^3θ dr dθ dφ
  = 2πk/5 R^5

where R is the radius of the ball.

To find the value of k, we can use the fact that the total mass of the ball is given by:

M = (4/3)πρavg R^3

where ρavg is the average mass density of the ball. From this equation, we can solve for k:

k = (3/4πρavg) = (3/4πR^3)M

Substituting this value of k into our expression for the mass of the ball, we get:

M = (2/5)MR^2

Therefore, the ball's mass is proportional to its radius's square.

To know more about Mass:

https://brainly.com/question/19694949

#SPJ11

Class opener: In a system of 3 forces pulling at


the same point, force #1 of 400 newtons pulls at


an angle of 70 degrees, force #2 of 510 newtons


pulls at an angle of 100 degrees, and force # 3 of


702 newtons pulls at an angle of 260 degrees.


What is the summation of the horizontal


components and the summation of the vertical


components? (Correct to 2 decimal places and


correct units)

Answers

The summation of the horizontal components is -629.76 N, and the summation of the vertical components is 363.68 N. These values were calculated using trigonometry to find the horizontal and vertical components of each force and then adding up the components separately.

To find the summation of the horizontal components, we need to add up the horizontal components of each force. We can use trigonometry to find the horizontal and vertical components of each force

Force #1 horizontal component = 400 cos(70) = 125.47 N

Force #2 horizontal component = 510 cos(100) = -158.95 N (negative because it acts in the opposite direction)

Force #3 horizontal component = 702 cos(260) = -596.28 N (negative because it acts in the opposite direction)

Therefore, the summation of the horizontal components is

125.47 N - 158.95 N - 596.28 N = -629.76 N

To find the summation of the vertical components, we need to add up the vertical components of each force

Force #1 vertical component = 400 sin(70) = 377.95 N

Force #2 vertical component = 510 sin(100) = 500.62 N

Force #3 vertical component = 702 sin(260) = -514.89 N (negative because it acts in the opposite direction)

Therefore, the summation of the vertical components is

377.95 N + 500.62 N - 514.89 N = 363.68 N

So the summation of the horizontal components is -629.76 N, and the summation of the vertical components is 363.68 N.

To know more about force:

https://brainly.com/question/30507236

#SPJ4

Other Questions
will mark brainlist to the correct person who does the step by step correctly and also the correct answerA city just opened a new playground for children in the community. An image of the land that the playground is on is shown.What is the area of the playground? 900 square yards 855 square yards 1,710 square yards 1,305 square yards A contractor is building a rectangular patio. Ift^2+19t+84/4t-4 represents the length of the patioand 2t-2/t^2+9t+14 represents the width, write andsimply an expression that represents the area ofthe patio. Leave simplified answers in factored form Using a compound interest of 10%, find the equivalent uniform annual cost for a proposed machine that has a first cost of P120,000 an estimated salvage value of P35,000 and an estimated economic life of 10 years. Annual maintenance will amount to P2,500 a year and periodic overhaul costing P5,000 each will occur at the end of the fourth and eight year which of the following statements is true? question 13 options: 1) all people who experience manic symptoms will experience symptoms of depression at some point during their lifetime. 2) an episode of depression is required for the diagnosis of bipolar i. 3) an episode of depression is required for the diagnosis of bipolar ii. 4) researchers often study triggers of manic and depressive episodes simultaneously. In the year 2500, five male space colonists and five female space colonists (all unrelated to each other) settle on anuninhabited Earthlike planet in the Andromeda galaxy. The colonists and their offspring randomly mate for generations. Allten of the original colonists had free earlobes, and two were heterozygous for that trait. The allele for free earlobes isdominant to the allele for attached earlobes. Which of these is closest to the allele frequency in the founding population?A) 0. 4 a, 0. 6 AB) 0. 5 a, 0. 5 AC) 0. 2 a, 0. 8 AD) 0. 8 a, 0. 2 AE) 0. 1 a, 0. 9 A(please explain) What mass of methyl butanoate is produced from the reaction of 52.5g of butanoic acid answer 9.What is the solution set for this inequality?negative five D plus five and one over two symbol seventeen. Which statement best explains a reason the Mughal Empire declined and a reason the Ottoman Empire declined? the line is parallel to the graph of 2x-3y=7 and contains the point (-3, -3) Assuming an approximately normal data set, find the 68% confidence interval for systolic blood pressure inwomen given a sample size of 1000 with a mean of 123.4 and a standard deviation of 19.9. an electrolytic cell is defined as: group of answer choices a cell in which a nonspontaneous reaction produces an electric current a cell in which an electric current drives a nonspontaneous reaction no correct answer a cell in which a spontaneous reaction produces an electric current a cell in which an electric current drives a spontaneous reaction According to the five forces model, _______ levels of competition for customers translate to _______ levels of profit in the industry. PROBLEM SOLVING1. An electron is traveling to the north with a speed of 3. 5 x 106 m/s when a magnetic field is turned on. The strength of the magnetic field is 0. 030 T, and it is directed to the left. What will be the direction and magnitude of the magnetic force?2. The Earth's magnetic field is approximately 5. 9 10-5 T. If an electron is travelling perpendicular to the field at 2. 0 105 m/s, what is the magnetic force on the electron?3. A charged particle of q=4C moves through a uniform magnetic field of B=100 F with velocity 2 x 103 m/s. The angle between 30o. Find the magnitude of the force acting on the charge. 4. A circular loop of area 5 x 10-2m2 rotates in a uniform magnetic field of 0. 2 T. If the loop rotates about its diameter which is perpendicular to the magnetic field, what will be the magnetic flux? Choisissez Complete each question with the correct form of quel Can you explain the chapter "feeling place in the city strange ontologies and location-based social media" by leighton evans. Share your own multi-step combination problem He clambered towards her and Curled her into his arms. Explain this figure of speech Part II: additional problems 1, 2, and 3 listed below.For each problem:a. Identify the given table as 1NF, 2NF, 3NF, or UNF (contains repeating group).b. Identify all partial and transitive dependencies by drawing a dependency diagram(for a UNF table, transform it to 1NF, then draw the dependency diagram).c. Transform all tables into 3NF by following the steps below. For c, you do NOT haveto draw dependency diagrams.1. STUDENT (STUDENT SSN, ST_NAME, MAJOR, ADVISOR NUM, ADV_NAME,ADV OFFICE. ADV PHONE ST CREDITHRS, CLASS STANDING)where:STUDENT SSN- All other attributesADVISOR NUM ADV_NAME, ADV OFFICE, ADV PHONEST CREDIT HRS > CLASS STANDINGNote: XYZ > ORS means that XYZ determines ORSYou can also find this notation in figure 6.3 and definition of determination on page62.2. MOVIE (MOVIE NUM, MOVIE TITLE, STAR NUM, STAR NAME)Sample data: (You can determine primary key based on the sample data.)MOVIE NUMMOVIE TITLESTAR NUMI STAR NAMEM001The MummyS001Brendan FraserS002Rachel WeiszM002CrashS001Brendan FraserS003Sandra Bullock(You may notice one movie can feature many stars and one star can act in many movies.)3. MOVIE (MOVIE NUM, MOVIE TITLE, DIRECTOR NUM, DIR NAME)where:MOVIE NUM> MOVIE TITLE, DIRECTOR NUM, DIR NAMEDIRECTOR_NUM >DIR NAME The heights of 14 plants, in inches, are listed.12, 14, 15, 15, 16, 16, 16, 17, 18, 18 ,19, 20, 22, 25If another plant with a height of 13 inches is added to the data, how would the mean be impacted? The mean would stay the same value of about 17.1 inches. The mean would decrease in value to about 17.1 inches. The mean would stay the same value of about 17.4 inches. The mean would increase in value to about 17.4 inches. In this excerpt from H. H. Munros "The Open Window," which line is an example of direct characterization?