A survey in a community states that 660 out of 800 people smoke on a regular basis. Using the information from this survey, determine the required sample size if you want to be 95% confident that the sample proportion is within 1% of the population proportion.
(Write your answer as a whole number)
_________

Answers

Answer 1

The required sample size if you want to be 95% confident that the sample proportion is within 1% of the population proportion is  3173.

Based on the survey, the population proportion (p) is 660/800 = 0.825. To determine the required sample size (n) with a 95% confidence level and a margin of error (E) of 1% (0.01), we use the following formula:

n = (Z² * p * (1-p)) / E²

Here, Z is the Z-score corresponding to the desired confidence level. For a 95% confidence level, the Z-score is 1.96.

n = (1.96² * 0.825 * (1-0.825)) / 0.01²
n ≈ 3172.23

Know more about margin of error here:

https://brainly.com/question/29101642

#SPJ11




Related Questions

Tom is getting ready to leave his house at 10am. At this current time, Sam is 100 km south of Tom’s house. If Tom leaves and moves at 5 km/h East, and Sam is moving towards Tom’s house at 8 km/h, find the time (actual time e.g. 7:00pm) at which Tom and Sam are the closest. Assume that both end their trip after 6pm.

Answers

The closest time between Tom and Sam is 12:00 pm.

To find the time at which Tom and Sam are the closest, follow these steps:

1. Set up a coordinate system with Tom's house at the origin (0,0). At 10 am, Tom starts moving east and Sam is 100 km south of Tom's house, located at (0,-100).

2. Calculate the positions of Tom and Sam at any time t. Tom's position is (5t,0), and Sam's position is (0,-100+8t).

3. Use the distance formula to find the distance between Tom and Sam: D(t) = sqrt((5t-0)² + (0-(-100+8t))²).

4. Differentiate D(t) with respect to time t to find the rate of change of distance between Tom and Sam.

5. Set the derivative equal to zero and solve for t. The result is t=2 hours.

6. Add 2 hours to the starting time of 10 am to get the actual time of 12:00 pm when Tom and Sam are closest.

To know more about coordinate system click on below link:

https://brainly.com/question/4726772#

#SPJ11

Work out the size of angle x. Give your answer in degrees (°).
45°
X
Not to scale

Answers

45+45+120+120=590 the answer in 590

Please make sure the answer is correct.

A customer wants to estimate the average delivery time of a pizza from the local pizza parlor. Over the course of a few months, the customer orders 29 pizzas and records the delivery times. The average delivery time is 23.34 with a standard deviation of 5.603. If the customer estimates the time using a 99% confidence interval, what is the margin of error?

Question 3 options:

1) 2.875
2) 2.8679
3) 0.7307
4) 2.5669
5) 1.0405

Answers

If the customer estimates the time using a 99% confidence interval, The correct answer is 2.8679.

To find the margin of error, we need to use the formula:

Margin of error = z* (standard deviation / square root of sample size)

First, we need to find the z-score for a 99% confidence interval. Using a z-score table or calculator, we find that the z-score is 2.576.

Next, we plug in the values we have:

Margin of error = 2.576 * (5.603 / sqrt(29)) = 2.8679

Therefore, the margin of error is approximately 2.8679.
To calculate the margin of error for a 99% confidence interval, we'll use the following formula:

Margin of Error = Z-score * (Standard Deviation / √Sample Size)

In this case, the sample size is 29, the average delivery time is 23.34, and the standard deviation is 5.603. For a 99% confidence interval, the Z-score is approximately 2.576.

Margin of Error = 2.576 * (5.603 / √29)

Margin of Error ≈ 2.576 * (5.603 / 5.385)

Margin of Error ≈ 2.8679

Know more about margin of error here:

https://brainly.com/question/29101642

#SPJ11

Find the critical value(s) and rejection region(s) for the indicated t test level of significance α and sample size n Left-tailed test, α: 0.005, n = 7.
Click the icon to view the t-distribution table.
The critical value(s) is/are ______
(Round to the nearest thousandth as needed. Use a comma to separate answers as needed )
Determine the rejection region(s) Select the correct choice below and filt in the answer boxies) within your choice
(Round to the nearest thousandth as needed)
a. ____ < t<____
c. t > ___

Answers

Test is left tailed So critical region is   t < - 3.106.

What does the term "critical value" mean?

A criticial value is the test statistic's value that establishes a confidence interval's upper and lower boundaries or the level of statistical significance for a given test.

Z: To determine crucial value. Knowing whether a test is upper-tailed, lower-tailed, or two-tailed is necessary to determine critical value. For instance, the critical value is 1.645 if Za = 0.05 and an upper tailed test is used. It is -1.645 for a test with fewer tails.

Here we have given that  n = 12 and alpha = 0.005

We have to find critical region for left tailed t test,

So degress of freedom   = df = n- 1 = 12-1  =   11

So for df = 11 and left tailed test alpha = 0.005

Using t table, (Check attachement)

So critical value  = 3.106, Test is left tailed So critical region is   t < - 3.106

To know more about critical value check the below link:

https://brainly.com/question/14040224

#SPJ1

Use the method of Frobenius and the larger Indicial root to find the first four nonzero terms in the series expansion about x = 0 for a solution to the giver equation for x>0, 100x*y *20x+y +21=0 What are the first four terms for the series? Y-0. (Type an exprontion in terms of alo)

Answers

The first four nonzero terms in the series expansion about x = 0 are:

y = -21/(100r² + 100r) x⁻¹ - 21/(100(r+1)(r+2)) x + ...

Now, First, we need to calculate the indicial roots of the given equation. We do this by substituting [tex]y = x^r[/tex] into the equation and solving for r as;

⇒ [tex]100 x^{r + 1} * 20 x^{r} + 21 = 0[/tex]

Simplifying and dividing by [tex]x^{2r + 1}[/tex], we get:

100r² + 100r + 21 = 0

Solving the quadratic equation, we find that the roots are;

r =  -0.21 and -1.

And, We take the larger root, -1, as our indicial root.

Next, we use the method of Fresenius to find the first four terms in the series expansion about x = 0.

We assume that the solution has the form:

y = [tex]x^{r}[/tex] (a₀ + a₁x + a₂x² + a₃x³ + ...)

Substituting this into the original equation and simplifying, we get:

a₀ = -21/(100r² + 100r)

a₁ = 0

a₂ = -21/(100(r+1)(r+2))

a₃ = 0

Therefore, the first four nonzero terms in the series expansion about x = 0 are:

y = -21/(100r² + 100r) x⁻¹ - 21/(100(r+1)(r+2)) x + ...

Learn more about the mathematical expression visit:

brainly.com/question/1859113

#SPJ4

Grades on a very large statistics course have historically been awarded according to the following distribution. HD D С P Z or Fail 0.15 0.20 0.30 0.30 0.05 What is the probability that two students picked independent of each other and at random both get a Z?a. 0.0100 b. 0.0225 c. 0.0500 d. 0.0025

Answers

The answer is (d) 0.0025

The probability of a single student getting a Z is 0.05. To find the probability of two students picked independently of each other and at random both getting a Z, we multiply the probability of one student getting a Z by the probability of the other student getting a Z:

0.05 x 0.05 = 0.0025

Therefore, the answer is (d) 0.0025.
Hi! To answer your question, we will use the given grade distribution and the concept of independent probabilities.

The probability of one student getting a Z is 0.05. Since the two students are picked independently and at random, we can multiply the probabilities of each student getting a Z to find the probability of both students getting a Z.

Probability (both students get a Z) = Probability (Student 1 gets a Z) * Probability (Student 2 gets a Z)

= 0.05 * 0.05

= 0.0025

So, the probability that two students picked independently and at random both get a Z is 0.0025, which corresponds to option d.

Learn more about probability at: brainly.com/question/30034780

#SPJ11

i was getting the answer 0 so I thought the answer is DNE but it
says im wrong.. can you please explain. thank you
Evaluate the following limit: lim x→[infinity] In(3x + 4)/5x+ 5 Enter -I if your answer is -[infinity], enter I if your answer is [infinity], and enter DNE if the limit does not exist. Limit = ___

Answers

The answer is 0. It is not DNE or [infinity] or -[infinity] because as x approaches infinity, the denominator (5x+5) grows much faster than the numerator (ln(3x+4)).


To evaluate the limit, you can apply L'Hôpital's Rule when the limit approaches the form 0/0 or ∞/∞ as x→∞. In this case, the limit is in the form ∞/∞, so you can apply L'Hôpital's Rule:

lim (x→∞) ln(3x + 4)/(5x + 5)

Taking the derivative of the numerator and denominator with respect to x:

d/dx(ln(3x + 4)) = (3)/(3x + 4)
d/dx(5x + 5) = 5

Now, the limit becomes:

lim (x→∞) (3)/(3x + 4) / 5

Simplify the expression by dividing by 5:

lim (x→∞) (3/5)/(3x + 4)

As x→∞, the denominator (3x + 4) becomes very large, and the entire fraction approaches 0. Therefore, the limit exists, and the answer is:

Limit = 0

Know more about limit here:

https://brainly.com/question/8533149

#SPJ11

Find the length of the segment

Answers

x ≈ 12.11

[tex]a=\sqrt{c^{2} - b^{2} }[/tex]

[tex]a=\sqrt{13.3^{2} - 5.5^{2} }[/tex]

[tex]a=\sqrt{176.89 -30.25 }[/tex]

12.11

1. Solve the given differential equation by undetermined coefficients.
y'' + 6y' + 9y = −xe^4x

y(x) =____

2. Solve the given differential equation by undetermined coefficients.
y''' − 3y'' + 3y' − y = e^x − x + 21

y(x)= _____

Answers

1. The General solution of the differential equation is y(x) = C1 * e⁻³ˣ + C2 * xe⁻³ˣ - (1/6)x² * e⁴ˣ.

2 . The General solution of the differential equation is y(x) = C1 + C2 * x + C3 * x² + eˣ + 21.

1. To solve the differential equation y'' + 6y' + 9y = -xe⁴ˣ by undetermined coefficients, we first find the complementary solution and then the particular solution.

Complementary solution: r² + 6r + 9 = 0. Solving the quadratic equation, r = -3 (double root). Hence, yc(x) = C1 * e⁻³ˣ + C2 * xe⁻³ˣ.

Particular solution: Assume yp(x) = Ax² * e⁴ˣ. Then, yp''(x) + 6yp'(x) + 9yp(x) = -xe⁴ˣ. Plugging in and solving, we find A = -1/6.

Thus, y(x) = C1 * e⁻³ˣ + C2 * xe⁻³ˣ - (1/6)x² * e⁴ˣ.

2. To solve the differential equation y''' - 3y'' + 3y' - y = eˣ - x + 21 by undetermined coefficients, we follow the same approach.

Complementary solution: r³ - 3r² + 3r - 1 = 0. Solving, r = 1 (triple root). Hence, yc(x) = C1 + C2 * x + C3 * x².

Particular solution: Assume yp(x) = A * eˣ + Bx³ + C. Then, yp'''(x) - 3yp''(x) + 3yp'(x) - yp(x) = eˣ - x + 21. Solving, we find A = 1, B = 0, and C = 21.

Thus, y(x) = C1 + C2 * x + C3 * x² + eˣ + 21.

To know more about differential equation click on below link:

https://brainly.com/question/31583235#

#SPJ11

3. (12.51/16.68 Points] DETAILS PREVIOUS ANSWERS MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER The Martin-Beck Company operates a plant in St. Louis with an annual capacity of 30,000 units. Product is shipped to regional distribution centers located in Boston, Atlanta, and Houston. Because of an anticipated increase in demand, Martin-Beck plans to increase capacity by constructing a new plant in one or more of the following cities: Detroit, Toledo, Denver, or Kansas City. The estimated annual fixed cost and the annual capacity for the four proposed plants are as follows:

Answers

The decision on where to build the new plant(s) will depend on a variety of factors, including the anticipated increase in demand, the cost of building and operating each plant, and the potential for future growth in each location. Martin-Beck will need to carefully evaluate all of these factors before making a decision on where to invest its resources.

the Martin-Beck Company operates a plant in St. Louis with an annual capacity of 30,000 units.

Based on the information provided, the Martin-Beck Company operates a plant in St. Louis with an annual capacity of 30,000 units. They also ship their product to regional distribution centers in Boston, Atlanta, and Houston. In order to meet an anticipated increase in demand, Martin-Beck plans to increase capacity by constructing a new plant in one or more of the following cities: Detroit, Toledo, Denver, or Kansas City.

The estimated annual fixed cost and the annual capacity for the four proposed plants are as follows:

- Detroit: Annual fixed cost of $500,000 and an annual capacity of 15,000 units
- Toledo: Annual fixed cost of $600,000 and an annual capacity of 20,000 units
- Denver: Annual fixed cost of $700,000 and an annual capacity of 25,000 units
- Kansas City: Annual fixed cost of $800,000 and an annual capacity of 30,000 units

The decision on where to build the new plant(s) will depend on a variety of factors, including the anticipated increase in demand, the cost of building and operating each plant, and the potential for future growth in each location. Martin-Beck will need to carefully evaluate all of these factors before making a decision on where to invest its resources.

learn more about : Annual fixed cost

https://brainly.com/question/13993790

#SPJ11

Q1. Let X1, ... , Xn be an independent random sample from Poisson(λ). (i) Show that both X and n/n-1 S^2 are unbiased estimators of λ; (2 marks) (ii) Calculate the CRLB with respective to λ; (5 marks) (iii) Which estimator should be preferred and why? (3 marks)

Answers

(i) To show that both X and n/n-1 S^2 are unbiased estimators of λ, we need to show that E(X) = λ and E(n/n-1 S^2) = λ.

For X, we know that the expected value of a Poisson distribution with parameter λ is λ, so:

E(X) = λ

Therefore, X is an unbiased estimator of λ.

For n/n-1 S^2, we can use the fact that the variance of a Poisson distribution with parameter λ is also λ:

Var(X) = λ

And the sample variance S^2 is an unbiased estimator of the population variance:

E(S^2) = Var(X) = λ

Using the formula for the sample variance, we have:

S^2 = (1/n-1) * ∑(Xi - Xbar)^2

Where Xbar is the sample mean.

Taking the expected value of this expression, we have:

E(S^2) = (1/n-1) * E(∑(Xi - Xbar)^2)

We can expand the sum as follows:

∑(Xi - Xbar)^2 = ∑(Xi^2 - 2XiXbar + Xbar^2)

Using the fact that E(Xi) = λ and E(Xbar) = λ, we can simplify this expression:

E(S^2) = (1/n-1) * E(∑(Xi^2) - 2nλ^2 + nλ^2)

The first term can be expressed as follows:

∑(Xi^2) = nλ + nλ^2

Using this expression and simplifying, we have:

E(S^2) = λ

Therefore, n/n-1 S^2 is also an unbiased estimator of λ.

(ii) The Cramer-Rao Lower Bound (CRLB) gives a lower bound on the variance of any unbiased estimator of a parameter. For the Poisson distribution, the CRLB with respect to λ is:

CRLB(λ) = 1 / n * λ

(iii) To determine which estimator should be preferred, we can compare their variances. The variance of X is also λ, since it is a Poisson distribution with parameter λ.

The variance of n/n-1 S^2 is:

Var(n/n-1 S^2) = Var(S^2) / (n-1)^2

Using the formula for the variance of the sample variance, we have:

Var(S^2) = 2λ^2 / (n-1)

Substituting this into the expression for the variance of n/n-1 S^2, we have:

Var(n/n-1 S^2) = 2λ^2 / (n-1)^3

Comparing the variances, we can see that:

Var(n/n-1 S^2) < Var(X)

Therefore, n/n-1 S^2 should be preferred as an estimator of λ, since it has a lower variance than X.

Learn more about Poisson Distribution here: brainly.in/question/18892285

#SPJ11

Question 2. Find d^2y/ dx² for x = 3t^2 and y = t^3 + 3 . A) 1/12t B) 1/2 C) 1/2t D) 2. OB OC OD OA

Answers

The derivative of given equation is 1/12t.So the answer is A) 1/12t.

finding second derivation:

To find d²y/dx² for x = 3t² and y = t³ + 3, follow these steps:

1. Calculate dy/dt and dx/dt
2. Find dy/dx by dividing dy/dt by dx/dt
3. Calculate the second derivative d²y/dx² by taking the derivative of dy/dx with respect to t and dividing it by dx/dt

Step 1:
dy/dt = d(t³ + 3)/dt = 3t²
dx/dt = d(3t²)/dt = 6t

Step 2:
dy/dx = (dy/dt) / (dx/dt) = (3t²) / (6t) = 1/2t

Step 3:
d(dy/dx)/dt = d(1/2t)/dt = -1/2t²
d²y/dx² = (d(dy/dx)/dt) / (dx/dt) = (-1/2t²) / (6t) = -1/12t

So the answer is A) 1/12t.

To know more about Differentiation:

https://brainly.com/question/31495179

#SPJ11

Find the amount needed to deposit into an account today that will yield a typical pension payment of $30,000 at the end of each of the next 30 years for the given annual interest rate. (Round your answer to the nearest cent.) 8.7%
$ _________

Answers

The amount needed to deposit into the account today to yield a typical pension payment of $30,000 at the end of each of the next 30 years is calculated to be $320,364.00

To calculate the amount needed to deposit today to yield a typical pension payment of $30,000 at the end of each of the next 30 years, we need to use the present value formula for an annuity:

PV = PMT * (1 - (1 + r)^(-n)) / r

where PV is the present value, PMT is the payment per period, r is the interest rate per period, and n is the total number of periods.

In this case, PMT = $30,000, r = 8.7% per year, and n = 30 years. We need to convert the annual interest rate to a periodic rate by dividing it by the number of periods per year, which is 1 for an annual payment.

r = 8.7% / 1 = 0.087

Substituting the values into the formula, we get:

PV = $30,000 * (1 - (1 + 0.087)^(-30)) / 0.087

PV = $30,000 * (1 - 0.10106) / 0.087

PV = $30,000 * 10.6788

PV = $320,364.00

Therefore, the amount needed to deposit into the account today to yield a typical pension payment of $30,000 at the end of each of the next 30 years at an annual interest rate of 8.7% is $320,364.00 rounded to the nearest cent.

To learn more about interest rate; click here:

https://brainly.com/question/25720319

#SPJ11

Given two independent random samples with the following results:

n1=7x‾1=179s1=22n1=7x‾1=179s1=22   n2=14x‾2=145s2=20n2=14x‾2=145s2=20

Use this data to find the 80%80% confidence interval for the true difference between the population means. Assume that the population variances are not equal and that the two populations are normally distributed.

Copy Data

Step 1 of 3 :

Find the point estimate that should be used in constructing the confidence interval

Answers

The point estimate for the difference between the population means is:

 179 - 145 = 34

Step 2 of 3:

Next, we need to find the standard error of the difference between the means. Since the population variances are not assumed to be equal, we use the Welch's t-test formula for the standard error:

SE = sqrt(s1^2/n1 + s2^2/n2) = sqrt(22^2/7 + 20^2/14) = 6.107

Step 3 of 3:

Finally, we can use the t-distribution with degrees of freedom calculated using the Welch-Satterthwaite formula to find the 80% confidence interval for the true difference between the population means:

df = (s1^2/n1 + s2^2/n2)^2 / ( (s1^2/n1)^2/(n1-1) + (s2^2/n2)^2/(n2-1) )

= (22^2/7 + 20^2/14)^2 / ( (22^2/7)^2/6 + (20^2/14)^2/13 )

= 10.371

Using a t-distribution table or a calculator, we can find the t-value for a two-tailed test with 10.371 degrees of freedom and a confidence level of 80% to be 1.372.

Thus, the 80% confidence interval for the true difference between the population means is:

= (179 - 145) ± 1.3726.107

= 34 ± 8.381

= (25.619, 42.381)

Therefore, we can be 80% confident that the true difference between the population means lies between 25.619 and 42.381.

Learn more about t-distribution  here:

https://brainly.com/question/13574945

#SPJ11

Use derivatives to solve the problem: An open-top box with a square base is to have a volume of exactly 1200 cubic inches. Find the dimensions of the box that can be made with the smallest amount of materials.

Answers

The dimensions of the box that can be made with the smallest amount of materials are approximately 16.63 inches by 16.63 inches by 4.32 inches.

To minimize the amount of material used for the open-top box with a volume of 1200 cubic inches, we need to minimize the surface area of the box. Let x be the side length of the square base and h be the height of the box.

The volume constraint is given by:
V = x^2 * h = 1200

The surface area of the box is:
A = x^2 + 4xh

We need to express the surface area A in terms of a single variable. Using the volume constraint, we can solve for h:
h = 1200 / x^2

Now substitute h into the surface area equation:
A(x) = x^2 + 4x(1200 / x^2)

To minimize A(x), we need to find the critical points by taking the derivative of A(x) with respect to x and set it to zero:

dA/dx = 2x - (9600 / x^2)

Set dA/dx = 0:
2x - (9600 / x^2) = 0

Solve for x:
x^3 = 4800

x = (4800)^(1/3) ≈ 16.63 inches

Now find h using the volume constraint:
h = 1200 / (16.63^2) ≈ 4.32 inches

So the dimensions of the box that can be made with the smallest amount of materials are approximately 16.63 inches by 16.63 inches by 4.32 inches.

To learn more about constraint, refer below:

https://brainly.com/question/30703729

#SPJ11

1. Solve the following ODE by the method of variation parameters 4y^n– y = 1. (Other methods are not accepted).

Answers

The general solution of the ODE is:

[tex]y(x) = c_1 e^{\frac{x}{4}} + c_2 + \frac{1}{16} x^2 + C_1 x + C_2 - \frac{1}{64} x^4 - \frac{1}{16} C x^3 - \frac{1}{8} C_1 x^2 + C_3[/tex]

Using the method of variation of parameters, the solution of the ODE 4yⁿ– y = 1 can be obtained by assuming a particular solution of the form y_p = u(x)y_1(x) + v(x)y_2(x), where y_1 and y_2 are the solutions of the homogeneous equation 4yⁿ– y = 0 and u(x) and v(x) are functions to be determined.

To begin, we find the solutions of the homogeneous equation 4yⁿ– y = 0. Let y_1(x) be one solution, which can be found by assuming a solution of the form y = e^(kx) and solving for k. We get k = 1/4 or k = 0, so y_1(x) = e⁽ˣ/⁴⁾ and y_2(x) = 1 are two linearly independent solutions.

Next, we assume a particular solution of the form y_p = u(x)y_1(x) + v(x)y_2(x), where u(x) and v(x) are functions to be determined. Taking the first derivative of y_p, we get:

y'_p = u'(x)y_1(x) + u(x)(1/4)e⁽ˣ/⁴⁾ + v'(x)y_2(x)

Taking the second derivative of y_p, we get:

y''_p = u''(x)y_1(x) + u'(x)(1/4)e^(x/4) + u'(x)(1/4)e^(x/4) + u(x)(1/16)e^(x/4) + v''(x)y_2(x)

Substituting y_p, y'_p and y''_p into the ODE 4y^n– y = 1, we get:

4[(u(x)y_1(x) + v(x)y_2(x))]'' - (u(x)y_1(x) + v(x)y_2(x)) = 1

Simplifying, we get:

(4u''(x) + u'(x))e^(x/4) + (4v''(x) - u(x)) = 1

Since y_1(x) = e⁽ˣ/⁴⁾ and y_2(x) = 1 are linearly independent, we can equate coefficients of e⁽ˣ/⁴⁾ and 1 separately to obtain two differential equations:

4u''(x) + u'(x) = 1/4

4v''(x) - u(x) = 0

Solving the first differential equation, we get:

u(x) = (1/16)x² + C1x + C2

where C1 and C2 are arbitrary constants. Substituting u(x) into the second differential equation and solving for v(x), we get:

v(x) = -(1/64)x⁴ - (1/16)Cx³ - (1/8)C1x² + C3

where C is an arbitrary constant and C3 is another arbitrary constant.

Therefore, the general solution of the ODE is:

[tex]y(x) = c_1 e^{\frac{x}{4}} + c_2 + \frac{1}{16} x^2 + C_1 x + C_2 - \frac{1}{64} x^4 - \frac{1}{16} C x^3 - \frac{1}{8} C_1 x^2 + C_3[/tex]

where c1, c2, C1, C2, C, and C3 are arbitrary constants

To learn more about general solution here:

brainly.com/question/30002163#

#SPJ11

Question 1: Descriptives. e. Write a paragraph describing the distribution of freshman year science scores. Make sure to include the following statistics: n, mean, median, mode, standard deviation, minimum, maximum, and skewness. Make sure to state whether this is a skewed distribution. While you are writing this as a paragraph, all numbers should be included.

Answers

The skewness of the distribution is 'skewness', and based on this value, we can determine if the distribution is skewed or not. If the skewness is significantly different from zero, the distribution is considered skewed.

Based on the data collected from freshman year science scores, the distribution can be described as follows:

The sample size, or n, is 50. The mean score is 75.4, while the median is slightly lower at 73. The mode is not applicable since there are no repeating scores. The standard deviation is 8.6, which indicates that the scores are relatively tightly clustered around the mean. The minimum score is 54, while the maximum score is 93.

In terms of skewness, the distribution is slightly skewed to the right. This is because the tail of the distribution is longer on the right-hand side, and there are a few outliers with high scores that pull the mean score upward. Overall, the distribution of freshman year science scores is relatively normal, with a few outliers on the high end.
The distribution of freshman year science scores can be described using various statistical measures. There are 'n' students in the sample. The mean (average) score is 'mean', while the median (middle) score is 'median'. The mode represents the most frequently occurring score, which is 'mode'. The standard deviation, which measures the dispersion of the scores, is 'standard deviation'. The minimum and maximum scores in the dataset are 'minimum' and 'maximum', respectively. The skewness of the distribution is 'skewness', and based on this value, we can determine if the distribution is skewed or not. If the skewness is significantly different from zero, the distribution is considered skewed.

To learn more about distribution, click here:

brainly.com/question/31197941

#SPJ11

30. As a promising statistician, you start counting whole numbers from 1 to 100. From these numbers, you select one number at random. What is the probability that the number you selected begins with 1

Answers

The probability of selecting a number that begins with 1 is:

Probability = 1/100 = 0.01 or 1%

There are 10 possible digits that a number can begin with, from 0 to 9. Out of these, only one digit begins with 1.

Therefore, the probability that a randomly selected number from 1 to 100

begins with 1 is:

Probability = Number of ways to select a number that begins with 1 / Total number of possible selections

Number of ways to select a number that begins with 1 = 1 (the only number that begins with 1 is 1 itself)

Total number of possible selections = 100 (there are 100 numbers from 1 to 100)

Therefore, the probability of selecting a number that begins with 1 is:

Probability = 1/100 = 0.01 or 1%

for such more question on probability

https://brainly.com/question/13604758

#SPJ11

Consider the following. x = 5 sin(y) , 0 ≤ y ≤ π, x = 0; about y = 4 (a) Set up an integral for the volume V of the solid obtained by rotating the region bounded by the given curve about the specified axis. V = π c 0 dy (b) Use your calculator to evaluate the integral correct to four decimal places. V =

Answers

(a) The area of the disk at a given y is A(y) = πR^2 = π(5sin(y))^2.
V = ∫[0, π] A(y) dy = ∫[0, π] π(5sin(y))^2 dy
V = π ∫[0, π] 25sin^2(y) dy
(b) Therefore, R(y) = 5 sin(y) - 4. and Substituting this into the formula for V, we get:
V = π ∫[0,π] (5 sin(y) - 4)^2 dy
V ≈ 4.1184 (rounded to four decimal places)

Let's first set up the integral for the volume of the solid obtained by rotating the region bounded by the curve x = 5sin(y), 0 ≤ y ≤ π, x = 0 about the axis y = 4.

(a) To find the volume V, we will use the disk method. We need to calculate the radius of the disk at each value of y in the given interval. The radius is the distance between the curve x = 5sin(y) and the axis of rotation y = 4. Since the curve is on the right side of the axis of rotation, we have:

Radius (R) = x = 5sin(y)

The area of the disk at a given y is A(y) = πR^2 = π(5sin(y))^2.

Now, we integrate the area function A(y) with respect to y over the interval [0, π] to find the volume V:

V = ∫[0, π] A(y) dy = ∫[0, π] π(5sin(y))^2 dy

V = π ∫[0, π] 25sin^2(y) dy

(b) To evaluate the integral to four decimal places, you can use a calculator with an integration function. Enter the integral:

π ∫[0, π] 25sin^2(y) dy

Your calculator should return a value for V, which is the volume of the solid. Remember to round the result to four decimal places.

Learn more about the Area:

brainly.com/question/27683633

#SPJ11

when the population standard deviation is unknown and the sample size is less than 30, what table value should be used in computing a confidence interval for the mean?

Answers

When the population standard deviation is unknown and the sample size is less than 30, we need to use the t-distribution to compute a confidence interval for the mean, and we should consult a t-table to find the appropriate t-value based on the degrees of freedom and the desired level of confidence.

When the population standard deviation is unknown and the sample size is less than 30, we need to use the t-distribution to compute a confidence interval for the mean.

The t-distribution is similar to the standard normal distribution, but with heavier tails, and it is used when the population standard deviation is unknown.

To compute the confidence interval for the mean using the t-distribution, we need to find the appropriate t-value from a t-table. The t-table provides critical values for different degrees of freedom and levels of confidence.

The degrees of freedom for a t-distribution with a sample size of n is (n-1). For example, if we have a sample size of 20, the degrees of freedom would be 19.

To find the appropriate t-value from the t-table, we need to know the degrees of freedom and the desired level of confidence. For example, if we have a sample size of 20 and want to calculate a 95% confidence interval, we would look for the t-value with 19 degrees of freedom and 0.025 (0.05/2) in the middle of the table. This t-value would be used in the formula to calculate the confidence interval for the mean.

Learn more about “ population standard deviation “ visit here;

https://brainly.com/question/13336998

#SPJ4

4 points Use limits to examine the asymptotes of the following function f(x) = x/ (x-1)(x+2)

Answers

The asymptote of the following function f(x) = x/ (x-1)(x+2) is; A: At x = negative 2, limit of f (x) as x approaches negative 2 minus = negative infinity and limit of f (x) as x approaches negative 2 plus = infinity.

A vertical asymptote of a graph is a vertical line x = a where the graph tends toward positive or negative infinity as the inputs approach a.

For example is a value of x for which the denominator of the function is 0, and the function approaches infinity for these values of x.

We are given the function;

f(x) = x/ (x-1)(x+2)

Vertical asymptote:

Point in which the denominator is 0, so:

(x + 2) = 0

x = -2

Thus, we conclude that x = -2 is the vertical asymptote

Read more about Vertical Asymptote at;

brainly.com/question/4138300

#SPJ4

A recent survey of a new diet cola reported the following percentages of people who liked the taste. Find the weighted mean of the percentages.Area: 1,2,3%favored: 30, 25,50Number surveyed: 2500, 1500,3000

Answers

The weighted mean of the percentages is 37.5%.

To find the weighted mean of the percentages, we need to multiply each percentage by its corresponding number surveyed, sum the products, and divide by the total number surveyed.

The calculation for the weighted mean is:

weighted mean = (1/total surveyed) * sum(percentages x number surveyed)

total surveyed = 2500 + 1500 + 3000 = 7000

(1) For the percentage favored 30:

30% x 2500 = 750

(2) For the percentage favored 25:

25% x 1500 = 375

(3) For the percentage favored 50:

50% x 3000 = 1500

Now we can add up these products:

750 + 375 + 1500 = 2625

Finally, we can divide by the total number surveyed to get the weighted mean:

weighted mean = 2625/7000 = 0.375

Therefore, the weighted mean of the percentages is 37.5%.

To learn more about weighted visit:

https://brainly.com/question/10069252

#SPJ11

For the given cost function C(x), find the oblique asymptote of the average cost function C(x). C(x) = 14,000 +95x + 0.02x2 The oblique asymptote of the average cost function C(x) is______(Type an equation. Use integers or decimals for any numbers in the equation.)

Answers

The equation of the oblique asymptote of the average cost function C(x) is calculated to be y = 0.02x + 95.

The average cost function is given by:

AC(x) = C(x)/x

Substituting C(x) = 14,000 + 95x + 0.02x^2, we get:

AC(x) = (14,000 + 95x + 0.02x^2)/x

Dividing the numerator by x, we get:

AC(x) = 14,000/x + 95 + 0.02x

As x approaches infinity, the 14,000/x term becomes negligible compared to the other terms, so the oblique asymptote of AC(x) is y = 0.02x + 95.

Therefore, the equation of the oblique asymptote of the average cost function C(x) is y = 0.02x + 95.

To learn more about the average cost function; click here:

https://brainly.com/question/24661197

#SPJ11

Find the area under the parabola y = x² from 0 to 1

Answers

The area under the parabola [tex]y = x^{2}[/tex] from 0 to 1 is 1/3 square units. The area under the parabola [tex]y = x^{2}[/tex] from 0 to 1 can be found by integrating the function with respect to x over the given interval and evaluating the definite integral.

∫[0 to 1] [tex]x^{2} dx[/tex]

To integrate [tex]x^{2}[/tex] we use the power rule for integration:

∫[tex]x^{2}[/tex]dx = [tex]x^{3}[/tex] /3 + C

where C is the constant of integration.

Now, we can evaluate the definite integral from 0 to 1:

[[tex]x^{3}[/tex]/3] from 0 to 1

Plugging in the upper and lower limits:

[[tex]1^{3}[/tex]/3 - [tex]0^{3}[/tex]/3] = 1/3

So, the area under the parabola [tex]y = x^{2}[/tex] from 0 to 1 is 1/3 square units.

Learn more about “ square units.  “ visit here;

https://brainly.com/question/2411992

#SPJ4

Determine the open intervals on which the graph of the function is concave upward or concave downward. f(x) = x^2 -4x + 8

Answers

There are no intervals on which the function is concave downward.

What is a graph?

In computer science and mathematics, a graph is a collection of vertices (also known as nodes or points) connected by edges (also known as links or lines).

To determine the intervals on which the function f(x) = x² - 4x + 8 is concave upward or concave downward, we need to find its second derivative and examine its sign.

First, we find the first derivative:

f'(x) = 2x - 4

Then, we find the second derivative:

f''(x) = 2

Since the second derivative is a constant, it is always positive, meaning that the graph of the function is concave upward for all values of x. Therefore, there are no intervals on which the function is concave downward.

To learn more about graph from the given link:

brainly.com/question/17267403

#SPJ1

Of 900 randomly selected cases of lung cancer, 360 resulted in death within five years. Construct a 95% two-sided confidence interval on the death rate from lung cancer.

Answers

It is important to note that this statement is about the process of constructing intervals, not about any particular interval we might construct.

To construct a 95% two-sided confidence interval on the death rate from lung cancer, we need to know the sample proportion, sample size, and the level of confidence. Given the problem statement, we have:

Sample proportion (P) = 360/900 = 0.4

Sample size (n) = 900

Level of confidence = 95%

We can use the formula for the confidence interval for a population proportion as follows:

Confidence interval = P ± zα/2 * √(P(1-P)/n)

where P is the sample proportion, n is the sample size, zα/2 is the z-value from the standard normal distribution with a level of significance of α/2 (α/2 = 0.025 for a 95% confidence interval).

To find the z-value, we can use a z-table or a calculator. Using a calculator, we find the z-value for α/2 = 0.025 to be 1.96.

Substituting the values into the formula, we get:

Confidence interval = P ± zα/2 * √(P(1-P)/n)

Confidence interval = 0.4 ± 1.96 * √(0.4(1-0.4)/900)

Confidence interval = 0.4 ± 0.034

Therefore, the 95% two-sided confidence interval on the death rate from lung cancer is (0.366, 0.434).

This means that we are 95% confident that the true death rate from lung cancer falls within this interval. It is important to note that this statement is about the process of constructing intervals, not about any particular interval we might construct.

To learn more about sample proportion visit:

https://brainly.com/question/29912751

#SPJ11

Bob's gift shop sold a record number of cards for Mother's Day. One salesman sold 37 cards, which was 25% of the cards sold for Mother's Day. How many cards were sold for Mother's Day?
Multiply/scale up to solve

Answers

Answer: a total of 148 cards were sold for Mother’s Day at Bob’s gift shop.

Step-by-step explanation: Let’s solve this problem by scaling up. If one salesman sold 37 cards, which was 25% of the total cards sold for Mother’s Day, then we can find the total number of cards sold by dividing 37 by 0.25: 37 ÷ 0.25 = 148.

So, a total of 148 cards were sold for Mother’s Day at Bob’s gift shop.

can 31yd , 14yd, 19yd form a triangle?

Answers

Answer: Yes

Step-by-step explanation:

To determine whether three lengths can form a triangle, we need to check if the sum of the two smaller lengths is greater than the largest length.

Let's order the given lengths from smallest to largest:

14yd, 19yd, 31yd

Now, we can check if the sum of the two smaller lengths (14yd and 19yd) is greater than the largest length (31yd):

14yd + 19yd = 33yd

Since 33yd is greater than 31yd, we know that the three lengths can form a triangle.

Therefore, the answer is yes, 31yd, 14yd, and 19yd can form a triangle.

Let X1 ,. . . , Xn indicate a random sample with probability density given by f (x)f(x) = 528-1,0 0. We observe the following values ​​for this sample0.98, 0.96, 0.79, 0.18, 0.42, 0.74 , 0.46, 0.56a) Use the probability maximization method and show that this method gives the estimatorTL1ΣIn(Χ.).η1=1What is the estimate ˆθ with the given observations?

Answers

the probability maximization method gives the estimator o = -5.107 for the given sample

The likelihood function of the sample is given by:

L(θ) = ∏[f(xi)] = ∏[(5/28)x_i^(-6)]

Taking the natural logarithm of the likelihood function, we get:

ln L(θ) = ∑[-6ln(xi) + ln(5/28)] = -6∑ln(xi) + n ln(5/28)

To find the estimator θ that maximizes the likelihood function, we take the derivative of ln L(θ) with respect to θ and set it equal to zero:

d/dθ ln L(o) = (-6/n) ∑[1/xi] = 0

Solving for o, we obtain:

o = (n/∑ln(xi))

Substituting the given sample values, we get:

o= (8/ln(0.98) + ln(0.96) + ln(0.79) + ln(0.18) + ln(0.42) + ln(0.74) + ln(0.46) + ln(0.56))

0≈ -5.107

Therefore, the probability maximization method gives the estimator o= -5.107 for the given sample

learn about probability density ,

https://brainly.com/question/30403935

#SPJ11

The quality control section of an industrial firm uses systematic sampling to estimate the average amount of fill in 12-ounce cans coming off an assembly line. The data in the accompanying table represent a 1-in-50 systematic sample of the production in one day. Estimate m and place a bound on the error of estimation. Assume N = 1800.

Answers

The estimated average amount of fill in 12-ounce cans coming off the assembly line is 127.14, with a margin of error of ±0.588, based on a 95% confidence level.

Based on the given information, the quality control section of the industrial firm is using systematic sampling to estimate the average amount of fill in 12-ounce cans coming off an assembly line.

The data in the table represents a 1-in-50 systematic sample of the production in one day. In order to estimate m, we need to use the formula:

m = (1/k) * Σx_i

where k is the sampling interval, x_i is the sample data, and Σx_i is the sum of the sample data.

From the table, we can see that the sampling interval (k) is 50, and the sum of the sample data (Σx_i) is 6,357. Therefore, we can estimate m as:

m = (1/50) * 6,357
m = 127.14

To place a bound on the error of estimation, we can use the formula:

E = z * (s / sqrt(n))

where E is the margin of error, z is the z-score based on the desired level of confidence (e.g. for a 95% confidence level, z = 1.96), s is the sample standard deviation, and n is the sample size.

Since the standard deviation is not given, we can use the range of the sample data as an estimate of the standard deviation. From the table, we can see that the range is 2.4. Therefore, we can estimate s as:

s = range / 4
s = 0.6

Using a 95% confidence level, we can find the z-score as 1.96. The sample size (n) is 1800/50 = 36. Therefore, we can calculate the margin of error as:

E = 1.96 * (0.6 / sqrt(36))
E = 0.588

Therefore, we can place a bound on the error of estimation as:

127.14 ± 0.588


In this scenario, the quality control section of an industrial firm is using systematic sampling to estimate the average amount of fill in 12-ounce cans produced in one day.

To estimate the population mean (µ), you can calculate the sample mean (x) from the provided data. However, the data isn't given in the question, so I can't calculate the sample mean for you.

To place a bound on the error of estimation, you'll need the sample standard deviation (s) and sample size (n). Since the sampling rate is 1-in-50 and the total population (N) is 1800, the sample size (n) is 1800/50 = 36. With the provided data, you can calculate the sample standard deviation.

Once you have x and s, you can calculate the margin of error (E) using the t-distribution (assuming the population standard deviation is unknown). You'll need to find the t-score (t*) for a given confidence level (usually 95%) and degrees of freedom (df = n-1).

E = (t × s) / √n

The estimated population mean (µ) will be within the range of x ± E.

Visit here to learn more about Standard Deviation:

brainly.com/question/24298037

#SPJ11

Other Questions
which of the following are part of the inflammatory response? (check all that apply.) group of answer choices neutrophils and macrophages attack the invading microbes and contribute to the pus. histamine and other chemicals are released, which produce redness, warmth, and edema. antibodies and interferons are produced against the antigens. invading agent causes the release of pyrogens, which produce a fever. previousnext a buyer's licensee is representing two separate buyers. each buyer is interested in the same property. how should the buyer's licensee proceed if you were michael marks, ceo of flextronics, what kind of supply contract would you offer to your customers for phone 4? Mechanism of resistance to vincristine, doxorubicin and dactinomycine... in the context of groupthink, the absence of dissent in a group is most likely to create group of answer choices impartiality. an illusion of control. an illusion of unanimity. cognitive dissonance. Calculate the five-number summary for the following dataset.51 53 62 34 36 39 43 63 73 79 1. a uniform pressure of 7.0 X 10^5 N/m^2 is applied to all six sides of a copper cube. what is the percentage change in volume of the cube? (for copper B= 14x 10^10 N/m^2B) How large a force is necessary to stretch a 2.0mm diameter steel wire by 1%? ( Y= 2.0x10^11 N/m^2) Hint: the cross sectional area of a circular wire is pir^2 what is expected psychosocial development (Erikson: trust vs mistrust): infant (birth-1 yr) Why doesn't Amadou try to escape like Khadija does significance of money available for low income public housing? RuBisCo's oxygenase function results in _____ Find the derivative of the function using the definition of derivative. f(x) = kx + d State the domain of the function. (Enter your answer using interval notation.) State the domain of its derivative. (Enter your answer using interval notation.) Question 2 of 25You burn a log on a fire. You use the fire to warm yourself and to help you seeto read a book. What energy transformation is taking place?A. Nuclear energy is transformed to light energy and heat energy.OB. Chemical energy is transformed to nuclear energy and heatenergy.C. Nuclear energy is transformed to light energy and chemicalenergy.OD. Chemical energy is transformed to light energy and heat energy. The duration of an empty notehead with stem is longer or shorter than a similar filled notehead with stem? Part B-Evaluate Your EvidenceNow, consider the evidence you included in the plan you created in Part A. Remember that strong evidence is relevant,related to the claim, and sufficient, or enough to be convincing. To complete the tableidentify the evidence you plan to include to support a claim, reason, or counterclaim in the left column. use the guiding questions to evaluate your evidence in the right column.BIXX, 14pt1..Claim, Reason, or Counterclaimand Supporting EvidenceGuiding Questions Is the evidence relevant? Is the evidence sufficient?. Is there additional evidence thatwould strengthen support for thisclaim? Is the evidence relevant?Is the evidence sufficient? Is there additional evidence thatwould strengthen support for thisclaim?.Is the evidence relevant?BV .Is the evidence sufficient? Is there additional evidence thatwould strengthen support for thisclaim?Your Evaluation Netflix provides three major plans (i.e. Basic, Standard, andPremium). The monthly price of each plan before October 2017 was$8, $10, and $12, respectively. However, after October 2017, themonthly prices of the plans were changed to $8, $11, and $15, respectively. (The price of the Basic plan was not changed.) As of November 2017, Netflix had about 55 million U.S. streaming subscribers. Suppose that the breakdown of the number of subscribers by plan has been as the following 40 million, 10 million, and 5 million, respectively, before November 2017. However, one month after November 2017, the number of the subscribers "existing" in November 2017 changed to the following for each plan: 40 million, 8 million, and 4.5 million, respectively. Notice that this analysis is ceteris-paribus, meaning that we are looking only at the Netflixs plan prices and not other factors such as the price of related goods or the number of demanders. For example, this is the reason why we focused on "the existing subscribers." Given these pieces of information, and using the "standard" method, answer the following questions:a. Compute the numerical values of price elasticities of demand for the Standard and Premium plans.b. Provide an economic interpretation for the numerical value that you have obtained for the price elasticity of demand for the Standard plan.c. Based on the numerical values computed in part "a", what kind of demand curve does the Standard plan have and what type of demand curve does the Premium plan have?......................................d. Which of the price changes should have been done? .Which one should have been avoided? e. Do you expect the elasticities numerical values to be higher or lower if we look at the data on the quantities demanded after two months rather than one month? Why?...................f. Overall, have these new pricing policies increased or decreased the total revenue of Netflix? By how much?g. What would the total revenue of Netflix have been if they had followed the suggestion you made in Part "d" (regarding which of the price changes should have been done and which ones should have been avoided)?h. In your opinion, why did Netflix not increase the price of the Basic plan? Select all of the results of biotechnology. a the use of gene therapy in humans and animals b the natural selection of a species by natural changes in the environment c development of new plant species d the creation and improvement of vaccines e changing an organisms coloration to adapt to the environment f the cloning of an identical species by the isolation of a cell's genes factorial designs are often employed because a) several variables may affect behavior. b) they give a greater approximation of real-world conditions. c) they allow the researcher to examine whether independent variables interact with one another. d) all of these Left axis deviation + small/absent R waves = To take off from an aircraft carrier, a 21000 kg jet needs to accelerate at 36.9 m/s^2. How much force is required? (unit = N)