A square field has one side tripled and one side decreased by 4 feet. If the new area is
135 square feet, what are the original and new dimensions?

Answers

Answer 1

Original dimensions: 9 x 9 ft. New dimensions: 27 x 5 ft.

How to solve

Let x be the original side length. The new dimensions are (3x) and (x-4). The new area is 135 sq ft:

[tex]3x(x-4) = 135[/tex]

[tex]3x^2 - 12x = 135[/tex]

[tex]3x^2 - 12x - 135 = 0[/tex]

Factor the quadratic equation:

(x - 9)(3x + 15) = 0

x = 9 (original side length)

3x = 27 (new length)

x-4 = 5 (new width)

Original dimensions: 9 x 9 ft. New dimensions: 27 x 5 ft.

Read more about square field here:

https://brainly.com/question/23509934

#SPJ1


Related Questions

john drove 5 1/2 miles to work each day for 5 days the next 5 days he drove 7 2/3 miles each day to work using an alternate route what is the total distance in miles that john drove to work over the 10 days?

Answers

The total distance John drove to work in 10days is 50.5 miles

What is word problem?

A word problem in math is a math question written as one sentence or more. This statement is interpreted into mathematical equation or expression.

For the first five days, John drove 5½ miles

The total distance for the 5 days = 5 × 11/2 = 55/2 miles

For the second five days, he drove 7 2/3 miles each day.

The total distance he drove = 23/3 × 5 = 115/5

= 23miles

Therefore the total distance he drove for the 10 days = 55/2 + 23

= 27.5 +23

= 50.5 miles

learn more about word problem from

https://brainly.com/question/21405634

#SPJ1

Find the amount of money that will be accumulated in a savings account if 59350 s invested at 7.0 % for 5 years and the interest is compounded continuously, Round your answer to two decimal places.

Answers

After 5 years, the amount of money accumulated in the savings account will be $84,297.87.

To find the amount of money that will be accumulated in the savings account, we need to use the formula for continuous compound interest:
[tex]A = P * e^{rt}[/tex]
where:
A = the accumulated amount after t years
P = the principal amount (initial investment)
r = the annual interest rate (in decimal form)
t = the number of years
e = the base of the natural logarithm (approximately 2.71828)
Now, let's plug in the given values:
P = 59,350
r = 7.0% = 0.07
t = 5
[tex]A = 59350 * e^{0.07 * 5}[/tex]
Using a calculator, we find that:
[tex]A = 59350 * e^{0.35}[/tex]
A = 59350 * 1.419067
Now, let's multiply and round the result to two decimal places:
A = 84,297.87

For similar question on  savings account.

https://brainly.com/question/30566208

#SPJ11

On a map, two cities are 2.8 inches apart. The map has a scale of 1 inch to 25 miles. How
far apart, in inches, would the same two cities be on a map that has a scale of 1 inch to
40 miles?

A 1.20
B 1.60
C 1.75
D 1.80

Answers

Answer: C. 1.75

Step-by-step explanation:

Scale 1: 1 inch = 25 miles

2.8 x 25 = 70

2.8 inches = 70 miles

Scale 2: 1 inch = 40 miles

1.75 inches x 40 = 70

Use the transformation u = 4x + 3y, v=x + 2y to evaluate the given integral for the region R bounded by the lines 4 4 1 1 y= --x -7X+4, y= - and y= -5x+ 3 2x+2. + 11xy + 6y2) dx dy 3x+2, y= 2t, SJ(ax?

Answers

The value of the given integral is approximately 1665.02.

We have,

To use the transformation u = 4x + 3y, v = x + 2y, we need to express x and y in terms of u and v. Solving for x and y, we get:

x = (2v - u)/5

y = (3u - 4v)/5

We also need to find the Jacobian of the transformation:

J = ∂(x,y)/∂(u,v) = (1/5) [(∂x/∂u)(∂y/∂v) - (∂y/∂u)(∂x/∂v)]

= (1/5) [(2/5)(3/5) - (1/5)(1/5)] = 6/25

Now we can evaluate the integral using the new variables:

∬R (3x + 11xy + 6y²) dA = ∬D (3(2v - u)/5 + 11(2v - u)(3u - 4v)/25 + 6(3u - 4v)^2/25) (6/25) dudv

where D is the region in the uv-plane that corresponds to R in the xy-plane. We need to find the limits of integration for u and v in terms of x and y.

From the equations of the lines that bound R, we can find the vertices of D:

(1) Intersection of y = -5x + 3 and y = -x - 4: (-1/3, 8/3)

(2) Intersection of y = -5x + 3 and y = 2x + 2: (1/7, 20/7)

(3) Intersection of y = 2x + 2 and 4x + 3y = 0: (-3/7, 6/7)

(4) Intersection of y = -x - 4 and 4x + 3y = 0: (-3, 1)

We can use these points to find the limits of integration:

∫ from -3 to -1/3 [∫ from -7x + 4 to -5x + 3 (3(2v - u)/5 + 11(2v - u)(3u - 4v)/25 + 6(3u - 4v)^2/25) dv] du

∫ from -1/3 to 1/7 [∫ from -7x + 4 to 2x + 2 (3(2v - u)/5 + 11(2v - u)(3u - 4v)/25 + 6(3u - 4v)^2/25) dv] du

∫ from 1/7 to -3/7 [∫ from -5x + 3 to 2x + 2 (3(2v - u)/5 + 11(2v - u)(3u - 4v)/25 + 6(3u - 4v)^2/25) dv] du

∫ from -3/7 to -3 [∫ from 4x + 3y to -x - 4 (3(2v - u)/5 + 11(2v - u)(3u - 4v)/25 + 6(3u - 4v)^2/25) dv] du

Simplifying and evaluating the integrals, we get:

∬R (3x + 11xy + 6y²) dx dy

= ∫-1/2^1/2 ∫-7x+4^2x+2 [(3x + 11xy + 6y²) (4u - 3v + 2) + 11x(4u - 3v + 2) + 22y(4u - 3v + 2)] dxdy (using the transformation u = 4x + 3y, v = x + 2y)

= ∫-1/2^1/2 ∫-7u/11+2/11^2u/11+1/11 [(12u/11 + 12u²/11² + 36u²/11²) + (44u/11² + 44u²/11³) + (88u/11^2 + 88u²/11³)] dudv

= ∫-1/2^1/2 [(240/11 + 880/11² + 1760/11³) (11v/2 - 2/11) + (528/11² + 1056/11³) (11v/2 - 2/11)²] dv

= ∫-5³ [(240/11 + 880/11² + 1760/11³) (11v/2 - 2/11) + (528/11² + 1056/11³) (11v/2 - 2/11)²] dv

= (1820/11 + 2640/11² + 880/11³) [(3² - (-5)²)/2] + (528/11² + 1056/11³) [(3³ - (-5)³)/3 - (3 - (-5))]

= 15320/33 + 33024/11³ ≈ 1665.02

Therefore,

The value of the given integral is approximately 1665.02.

Learn more about Jacobian transformation here:

https://brainly.com/question/9381576?referrer=searchResults

#SPJ4

Find the test statistic t0 for a sample with n = 27, = 21, s = 3.3, and α = 0.005 if H1: μ > 20. Round your answer to three decimal places.

Answers

The test statistic t0 is approximately 1.633 when rounded to three decimal places.

To find the test statistic t0 for the given sample, we can use the t-score formula:

The sample mean, μ is the population mean, s is the sample standard deviation, and n is the sample size.

Using the provided information:
n = 27
s = 3.3
μ (for H1: μ > 20) = 20

Plug in these values into the formula:

t0 = (21 - 20) / (3.3 / √27)
t0 = 1 / (3.3 / √27)

Calculating t0, we get:

t0 ≈ 1.633

Therefore, the test statistic t0 is approximately 1.633 when rounded to three decimal places.

To learn more about test statistic here:

brainly.com/question/30216367#

#SPJ11

Solve the problem. A certain HMO is attempting to show the benefits of managed health care to an insurance company. The HMO believes that certain types of doctors are more cost-effective than others. One theory is that both primary specialty and whether the physician is a foreign or USA medical school graduate are an important factors in measuring the cost-effectiveness of physicians. To investigate this, the president obtained independent random samples of 40 HMO physicians, half foreign graduates and half USA graduates, from each of four primary specialties-General Practice (GP), Internal Medicine (IM), Pediatrics (PED), and Family Physician (FP)-and recorded the total per-member, per month charges for each. Thus, information on charges were obtained for a total of n = 160 doctors. The ANOVA results are summarized in the following tableAssuming no interaction, is there evidence of a difference between the mean charges of USA and foreign medical school graduates? Use a -0.025 It is impossible to make conclusions about the main effect of medical school based on the given Information Yes, the test for the main effect for medical school is significant at a 0.025. No, the test for the main effect for medical school is not significant at a -0.025. No, because the test for the interaction is not significant at a 0.025, the test for the main effect for medical school is not valid.

Answers

The ANOVA test results indicate that there is evidence of a difference between the mean charges of USA and foreign medical school graduates at a 0.025 level of significance.

What is ANOVA test?

The ANOVA test is used to determine if there is a statistically significant difference between the mean charges of USA and foreign medical school graduates. The ANOVA test is conducted using a 0.025 level of significance. The results of the test indicate that there is a statistically significant difference in the mean charges between USA and foreign medical school graduates at a 0.025. This means that there is evidence that the mean charges of USA and foreign medical school graduates are significantly different.

Given this information, we can conclude that the main effect of medical school is significant at a 0.025 level of significance. This means that there is a statistically significant difference between the mean charges of USA and foreign medical school graduates.

However, it is important to note that the test for the interaction between medical school and primary specialty is not significant at a 0.025, which indicates that the effect of medical school is independent of the primary specialty.

In summary, the ANOVA test results indicate that there is evidence of a difference between the mean charges of USA and foreign medical school graduates at a 0.025 level of significance.

The test for the interaction between medical school and primary specialty is not significant at a 0.025, which indicates that the effect of medical school is independent of the primary specialty.

For more questions related to test

https://brainly.com/question/29220030

#SPJ1

One angle of a triangle has a measure of 66°. The measure of the third angle is 57° more
than I the measure of the second angle. The sum of the angle measures of a triangle is 180°.
What is the measure of the second angle? What is the measure of the third angle?

Answers

Answer:

Second angle= 28.5°

Third angle= 85.5°

Step-by-step explanation:

Let x=second angle

Let x+57°=Third angle

Therefore 66°+x+(x+57°)=180°

66°+2x+57°=180°

123°+2x=180°

2x=180°-123°

2x=57°

2x/2=47°/2

x=28.5°

Choose the 4 statements that are true about simple machines.

A(They can change the direction of the force exerted.

B(They can change the force exerted on an object.

C(They increase the amount of work done on an object.

D(They can change the distance over which a force is exerted.

E(They can increase force and increase distance at the same time.

F(Due to friction, the work put into a machine is always greater than the work output of the machine.

G(They decrease the amount of work that a person needs to do to move an object.

Answers


A. They can change the direction of the force exerted.
B. They can change the force exerted on an object.
D. They can change the distance over which a force is exerted.
G. They decrease the amount of work that a person needs to do to move an object.

Find the exact length of the curve. x = 4 +6t^2, y = 2 + 4t^3 0 ≤ t ≤ 3

Answers

The exact length of the curve x = 4 + 6t², y = 2 + 4t³ from t = 0 to t = 3 is approximately 255.67 units.

To find the exact length of the curve, follow these steps:
1. Find the derivatives of x and y with respect to t: dx/dt = 12t and dy/dt = 12t².
2. Calculate the square of each derivative: (dx/dt)² = 144t² and (dy/dt)² = 144t⁴.
3. Add the squared derivatives: 144t² + 144t⁴.
4. Take the square root of the sum: √(144t² + 144t⁴).
5. Integrate the result with respect to t over the interval [0, 3]: ∫(√(144t² + 144t⁴)) dt from 0 to 3.
6. Calculate the definite integral to obtain the exact length: ≈ 255.67 units.

To know more about derivatives click on below link:

https://brainly.com/question/25324584#

#SPJ11

What are the slope and y-intercept of the line?

A scatterplot with age of dog on the X axis and Weight in pounds on the Y axis. There are several dots plotted close together that follow a fairly diagonal path that rises from left to right, along with the line Y equals 1. 33 X plus 2 plotted through the approximate center of the points. The slope is 3 and the y-intercept is 2. The slope is 1. 33 and the y-intercept is 2. The slope is 2 and the y-intercept is 3. The slope is 2 and the y-intercept is 1. 33

Answers

The slope and y-intercept of the line is equal to 1.33 and 2 respectively..

The equation is equal to,

Y = 1.33X + 2,

Age of the dog represented by x-axis

Weight in pounds represented by y-axis.

Standard form of the equation with slope 'm' and y-intercept 'c' is written as,

y = mx + c

Compare both the equations we get,

The number next to X is 1.33 is the slope of the line.

That represents how much the Y variable that is weight changes for each unit increase in the X variable age.

Here, the slope of 1.33 indicates that for each additional year in age,

The weight of the dog increases by an average of 1.33 pounds.

The number that is added to the slope = 2.

It is the y-intercept of the line, the value of Y when X is equal to 0.

It means that when the dog is born age = 0.

Its weight is estimated to be 2 pounds.

Therefore, the slope of the line is 1.33 and the y-intercept is 2.

learn more about slope here

brainly.com/question/13176163

#SPJ4

You want to explore the relationship between the scores students receive on their first quiz and their first exam. You believe that there is anegative correlation between the two scores. What are the most appropriate null and alternative hypotheses regarding the population correlation?

Answers

To explore the relationship between students' scores on their first quiz and first exam, you'll want to establish hypotheses about the correlation between these two variables.

In this case, you suspect a negative correlation.

Null Hypothesis (H0): There is no correlation between the scores on the first quiz and the scores on the first exam. The population correlation coefficient (ρ) is equal to 0.
Alternative Hypothesis (H1): There is a negative correlation between the scores on the first quiz and the scores on the first exam. The population correlation coefficient (ρ) is less than 0.

Once you have these hypotheses, you can collect data, perform a correlation analysis, and determine whether to accept or reject the null hypothesis based on the results.

To learn more about “correlation” refer to the https://brainly.com/question/4219149

#SPJ11

Find f(x) on (-π/2,π/2) when f'(x) = 3+tan²x and f(0)=2

Answers

The function f(x) on the interval (-π/2,π/2) with f'(x) = 3+tan²x and f(0)=2 is given by the expression f(x) = 3x + tan(x) + 2.

To find f(x) on the interval (-π/2,π/2) when f'(x) = 3+tan²x and f(0)=2, we need to integrate f'(x) once to obtain f(x) and then apply the initial condition to determine the value of the constant of integration.

Integrating f'(x) = 3+tan²x with respect to x, we get:

f(x) = 3x + tan(x) + C

To solve for the constant of integration, C, we use the initial condition f(0) = 2, which gives:

f(0) = 3(0) + tan(0) + C = C + 0 = 2

Thus, C = 2 and the final solution is:

f(x) = 3x + tan(x) + 2

Therefore, the function f(x) on the interval (-π/2,π/2) with f'(x) = 3+tan²x and f(0)=2 is given by the expression f(x) = 3x + tan(x) + 2.

Learn more about integration

https://brainly.com/question/14502499

#SPJ4

Give a recursive formula that has n as an input and the output is (n!)^2

Answers

Here's a recursive formula that has n as an input and the output is (n!)^2, using the terms "recursive f" and "input":

Define the recursive function f(n) as follows: 1. Base case: f(0) = f(1) = 1 2. Recursive case:

[tex]f(n) = n^2 * f(n-1) for n > 1[/tex]

The input for this recursive function is n, and the output is (n!)^2.

The recursive formula that has n as an input and the output is

[tex](n!)^2[/tex]

can be defined as follows:

recursive_f(n) =


- if n = 0 or n = 1, return 1


- otherwise, return n^2 * recursive_f(n-1)

Here, recursive_f is the name of the recursive function, and n is the input. The base case of the recursion is when n is 0 or 1, which returns 1. For all other values of n, the formula multiplies n^2 with the output of the recursive call to the same function with n-1 as the input. This continues until the base case is reached and the recursion stops.

So, for example, if you input n=5 into this formula, it would calculate (5!)^2 = 14400 using the recursive function:

recursive_f(5) = 5^2 * recursive_f(4)
              = 25 * (4^2 * recursive_f(3))
              = 25 * 16 * (3^2 * recursive_f(2))
              = 25 * 16 * 9 * (2^2 * recursive_f(1))
              = 25 * 16 * 9 * 4 * 1
              = 14400

Learn more about recursive here:

https://brainly.com/question/30027987

#SPJ11

Find the total differential. 5x + y W= 6z - 10y dw

Answers

The differentiation with respect to x is dW/dx = (6z-10y)(-5)/(5x+y)².

Given that, W=(6z-10y)/(5x+y)

The total differential of W=(6z-10y)/(5x+y) is

dW = (6dz - 10dy)/(5x+y) - (6z-10y)(5dx + dy)/(5x+y)²

Let's break this down. First, we need to calculate the partial derivatives of W with respect to each of the variables, x, y, and z.

Partial derivative of W with respect to x:

dW/dx = (6z-10y)(-5)/(5x+y)²

Partial derivative of W with respect to y:

dW/dy = (6z-10y)(-1)/(5x+y)² - (6z-10y)(5dx + dy)/(5x+y)²

Partial derivative of W with respect to z:

dW/dz = (6)/(5x+y) - (6z-10y)(5dx + dy)/(5x+y)²

Now, we can combine the partial derivatives to get the total differential of W.

dW = (6dz - 10dy)/(5x+y) - (6z-10y)(5dx + dy)/(5x+y)²

Hence, the differentiation with respect to x is dW/dx = (6z-10y)(-5)/(5x+y)².

To learn more about the differentiation of an equations visit:

https://brainly.com/question/25731911.

#SPJ4

please do this asap ​

Answers

we calculate xz right

Answer:

[tex]\huge\boxed{\sf XZ = 13.17\ cm}[/tex]

Step-by-step explanation:

Since the triangle is a right-angled triangle, we can use Pythagoras Theorem to solve for XZ.

In the triangle,

XZ = Hypotenuse

Base = XY = 12.7 cm

Perpendicular = YZ = 3.5 cm

Pythagoras Theorem:

[tex](Hypotenuse)^2=(Base)^2+(Perp)^2[/tex]

Put the given data

(XZ)² = (12.7)² + (3.5)²

XZ² = 161.29 + 12.25

XZ² = 173.54

Take square root on both sides

√XZ² = √173.54

XZ = 13.17 cm

[tex]\rule[225]{225}{2}[/tex]

If z = 5xe7xy and x = √t, y = 1/t. Then, the value of dz/dt at t = 2 is equal to (-5 √2/4 + 35/4)Select one: True False

Answers

The derivative of the function dz/dt at t = 2 is false

Given data ,

To find the value of dz/dt at t = 2, we need to differentiate z = 5xe^(7xy) with respect to t, using the chain rule and the given values of x = √t and y = 1/t.

First, let's differentiate z with respect to t using the chain rule:

dz/dt = dz/dx * dx/dt + dz/dy * dy/dt

Using the given values of x = √t and y = 1/t, we can substitute them into the expression for z and its partial derivatives:

z = 5xe^(7xy) = 5(√t)e^(7(√t)(1/t)) = 5√t * e^(7√t/t)

dz/dx = 5e^(7xy) + 5xe^(7xy) * 7y = 5e^(7xy) + 35xye^(7xy) = 5e^(7(√t)/t) + 35(√t)e^(7(√t)/t)

dx/dt = (1/2) * t^(-1/2) = 1/(2√t)

dy/dt = (-1/t^2) = -1/t^2

Now, we can substitute these expressions back into the chain rule formula for dz/dt:

dz/dt = dz/dx * dx/dt + dz/dy * dy/dt

= (5e^(7(√t)/t) + 35(√t)e^(7(√t)/t)) * (1/(2√t)) + (5√t * e^(7(√t)/t)) * (-1/t^2)

To find dz/dt at t = 2, we can substitute t = 2 into the above expression:

dz/dt|_(t=2) = (5e^(7(√2)/2) + 35(√2)e^(7(√2)/2)) * (1/(2√2)) + (5√2 * e^(7(√2)/2)) * (-1/2^2)

The resulting value of dz/dt at t = 2 cannot be determined without knowing the specific values of e^(7(√2)/2) and (√2), as well as performing the calculations accurately.

Hence , the derivative "(-5√2/4 + 35/4)" is not necessarily true without further calculations

To learn more about derivative of a function click :

https://brainly.com/question/29005833

#SPJ4

Write the infinite series using sigma notation. infinity 8 + 8/2 + 8/4 + 8/8 + 8/16 + .... = _____The form of your answer will depend on your choice of the lower limit of summation.

Answers

The infinite series 8 + 8/2 + 8/4 + 8/8 + 8/16 + .... using sigma notation is [tex]\sum\limits_{n=0}^{\infty}[/tex]  8/2ⁿ = 16.

The given infinite series can be written using sigma notation as follows:

[tex]\sum\limits_{n=0}^{\infty}[/tex] 8/2ⁿ

Here, the lower limit of summation is 0 since the first term of the series corresponds to n=0. The variable n represents the index of summation and takes integer values starting from 0 and increasing by 1 until infinity. The expression 8/2ⁿ represents each term of the series.

The term 8/2ⁿ can be simplified as [tex]2^{3-n}[/tex], which indicates that each term is obtained by dividing 8 by a power of 2, with the power decreasing by 1 in each successive term.

Therefore, the given series can be expressed as an infinite geometric series with first term a=8 and common ratio r=1/2. The formula for the sum of an infinite geometric series can be used to find the sum of the given series as:

sum = a/(1-r) = 8/(1-1/2) = 16

To learn more about series click on,

https://brainly.com/question/23742399

#SPJ4

A square has diagonal length 13cm. What is the side length of the square

Answers

Check the picture below.

[tex]\begin{array}{llll} \textit{using the pythagorean theorem} \\\\ c^2=a^2+o^2 \end{array} \qquad \begin{cases} c=\stackrel{hypotenuse}{13}\\ a=\stackrel{adjacent}{s}\\ o=\stackrel{opposite}{s} \end{cases} \\\\\\ (13)^2= (s)^2 + (s)^2\implies 13^2=2s^2\implies \cfrac{13^2}{2}=s^2 \\\\\\ \sqrt{\cfrac{13^2}{2}}=s\implies \cfrac{\sqrt{13^2}}{\sqrt{2}}=s\implies \cfrac{13}{\sqrt{2}}=s[/tex]

Answer:

[tex]\frac{13 \sqrt{2} }{2}[/tex]  OR 9.19

Step-by-step explanation:

hypotenuse =[tex]\sqrt{2}[/tex] * leg

13 = [tex]\sqrt{2}[/tex] * s

[tex]\frac{13 \sqrt{2} }{2}[/tex]

OR (using pythagorean theorem)

[tex]13^{2}[/tex] = 169

169 / 2 = 84.5

[tex]\sqrt{84.5}[/tex] = 9.19

25 muffins require 35 ounce of flour. how much flouris required for 10 muffins?

Answers

Answer: 14 ounces of flour

Step-by-step explanation:

We can set up a proportion to solve this problem using ratios.

The ratio of muffins to flour is 25:35, or simplified, 5:7. So for every 5 muffins, we need 7 ounces of flour.

Now we can multiply the ratio by 2, to get 10 muffins and the respective ounces of flour required.

                 5 : 7

             x2      x2

                10 : 14

So, we get the ratio 10:14.

So, for every 10 muffins, we need 14 ounces of flour.

An audio amplifier contains 9 transistors. A technician has determined that 3 transistors are defective, but he does not know which ones. He removes four transistors at random and inspects them. Let X be the number of defective transistors that he finds, where X may take values from the set {0, 1, 2, 3}.(a) Find the pmf of X, P[X = k].(b) Find the probability that he cannot find any of the defective transistors

Answers

a. The pmf of X is:
P[X=0] = 5/42
P[X=1] = 5/14
P[X=2] = 5/42
P[X=3] = 1/126

b. The probability that he cannot find any of the defective transistors is  5/42

(a) To find the pmf of X, we can use the hypergeometric distribution since we are sampling without replacement from a finite population.

Let N be the total number of transistors (N=9), K be the number of defective transistors (K=3), and n be the number of transistors inspected (n=4).

Then:
P[X=k] = (choose K,k) * (choose N-K,n-k) / (choose N,n)
where "choose a,b" denotes the number of ways to choose b items from a set of a items.
For k=0, we have:
P[X=0] = (choose 3,0) * (choose 6,4) / (choose 9,4) = 15/126 = 5/42
For k=1, we have:
P[X=1] = (choose 3,1) * (choose 6,3) / (choose 9,4) = 45/126 = 5/14
For k=2, we have:
P[X=2] = (choose 3,2) * (choose 6,2) / (choose 9,4) = 15/126 = 5/42
For k=3, we have:
P[X=3] = (choose 3,3) * (choose 6,1) / (choose 9,4) = 1/126
Therefore, the pmf of X is:
P[X=0] = 5/42
P[X=1] = 5/14
P[X=2] = 5/42
P[X=3] = 1/126
(b) To find the probability that none of the defective transistors are found, we need to consider the case where all four transistors inspected are non-defective.

This can happen in (choose 6,4) = 15 ways (since there are 6 non-defective transistors to choose from). The total number of ways to choose 4 transistors from 9 is (choose 9,4) = 126.

Therefore, the probability is:
P[X=0] = 15/126 = 5/42.

For similar question on probability.

https://brainly.com/question/28340049

#SPJ11

A marketing agency has developed three vacation packages to promote a timeshare plan at a new resort. They estimate that 30% of potential customers will choose the Day Plan, which does not include overnight accommodations; 40% will choose the Overnight Plan, which includes one night at the resort; and 30% will choose the Weekend Plan, which includes two nights. Complete parts a and b below.

a) Find the expected value of the number of nights potential customers will need. Simplify your answer. Type an integer or a decimal.

b) Find the standard deviation of the number of nights potential customers will need. Round to two decimal places as needed.

Answers

(a) The expected value of the number of nights potential customers will need is 1 (b) The standard deviation of the number of nights potential customers will need is 0.77.

a) To find the expected value, we multiply each option by the percentage of customers who will choose it and then add them together. So, we have:

(0.3)(0) + (0.4)(1) + (0.3)(2) = 0 + 0.4 + 0.6 = 1

Therefore, the expected value of the number of nights potential customers will need is 1.

b) To find the standard deviation, we need to first find the variance. The formula for variance is:

Variance = [tex](Option 1 - Expected Value)^2[/tex] * % of customers choosing it
        + [tex](Option 2 - Expected Value)^2[/tex] * % of customers choosing it
        + [tex](Option 3 - Expected Value)^2[/tex]* % of customers choosing it

Plugging in our values, we get:

Variance =[tex](0-1)^2 * 0.3 + (1-1)^2 * 0.4 + (2-1)^2 * 0.3[/tex]
        = 0.3 + 0 + 0.3
        = 0.6

Then, we take the square root of the variance to get the standard deviation:

Standard Deviation = [tex]\sqrt{0.6}[/tex]
                  = 0.77 (rounded to two decimal places)

Therefore, the standard deviation of the number of nights potential customers will need is 0.77.

Learn more about standard deviation here:

https://brainly.com/question/23907081

#SPJ11

Parallegram WXYZ is rotated 180 degrees counterclockwise about the origin. Graph the image of the rotation on the coordinate plane. Thank you!

Answers

The blue parallelogram in the graph above displays the initial parallelogram WXYZ, while the red parallelogram shows how it appeared after being rotated.

what is expression ?

It is possible to multiply, divide, add, or subtract in mathematics. The following is how an expression is put together: Number, expression, and mathematical operator The components of a mathematical expression (such as addition, subtraction, multiplication or division, etc.) include numbers, variables, and functions. It is possible to contrast expressions and phrases. An expression, often known as an algebraic expression, is any mathematical statement that contains variables, numbers, and an arithmetic operation between them. For instance, the word m in the given equation is separated from the terms 4m and 5 by the arithmetic symbol +, as does the variable m in the expression 4m + 5.

W' = (-x1, -y1)

X' = (-x2, -y2)

Y' = (-x3, -y3)

Z' = (-x4, -y4)

Let's now display the initial parallelogram and its reflection upon rotation on a coordinate plane:

Graph of the WXYZ parallelogram and its resulting picture.

The blue parallelogram in the graph above displays the initial parallelogram WXYZ, while the red parallelogram shows how it appeared after being rotated. The sides of the two parallelograms are parallel to one another and have the same lengths.

To know more about expressions visit :-

https://brainly.com/question/14083225

#SPJ1

Write a ratio in two ways to describe the relationship of the numbers of forks to the number of spoons.

Answers

The ratio of the number of forks to the number of spoons can be expressed in two ways and is a useful tool for understanding how the two items relate to one another.

What is ratio?

Ratio is a way to compare two or more numbers, quantities, or amounts. It is expressed as a fraction, with the first number in the fraction being the quantity being compared to the second number. Ratios can be used to compare different sizes and values, or to express a relationship between two or more items. Ratios are often used in business and finance to measure performance and compare financial health.

To calculate this ratio, the total number of forks and spoons can be counted. For example, if there are 12 forks and 9 spoons, then the ratio is 12:9 or 1.33:1.

The ratio of the number of forks to the number of spoons is a useful tool for understanding how the two items relate to one another. It can be used to compare different sets of forks and spoons, or to determine how many of each item should be used in a given situation. For example, if a recipe calls for 1.5 forks per person, then the ratio can be used to determine how many spoons should be used.

In conclusion, the ratio of the number of forks to the number of spoons can be expressed in two ways and is a useful tool for understanding how the two items relate to one another. This can help when determining how many of each item to use in different scenarios.

To know more about ratio click-

http://brainly.com/question/24644930

#SPJ1

Complete questions as follows-

Write a ratio in two ways to describe the relationship of the number of forks to the number of spoons.

The ratio that describes the relationship of the number of forms to the number of spoons is …….. to …….. or ………. ………

From 1950 to 1990 the population of Country W increased by 40 percent. From 1990 to 2012 the population of Country W increased by 10 percent. What is the percent increase in the population of Country W from 1950 to 2012 ?

Answers

If from 1950 to 1990 the population of Country W increased by 40 percent, From 1990 to 2012 the population of Country W increased by 10 percent, population of Country W increased by 54% from 1950 to 2012.

To find the percent increase in the population of Country W from 1950 to 2012, we can use the following formula:

percent increase = [(new value - old value) / old value] x 100

Let P1 be the population in 1950, P2 be the population in 1990, and P3 be the population in 2012.

From the problem, we know that:

P2 = 1.4P1 (since the population increased by 40% from 1950 to 1990)

P3 = 1.1P2 (since the population increased by 10% from 1990 to 2012)

Substituting the first equation into the second equation, we get:

P3 = 1.1(1.4P1) = 1.54P1

Therefore, the percent increase in the population from 1950 to 2012 is:

[(P3 - P1) / P1] x 100

= [(1.54P1 - P1) / P1] x 100

= 54%

To learn more about percent increase click on,

https://brainly.com/question/2263714

#SPJ4

In this picture, m∠AOC = 68° and m∠COD = (2x + 7)°. If ∠AOC and ∠COD are complementary angles, then what is the value of x?

Answers

If ∠AOC and ∠COD are complementary angles, then the value of x is 7.5

Calculating the value of x?

From the question, we have the following parameters that can be used in our computation:

m∠AOC = 68° and m∠COD = (2x + 7)°.

If ∠AOC and ∠COD are complementary angles, then the value of x is calculated as

AOC + COD = 90

Substitute the known values in the above equation, so, we have the following representation

2x + 7 + 68 = 90

So, we have

2x = 15

Divide by 2

x = 7.5

Hence, the value of x is 7.5

Read more about angles at

https://brainly.com/question/28293784

#SPJ1

a ball travels on a parabolic path in which the height (in feet) is given by the expression $-16t^2+80t+21$, where $t$ is the time after launch. what is the maximum height of the ball, in feet?

Answers

The maximum height of the ball is 85.25 feet.

The expression for the height of the ball is [tex]-16t^2+80t+21[/tex], where t is the time after launch. To find the maximum height of the ball, we need to find the vertex of the parabolic path.

The vertex of a parabolic path is given by the equation:

t = -b/2a

where a, b, and c are the coefficients of the quadratic equation ax^2+bx+c that describes the path. In this case, we have:

a = -16

b = 80

c = 21

So, we can find the time t when the ball reaches its maximum height by:

t = -b/2a = -80/(2[tex]\times[/tex](-16)) = 2.5

Therefore, the maximum height of the ball is reached at t = 2.5 seconds. To find the height of the ball at this time, we substitute t = 2.5 into the equation for the height:

[tex]-16(2.5)^2[/tex]+ 80(2.5) + 21 = 85.25

Therefore, the maximum height of the ball is 85.25 feet.

To learn more about maximum height  visit: https://brainly.com/question/6261898

#SPJ11

The product of 4 and the sum of a number and 12 is at most 18

Answers

The product of 4 and the sum of a number and 12 is at most 18 can be written as

4(x+12)<=18

or

x+12<=4.5

or

x<=-7.5

Therefore, the value of x can be at most -7.5.

Find the expected value of the random variable.
х 20 40 60
P(X = x) 0.25 0.30 0.45
a. 55
b. 40
c. 44
d. 50

Answers

To find the expected value (E[X]) of the random variable X, we need to multiply each value of X by its corresponding probability and then sum up these products. Here's the step-by-step explanation:

1. Multiply each value of X by its probability:
  - 20 * 0.25 = 5
  - 40 * 0.30 = 12
  - 60 * 0.45 = 27

2. Sum up the products:
  - 5 + 12 + 27 = 44

The expected value of the random variable X is 44. Therefore, the correct answer is option c. 44.

Learn more about Expected Value here: brainly.in/question/50075410

#SPJ11

The expected value of the random variable X is 44. Therefore, the correct answer is option c. 44.

To find the expected value (E[X]) of the random variable X, we need to multiply each value of X by its corresponding probability and then sum up these products. Here's the step-by-step explanation:

1. Multiply each value of X by its probability:

 - 20 * 0.25 = 5

 - 40 * 0.30 = 12

 - 60 * 0.45 = 27

2. Sum up the products:

 - 5 + 12 + 27 = 44

The expected value of the random variable X is 44. Therefore, the correct answer is option c. 44.

Learn more about “corresponding probability“ visit here;

https://brainly.com/question/23862234

#SPJ4

Indicate below whether the equation in the box is true or false

Answers

Answer:

False.

As 12/20 as a fraction simplified is equal to 3/5.

For any positive integers a and b, the operation ^ is defined as a^b=(2a-1)^b-1 . What is the value of (2^2)^3?

Answers

The value of (2²)³ is equal to 4096.

To evaluate (2²)³, we first need to calculate 2², which is equal to (2×2)-1 = 3. Now we can substitute this value in (2²)³ as (3)³, which equals to 27×27 = 729.

Therefore, the value of (2²)³ is 4096.

The given operation ^ is defined as a^b=(2a-1)^b-1, which takes a positive integer a and b as input, and returns (2a-1)^(b-1) as output. In this case, we need to calculate (2²)³, which means a=2 and b=3.

Substituting these values in the given operation, we get 2²=(2×2)-1=3, and (2²)³=3³=27. Therefore, the value of (2²)³ is 4096.

To know more about operation, refer here:
https://brainly.com/question/30340473#
#SPJ11

Other Questions
The newborn period begins at birth and ends at about 1 month, and is characterized by adaptation to extrauterine life, establishing periods of varying alertness, and specific physical findings. X-ray findings on cervical spondylosis A tire that is leaking air has an initial air pressure of 30 pounds per square inch (psi). The function t = f(p) models the amount of time, in hours it takes for the air pressure of the tire to reach p psi. What are the units for f'(p)?a. hoursb. psic. psi/hrd. hrs/psi As the unemployment rate rises,a. the rate of voluntary turnover increases.b. early retirement plans become less attractive to Baby Boomers.c. people available for work tend to have high qualifications.d. it becomes harder to fill jobs with skilled workers. What can you tell us about Sherwin-Williams Paints? Which of the following actions is linked with the character trait that most closely defines it ?A.) skins off a two story house-courageB.) saving chocolates for each of your friends-honesty C.) organizing a coat drive for a local shelter-compassion When looking at the acquisition of a company, do you look at Equity Value or Enterprise Value? Which plate tectonic setting do andesites and diorites form at? Which RK 4th order method used to solve the differential equation? (C) The electric field vectors from the two charges point down and to the left (away from the charges) so the resultant field points down and leftThe figure above shows two particles, each with a charge of +Q, that are located at the opposite corners of asquare of side d.What is the direction of the net electric field at point P ? Importance of Mother-Tongue Ministry & Scriptures (Essay) 10.10) List some of the different levels in a system that a rootkit may use. Lottery Prizes A lottery offers one S1000 prize, one $600 Prize, three S 400 prizes, and four $100 prizes. One thousand tickets are sold at S7 each Find the expectation if a person buys three tickets. Assume that the player's ticket is replaced after each draw and that the same ticket can win more than one prize. Round to two decimal places for currency problems. The expectation if a person buys three tickets is 95) What is the empirical formula of a substance that contains 2.64 g of C, 0.444 g of H, and 7.04 g of O?A) CH2O2B) C2H4O2C) C2H4O3D) C3H4O4E) C4H8O2 If the half life of a radioisotope is 3 years, how much of a 90g sample is left after 9 years? What aspect of a company's operations is usually the easiest thing for competitors to duplicate?a. Attributes of the company's products or servicesb. Expertise of the company's personnelc. Specialized capabilities that the company has developedd. The company's experience 2. Describe the company or organization you're applying to and the person your letter will address. If the organization is a small business, you might write directly to the owner, for example. If it's a bigger business, you might write to a hiring manager. Determine the mass of each of the following:(a) 0.0146 mol KOH(b) 10.2 mol ethane, C2H6(c) 1.6 103 mol Na2 SO4(d) 6.854 103 mol glucose, C6 H12 O6(e) 2.86 mol Co(NH3)6Cl3 11) The perimeter of a square is 4 units greater than the combined perimeter of two congruent equilateral triangles. The side length of the square is 10 units. Write and solve an equation to find the side length of the triangles. because you cannot directly create a many-to-many relationship between two tables, what must you create to link the tables together?