Answer:
The correct answer is 12.43 Liters.
Explanation:
Based on the given question, the volume V₁ occupied by the sample of carbon dioxide gas is 14.2 liters at temperature (T₁) 65 degree C or 65+273 K = 338 K.
The gas is cooled at a temperature (T₂) 23 degree C or 273+23 K = 296 K
The volume of the gas (V₂) after cooling can be determined by using the formula,
V₁/T₁ = V₂/T₂
14.2/338 = V₂/296
0.0420 = V₂/296
V₂ = 0.0420 * 296
V₂ = 12.43 Liters.
what are mineralocorticoids
Explanation:
it is used to describe those action of adrenal corticosteroids that produce sodium
A microwave has a wavelength of 0.028 m. What us this wavelength in scientific notation
Answer:
2.8 times 10^ -2
Explanation:
scientific notation is supposed to be a number between 1 and 10
the decimal point moves 2 to the right in order to get 2.8 which makes the exponent negative
A 25.0 mL solution of quinine was titrated with 1.00 M hydrochloric acid, HCl. It was found that the solution contained 0.125 moles of quinine. What was the pH of the solution after 50.00 mL of the HCl solution were added
Answer:
pH = 9.08
Explanation:
Quinine, C₂₀H₂₄O₂N₂, Q, is a weak base that, in water, has as equilibrium:
Q + H₂O ⇄ QH⁺ + OH⁻
Where pKb is 5.10
Using H-H equation for weak bases:
pOH = pKb + log₁₀ [QH⁺] / [Q]
The reaction of quinine with HCl is:
Q + HCl → QH⁺ + Cl⁻
Initial moles of quinine are 0.125 moles and moles added of HCl are:
0.05000L × (1.00mol / L) = 0.05000moles.
That means after the addition of 50.00mL of the HCl solution, moles of Q and QH⁺ are:
Q = 0.125mol - 0.050mol = 0.075 moles
QH⁺ = 0.050 moles
Replacing in H-H equation:
pOH = 5.10 + log₁₀ [0.050] / [0.075]
pOH = 4.92
As pH = 14 - pOJ
pH = 9.08If a solution containing 23.81 g of lead(II) acetate is allowed to react completely with a solution containing 7.410 g of sodium sulfate, how many grams of solid precipitate will be formed g
Answer:
The correct answer is 15.80 grams.
Explanation:
The reaction taking place in the given question,
Pb(CH₃COO)₂ + Na₂SO₄ ⇒ PbSO₄ + 2NaCH₃COO
The number of moles can be calculated by using the formula,
n = weight / molecular mass
Based on the given question, the weight of lead (II) acetate is 23.81 grams and the weight of sodium sulfate is 7.410 grams.
The number of moles of Pb(CH₃COO)₂ is,
n = 23.81 g / 325.29 g/mol = 0.0732 moles
The number of moles of Na₂SO₄ is,
n = 7.410 g / 142.04 g/mol = 0.0521 moles
As one mole of lead (II) acetate needs one mole of sodium sulfate. Therefore, 0.0732 moles of lead (II) acetate needs 0.0732 moles of sodium sulfate.
However, as sodium sulfate is less, that is, 0.0521, therefore, Na₂SO₄ is a limiting reactant.
One mole of sodium sulfate produces one mole of PbSO₄. So, 0.0521 moles of Na₂SO₄ produces 0.0521 moles of PbSO₄.
Now the mass of PbSO₄ is,
mass = moles × molecular mass
mass = 0.0521 × 303.26 g/mol
mass = 15.80 grams.
The compound ClF contains Group of answer choices polar covalent bonds with partial negative charges on the Cl atoms. ionic bonds. nonpolar covalent bonds. polar covalent bonds with partial negative charges on the F atoms.
Answer:
polar covalent bonds with partial negative charges on the F atoms.
Explanation:
A covalent bond could be polar or nonpolar depending on the relative electro negativity difference between the two bonding atoms. In this case, the bonding atoms are chlorine and fluorine.
In the Pauling's scale, fluorine has an electro negativity value of 3.98 while chlorine has an electro negativity value of 3.16. The difference in electro negativity between the two atoms is about 0.82. This magnitude of electro negativity difference between the two bonding atoms correspond to the existence of a polar covalent bond in the molecule.
The direction of the dipole depends on the relative electro negativity values of the two bonding atoms. Since fluorine is more electronegative than chlorine, the fluorine atom will be partially negative and the chlorine atom will be partially positive accordingly.
The compound ClF (chlorine monofluoride) contains polar covalent bonds with partial negative charges on the F atoms. Therefore, option D is correct.
In ClF, chlorine (Cl) is more electronegative than fluorine. As a result, the shared electrons in the Cl-F bond are pulled closer to the chlorine atom, creating a partial negative charge on the fluorine atoms and a partial positive charge on the chlorine atom.
This polarity in the Cl-F bond gives the molecule an overall polarity, making it a polar molecule. Thank you for pointing out the error, and I apologize for any confusion caused.
Thus, option D is correct.
To learn more about the polar covalent bonds, follow the link:
https://brainly.com/question/28295508
#SPJ6
which best describes a mixture.
A it has a single composition and it has a set of characteristics
B it can have different compositions but it has a set of charactaristics that does not change
C it has a single composition but it has a set of characteristics that does change
D it can have different compositions and it has a set of characteristics that does change
Answer:
B) It can have different compositions, but it has a set of characteristics that does not change.
Explanation:
On e d g e n u i t y
I believe the answer is d lmk if im wrong or right
Draw every stereoisomer for 1-bromo-2-chloro-1,2-difluorocyclopentane. Use wedge-and-dash bonds for the substituent groups, and be sure that they are drawn on the outside of the ring, adjacent to each other. The skeletal structure of one molecule is included to indicate the proper format.
Answer:
Explanation:
The objective here is mainly drawing the diagrams of every stereoisomer for 1-bromo-2-chloro-1,2-difluorocyclopentane.
Stereoisomerism is the difference of the spatial arrangement of atoms in a molecule or a compound with the same molecular formula.
For 1-bromo-2-chloro-1,2-difluorocyclopentane.
We have the stereoisomers as follows:
(1R,2S)-1-bromo-2-chloro-1,2-difluorocyclopentane.
(1S,2R)-1-bromo-2-chloro-1,2-difluorocyclopentane.
(1S,1S)-1-bromo-2-chloro-1,2-difluorocyclopentane.
(1R,1R)-1-bromo-2-chloro-1,2-difluorocyclopentane.
Their diagrams are drawn and shown in the attached file below in the order with which they are listed above.
Acetic acid and ethanol react to form ethyl acetate and water.If 94.0 mmol of C2H5CO2CH3 are removed from a flask containing a mixture of HCH3CO2, C2H5OH, C2H5CO2CH3 and H2O at equilibrium, then following questions are to be answered. 1. What is the rate of the reverse reaction before any C2H5CO2CH3 has been removed from the flask?2. What is the rate of the reverse reaction just after the C2H5CO2CH3 has been removed from the flask?3. What is the rate of the reverse reaction when the system has again achieved equilibrium?4. How much less C2H5CO2CH3 is in the flask when the system has again reached equilibrium?
Answer:
Explanation:
The equation for the react between Acetic acid and ethanol to form ethyl acetate and water is :
[tex]HCH_3CO_2_{(aq)}+C_2H_5OH_{(aq)} \to C_2H_5CO_2CH_3_{(aq)} + H_2O_{(l)}[/tex]
Imagine if 94.0 mmol of [tex]C_2H_5CO_2CH_3[/tex] are removed from a flask; Then:
We are to answer the following questions:
1. What is the rate of the reverse reaction before any [tex]C_2H_5CO_2CH_3[/tex] has been removed from the flask?
The reaction above is called an esterification reaction;
So the rate of reverse reaction before any [tex]C_2H_5CO_2CH_3[/tex] is removed is greater than zero and equal to forward reaction rate.
2. What is the rate of the reverse reaction just after the [tex]C_2H_5CO_2CH_3[/tex] has been removed from the flask?
Just after the [tex]C_2H_5CO_2CH_3[/tex] has been removed from the flask, the rate of the reverse reaction is greater than zero but less than forward reaction rate.
3. What is the rate of the reverse reaction when the system has again achieved equilibrium?
When the system has again achieved equilibrium, the rate of the reverse reaction is greater than zero and equal to forward reaction rate because we it has achieved the equilibrium, hence, the reaction tends to proceed in the forward direction.
4. How much less [tex]C_2H_5CO_2CH_3[/tex] is in the flask when the system has again reached equilibrium?
The [tex]C_2H_5CO_2CH_3[/tex] in the flask when the system has again reached equilibrium is lesser by 94.0 mmol as given right from the question
how do you create flu vaccine,
Answer:
Explanation:
The fluid containing virus is harvested from the eggs. For inactivated influenza vaccines (i.e., flu shots), the vaccine viruses are then inactivated (killed), and the virus antigen is purified. The manufacturing process continues with quality testing, filling and distribution.
What is the balanced chemical equation for this reaction? H3PO4 + HCl → PCl5 + H2O Question 7 options: H3PO4 + 5HCl → PCl5 + H2O 2H3PO4 + 10HCl → 2PCl5 + 4H2O 2H3PO4 + 5HCl → 2PCl5 + 3H2O H3PO4 + 5HCl → PCl5 + 4H2O
Answer:
H3PO4 + 5HCl → PCl5 + 4H2O
Explanation:
In a chemical reaction, the number of atoms of each element must be the same on both sides of the equation. Notice that, originally, there's only one atom of chlorine on the left side and five atoms of chlorine on the right. The coefficient of 5 is added to the HCl compound to correct this. However, now there are eight atoms of hydrogen on the left and only two on the right. Adding the coefficient of 4 to the H2O compound balances the hydrogen and also balances oxygen on both sides at the same time.
The balanced chemical equation for the reaction:
H₃PO₄ + 5HCl → PCl₅ + 4H₂O (last option)
How to write balance equation?To write the balance equation for any given reaction, all we need to do is to ensure that the number of atoms in the reacting species and products formed are equal on both sides of the equation.
The balanced chemical equation for the reaction given in the question can be obtained as follow:
H₃PO₄ + HCl → PCl₅ + H₂O
There are 5 atoms of Cl on the right side and 1 atom on the left. It can be balanced by writing 5 before HCl as shown below:
H₃PO₄ + 5HCl → PCl₅ + H₂O
There are a total of 8 atoms of H on the left side and 2 atoms on the right. It can be balanced by writing 4 before H₂O as shown below:
H₃PO₄ + 5HCl → PCl₅ + 4H₂O
Now, we can see that the number of atoms in the reactants and products are equal.
Thus, the balanced equation for the reaction is
H₃PO₄ + 5HCl → PCl₅ + 4H₂O (last option)
Learn more about balancing equation:
https://brainly.com/question/12192253
#SPJ6
A 1.44 L buffer solution consists of 0.137 M butanoic acid and 0.275 M sodium butanoate. Calculate the pH of the solution following the addition of 0.069 moles of NaOH . Assume that any contribution of the NaOH to the volume of the solution is negligible. The Ka of butanoic acid is 1.52×10−5 .
Answer:
The answer is "[tex]P^{H}=5.379[/tex]".
Explanation:
[tex]\ NaOH \ value = \frac{n}{v}\\\\[/tex]
[tex]=\frac{0.069\ moles}{0.144L}\\\\=0.04791\ M[/tex]
[tex]\ Ka=1.52 \times 10^{-5}\\\\P^{ka} = -10g \ ka \\\\[/tex]
[tex]= -10 \times 1.52 \times 10^{-5}\\\\= 4.82\\[/tex]
Equation:
[tex]CH_3CH_2CH2COOH+NaOH\rightarrow CH_3CH_2CH_2COONa +H_2O\\\\[/tex]
[tex]\boxed{\left\begin{array}{ccccc}I &0.137 &0.04791 &0.275 & -- \\ C &-0.04791 &-0.04791 &+0.04791 & -- \\E &0.08909 &0&0.32291 & -- \end{array}\right}[/tex]
[tex]P^{H}= P^{ka}+\log\frac{CH_3CH_2CH_2COONa}{CH_3CH_2CH_2COOH}\\\\[/tex]
[tex]= 4.82+\log\frac{0.32291}{0.08909}\\\\=5.379[/tex]
A galvanic cell at a temperature of 25.0°C is powered by the following redox reaction:
2MnO4^-(aq)+16H+(aq)+5Pb(s)-->2Mn^2+(aq)+8H2O(l)+5Pb^2+(aq)
Suppose the cell is prepared with 1.87 M MnO−4 and 1.37 M H+ in one half-cell and 3.23 M Mn+2 and 6.62 M Pb+2 in the other. Calculate the cell voltage under these conditions. Round your answer to 3 significant digits.
Answer:
1.63 V
Explanation:
Let us state the reaction equation again for the purpose of clarity;
2MnO4^-(aq)+16H+(aq)+5Pb(s)-->2Mn^2+(aq)+8H2O(l)+5Pb^2+(aq)
The reduction potentials for the two half reaction equations are;
MnO 4 - (aq) + 8H + (aq) + 5e - → Mn2+(aq) + 4H2O(l) Eo=1.51 V
Pb2+(aq) + 2e - → Pb(s) Eo= -0.13 V
E°cell = E°red – E°Ox
E°cell = 1.51 - (-0.13)
E°cell = 1.51 + 0.13
E°cell = 1.64 V
But Q= [Mn^2+]^2 [Pb^2+]^5/[MnO4^-]^2 [H^+]^16
Q= [3.23]^2 [6.62]^5/[1.87]^2 [1.37]^16
Q= 10.43 × 12714.22/3.4969 × 154
Q= 132609.3/538.5226
Q= 246.25
From Nernst equation
E= E° - 0.0592/n log Q
Where n=10
E= 1.64- 0.0592/10 log 246.25
E= 1.64-0.0142
E= 1.63 V
Isomer such as acetic acid and methyl formate have
Answer:
C
Explanation:
This is the definition of an isomer.
What does the atmosphere do for humans?
What would cause a balloon to expand if taken to the top of a mountain?
O A. Increased molecular collision
O B. Increased amount of molecules
O C. Lowered temperature
D. Lowered pressure
Answer:
D. Lowered pressure
Explanation:
As you go to more altitude or height, the atmospheric pressure significantly lowers so the gas molecules are free to expand and take up as room as possible.
This is best explained by Boyle's law where pressure and volume are inversely related, where if one thing goes up another goes down. Here the pressure goes down, so volume increases and ballon expands.
Identify the person who made the correct statement.
Mike said petrified fossils are hard and heavy like rock.
Bobby said that petrified fossils have the same appearance as when they were alive.
Neither Mike nor Bobby is correct.
Mike is correct.
Bobby is correct.
Both Mike and Bobby are correct.
Answer: Both Mike and Bobby are correct.
Explanation:
Petrifcation can be defined as the process in which the organic material of the dead living being becomes fossil by the replacement of mineral deposition in the bony, hard material.
Thus although the body components gets decomposed wiped out due to this process. The body shape of the dead organism remains the same as that was in living.
Thus the statements made by Mike and Bobby both are correct. The fossils are hard and have the same appearance as when they were alive.
Who proposed the plum pudding model and what does it say about the structure of the atom
Answer:
J. J. Thomson
Explanation:
First proposed by J. J. Thomson in 1904 soon after the discovery of the electron, but before the discovery of the atomic nucleus, the model tried to explain two properties of atoms then known: that electrons are negatively-charged particles and that atoms have no net electric charge.
Consider the following reaction where Kc = 1.80×10-2 at 698 K:
2HI(g) → H2(g) + I2(g)
A reaction mixture was found to contain 0.280 moles of HI (g), 2.09×10^-2 moles of H2 (g), and 4.14×10^-2 moles of I2 (g), in a 1.00 liter container.
Required:
a. Is the reaction at equilibrium?
b. What direction must it run in order to reach equilibrium?
c. The reaction
1. must run in the forward direction to reach equilibrium.
2. must run in the reverse direction to reach equilibrium.
3. is at equilibrium.
Answer:
The system is not in equilibrium and the reaction must run in the forward direction to reach equilibrium.
Explanation:
The reaction quotient Qc is a measure of the relative amount of products and reagents present in a reaction at any given time, which is calculated in a reaction that may not yet have reached equilibrium.
For the reversible reaction aA + bB⇔ cC + dD, where a, b, c and d are the stoichiometric coefficients of the balanced equation, Qc is calculated by:
[tex]Qc=\frac{[C]^{c}*[D]^{d} } {[A]^{a}*[B]^{b}}[/tex]
In this case:
[tex]Qc=\frac{[H_{2} ]*[I_{2} ] } {[HI]^{2}}[/tex]
Since molarity is the concentration of a solution expressed in the number of moles dissolved per liter of solution, you have:
[tex][H_{2} ]=\frac{2.09*10^{-2} moles}{1 Liter}[/tex]=2.09*10⁻² [tex]\frac{moles}{liter}[/tex][tex][I_{2} ]=\frac{4.14*10^{-2} moles}{1 Liter}[/tex]=4.14*10⁻² [tex]\frac{moles}{liter}[/tex][tex][I_{2} ]=\frac{0.280 moles}{1 Liter}[/tex]= 0.280 [tex]\frac{moles}{liter}[/tex]So,
[tex]Qc=\frac{2.09*10^{-2} *4.14*10^{-2} } {0.280^{2} }[/tex]
Qc= 0.011
Comparing Qc with Kc allows to find out the status and evolution of the system:
If the reaction quotient is equal to the equilibrium constant, Qc = Kc, the system has reached chemical equilibrium.
If the reaction quotient is greater than the equilibrium constant, Qc> Kc, the system is not in equilibrium. In this case the direct reaction predominates and there will be more product present than what is obtained at equilibrium. Therefore, this product is used to promote the reverse reaction and reach equilibrium. The system will then evolve to the left to increase the reagent concentration.
If the reaction quotient is less than the equilibrium constant, Qc <Kc, the system is not in equilibrium. The concentration of the reagents is higher than it would be at equilibrium, so the direct reaction predominates. Thus, the system will evolve to the right to increase the concentration of products.
Being Qc=0.011 and Kc=1.80⁻²=0.018, then Qc<Kc. The system is not in equilibrium and the reaction must run in the forward direction to reach equilibrium.
After recrystallizing an impure sample with isopropanol, you isolate your product by filtration. What solvent do you use to wash your crystals? Room temperature distilled water Room temperature isopropanol Ice cold distilled water Ice cold isopropanol
Answer:
The correct answer is ice cold isopropanol.
Explanation:
Any compound in the initial stage is first dissolved in any suitable solvent and is heated for a certain duration for the process of recrystallization. Afterward, the compound is kept at room temperature so that it gets cooled gradually. In the process, the impurities remain dissolved in the solvent and the pure compound gets separated in the form of a precipitate.
Post all this, the filtration of the pure compound is done and is then washed with the cold solvent, which was initially used to dissolve the compound. Therefore, the appropriate solvent to use in the process is ice-cold isopropanol.
At the end of a reaction it is important to remove the solvent from a solid product (more than one answer may be correct):
a. So that the melting point can be determined.
b. So that clean NMR spectra can be obtained that do not contain solvent peaks.
c. So that the yield can be determined.
d. So that the solvent can be reused.
Answer:
(B.) and (C.)
b. So that clean NMR spectra can be obtained that do not contain solvent peaks.
c. So that the yield can be determined.
Explanation:
The solvent used in Nuclear Magnetic Resonance (NMR) spectrometer is Trimethyl silane (TMS), a neutral solvent which doesn't give off any signals. Other solvents could have interactions with the radiation, and disrupt the spectra.
Furthermore, for accurate determination of the actual yield and overall percentage yield, solid must be separated from the solvent, dried and weighed.
I hope this was explanatory enough.
Which of the following bases is the WEAKEST? The base is followed by its Kb value. Group of answer choices HOCH2CH2NH2, 3.2 × 10-5 (CH3CH2)3N, 5.2 × 10-4 NH3, 1.76 × 10-5 C5H5N, 1.7 × 10-9 Since these are all weak bases, they have the same strength.
Answer:
C₅H₅N being the weakest base
Explanation:
A weak base (B) is defined as a chemical compound that, in reaction with water, produce a small quantity of BH⁺
The general reaction is:
B + H₂O ⇄ BH⁺ + OH⁻ Where Kb is defined as:
Kb = [BH⁺] [OH⁻] / [B]
That means the smallest Kb is the weakest base because is producing the smallest quantity of BH⁺.
In the problem, the smallest Kb is C₅H₅N being the weakest base.
81. Find the pH of each mixture of acids. a. 0.115 M in HBr and 0.125 M in HCHO2 b. 0.150 M in HNO2 and 0.085 M in HNO3 c. 0.185 M in HCHO2 and 0.225 M in HC2H3O2 d. 0.050 M in acetic acid and 0.050 M in hydrocyanic acid
Answer:
See explanation below
Explanation:
This problem is a little long so I'm gonna be as clear as possible.
a) In this case we have two acids, HBr and HCHO2. Between these two acids, the HBr is the strongest, and does not have a Ka value to dissociate, while HCHO2 do.
In order to calculate pH we need the [H₃O⁺], and in this case, as HBr is stronger, the contribution of the weaker acid can be negligible, therefore, the pH of this mixture will be:
pH = -log[H₃O⁺]
pH = -log(0.115)
pH = 0.93
b) In this case it happens the same thing as part a) HNO₃ is the strongest acid, so the contribution of the HNO₂ which is a weak acid is negligible too, therefore the pH of this mixture will be:
pH = -log(0.085)
pH = 1.07
c) Now in this case, HCHO2 and HC2H3O2 are both weak acids, so to determine which is stronger, we need to see their Ka values. In the case of HCHO2 the Ka is 1.8x10⁻⁴ and for the HC2H3O2 the Ka is 1.8x10⁻⁵. Note that the difference between the two values of Ka is just 10¹ order, so, we can neglect the concentration of either the first or the second acid. We need to see the contribution of each acid, let's begin with the stronger acid first, which is the HCHO2, we will write an ICE chart to determine the value of the [H₃O⁺] and then, use this value to determine the same concentration for the second acid and finally the pH:
HCHO₂ + H₂O <-------> CHO₂⁻ + H₃O⁺ Ka = 1.8*10⁻⁴
i) 0.185 0 0
c) -x +x +x
e) 0.185-x x x
1.8*10⁻⁴ = x² / 0.185-x
As Ka is small, we can assume that "x is small" too, therefore the (0.185-x) can be rounded to just 0.185 so:
1.8*10⁻⁴ = x²/0.185
1.8*10⁻⁴ * 0.185 = x²
x² = 3.33*10⁻⁵
x = 5.77*10⁻³ M = [H₃O⁺]
Now that we have this concentration, let's write an ICE chart for the other acid, but taking account this concentration of [H₃O⁺] as innitial in the chart, and solve for the new concentration of [H₃O⁺] (In this case i will use "y" instead of "x" to make a difference from the above):
HC₂H₃O₂ + H₂O <--------> C₂H₃O₂⁻ + H₃O⁺ Ka = 1.8x10⁻⁵
i) 0.225 0 5.77x10⁻⁶
c) -y +y +y
e) 0.225-y y 5-77x10⁻³+y
1.8x10⁻⁵ = y(5.77x10⁻³+y) / 0.225-y ---> once again, y is small so:
1.8x10⁻⁵ = 5.77x10⁻³y + y² / 0.225
1.8x10⁻⁵ * 0.225 = 5.77x10⁻³y + y²
y² + 5.77x10⁻³y - 4.05x10⁻⁶ = 0
Solving for y:
y = -5.77x10⁻³ ±√(5.77x10⁻³)² + 4*4.05x10⁻⁶ / 2
y = -5.77x10⁻³ ±√4.95x10⁻⁵ / 2
y = -5.77x10⁻³ ± 7.04x10⁻³ / 2
y₁ = 6.35x10⁻⁴ M
y₂ = -6.41x10⁻³ M
We will take y₁ as the value, so the concentration of hydronium will be:
[H₃O⁺] = 5.77x10⁻³ + 6.35x10⁻⁴ = 6.41x10⁻³ M
Finally the pH for this mixture is:
pH = -log(6.41x10⁻³)
pH = 2.19
d) In this case, we have the same as part c, however the Ka values differ this time. The Ka for acetic acid is 1.8x10⁻⁵ while for HCN is 4.9x10⁻¹⁰. In this ocassion, we the difference in their ka is 10⁵ order, so we can neglect the HCN concentration and focus in the acetic acid. Let's do an ICE chart and then, with the hydronium concentration we will calculate pH:
HC₂H₃O₂ + H₂O <--------> C₂H₃O₂⁻ + H₃O⁺ Ka = 1.8x10⁻⁵
i) 0.050 0 0
c) -y +y +y
e) 0.050-y y y
1.8*10⁻⁵ = y² / 0.050-y
As Ka is small, we can assume that "y is small" too
1.8*10⁻⁵ = y²/0.050
1.8*10⁻⁵ * 0.050 = y²
y² = 9*10⁻⁷
y = 9.45*10⁻⁵ M = [H₃O⁺]
Finally the pH:
pH = -log(9.45x10⁻⁵)
pH = 3.02
Which of the following is most likely to make scientific knowledge stronger?
A.) Creating new hypotheses
B.) Lack of observational evidence
C.) Few scientists working towards it
D.) Evaluating it with experimentation and argument
Answer:
D) Evaluating it with experimentation and argument.
Explanation:
If you don't have enough observational evidence, then you can't really strengthen your scientific knowledge, because you haven't collected enough information to answer the questions you're asking.
If you only have a few scientists working on a question, it will take longer to find an answer. With more people working on a concept, it can be solved in more time.
It can be good to create new hypotheses, but only if you've already tested your original hypothesis (with experimentation and argument), and it turned out to be wrong. Once you've rejected your first hypothesis, only then should you make a new one.
Answer:
D
Explanation:
ultraviolet photon (λ = 58.4nm) from a helium gas discharge tube is absorbed by a hydrogen molecule which is at rest. Since momentum is conserved, what is the velocity of the hydrogen molecule after absorbing the photon? What is the translational energy of the hydrogen molecule in Jmol-1.
[h = 6.626 x 10-34 Js; NA = 6.022 x 1023 mol-1]
Answer:
Translation energy of 1 mole of H2 molecules = KE x Avogadros number
[tex]= 1.923 * 10^{-26} * 6.022 * 10^{23}\\\\= 0.0116 J \\\\= 1.16 * 10^{-2} \ J[/tex]
Explanation:
Photon wavelength [tex]= 58.4 nm = 58.4 * 10^{-9} m[/tex]
Photon momentum = h/wavelength
[tex]= (6.626 * 10^{-34})/(58.4 * 10^{-9})\\\\ = 1.1346 * 10^{-26} \ kg.m/s[/tex]
Mass of H2 molecule m = molar mass/Avogadros number
[tex]= (2.016)/(6.022 * 10^{23})\\\\= 3.3477 * 10^{-24} \ g = 3.3477 * 10^{-27} \ kg[/tex]
Since momentum is conserved:
Photon momentum = H2 molecule momentum = mass x velocity of H2
[tex]1.1346 * 10^{-26} = 3.3477 * 10^{-27} * v[/tex]
velocity [tex]v = 3.389 m/s = 3.39 m/s[/tex]
Translation energy of 1 H2 molecule = kinectic energy (KE) = (1/2)mv^2
[tex]= 1/2 * 3.3477 * 10^{-27} * 3.389^2\\\\= 1.923 * 10^{-26} J[/tex]
Translation energy of 1 mole of H2 molecules = KE x Avogadros number
[tex]= 1.923 * 10^{-26} * 6.022 * 10^{23}\\\\= 0.0116 J \\\\= 1.16 * 10^{-2} \ J[/tex]
The transfer of surface water into the ground to become groundwater is known as
and it can replenish an aquifer.
Answer: Recharge
Explanation:
To solve this we must be knowing each and every concept related to groundwater recharge. Therefore, the transfer of surface water into the ground to become groundwater is known as groundwater recharge.
What is groundwater recharge?The water that is added to the aquifer and through unsaturated zone after percolation (or infiltration) following any storm rainfall event is known as groundwater recharge.
In the natural world, rivers, lakes, streams, rain, and snowmelt all contribute to groundwater recharge. Other surface water trickles and through soil, eventually connecting with a source of water underneath the surface, while other surface water has evaporated or enters another watershed.
Therefore, the transfer of surface water into the ground to become groundwater is known as groundwater recharge.
To know more about groundwater recharge, here:
https://brainly.com/question/29450929
#SPJ5
The chemical equation and thermodynamic data for the melting of tungsten are given above. Based on this information, which of the following provides the best predictions correc whether a sample of pure tungsten will melt at 3723 K?
A. The sample will not melt because T > H/s
B. The sample will not melt because T< H/s
C. The sample will mel because T>
D. The sample will mel because T
Based on the information above provided, the best predictions correct whether a sample of pure tungsten will melt at 3723 K is The sample will mel because T>
TungstenTungsten is a very hard and brittle material. It properties include a very high melting point, a low vapor pressure and the highest hardness and strength of all metals. Tungsten has good corrosion resistance against most acids and alkalis.
Learn more about tungsten:
https://brainly.com/question/11014899
(a) show that the pressure exerted by a fluid P (in pascals) is given by P= hdg, where h is the column of the fluid in metres, d is density in kg/m3, and g is the acceleration due to gravity (9.81 m/s2). (Hint: see appendix 2.). (b) The volume of an air bubble that starts at the bottom of a lake at 5.24 degree celsius increases by a factor of 6 as it rises to the surface of water where the temperature is 18.73 degree celsius and the air pressure is 0.973 atm. The density of the lake water is 1.02 g/cm3. Use the equation in (a) to determine the depth of the lake in metres.
Answer:
56.4 m
Explanation:
volume increases by factor of 6, i.e [tex]\frac{V2}{V1}[/tex] = 6
Initial temperature T1 at bottom of lake = 5.24°C = 278.24 K
Final temperature T2 at top of lake = 18.73°C = 291.73 K
NB to change temperature from °C to K we add 273
Final pressure P2 at the top of the lake = 0.973 atm
Initial pressure P1 at bottom of lake = ?
Using the equation of an ideal gas
[tex]\frac{P1V1}{T1}[/tex] = [tex]\frac{P2V2}{T2}[/tex]
P1 = [tex]\frac{P2V2T1}{V1T2}[/tex] = [tex]\frac{0.973*6*278.24}{291.73}[/tex]
P1 = 5.57 atm
5.57 atm = 5.57 x 101325 = 564380.25 Pa
Density Ρ of lake = 1.02 g/[tex]cm^{3}[/tex] = 1020 kg/[tex]m^{3}[/tex]
acceleration due to gravity g = 9.81 [tex]m/s^{2}[/tex]
Pressure at lake bottom = pgd
where d is the depth of the lake
564380.25 = 1020 x 9.81 x d
d = [tex]\frac{564380.25}{10006.2}[/tex] = 56.4 m
Calcium chloride reacts with sodium hydroxide to form solid calcium hydroxide, Ca(OH)2. The balanced net ionic equation is
Group of answer choices
Ca+2(aq) + 2OH-(aq) + 2 Na+(aq) + 2 Cl-(aq) → Ca(OH)2(s).
Ca+2(aq) + 2OH-(aq) + Na+(aq) + Cl-(aq) → Ca(OH)2(s).
Ca+2(aq) + 2OH-(aq) → Ca(OH)2(s).
CaCl2(aq) + 2NaOH(aq) → CaOH(s) + NaCl(aq).
CaCl2(aq) + 2NaOH(aq) → Ca(OH)2(s) + 2NaCl(aq).
Answer:
Ca²⁺ + 2 OH⁻ → Ca(OH)₂(s)
Explanation:
In chemistry, the net ionic equation is a way to write a chemical reaction whereas you write only the ions that are involved in the reaction.
When calcium chloride, CaCl₂ reacts with sodium hydroxide, NaOH to produce Ca(OH)₂ the only ions involved in the reaction are Ca²⁺ and OH⁻, thus, the balanced net ionic equation is:
Ca²⁺ + 2 OH⁻ → Ca(OH)₂(s)
Cl⁻ and Na⁺ are not involved in the reaction and you don't have to write them.
The balanced net ionic equation for the reaction between calcium chloride and sodium hydroxide is
Ca²⁺(aq) + 2OH⁻(aq) —> Ca(OH)₂(s)The ionic equation for the reaction between calcium chloride and sodium hydroxide can be written as follow:
Calcium chloride => CaCl₂
Sodium hydroxide => NaOH
In solution,
CaCl₂(aq) —> Ca²⁺(aq) + 2Cl⁻(aq)
NaOH(aq) —> Na⁺(aq) + OH⁻(aq)
CaCl₂(aq) + NaOH(aq) —>
Ca²⁺(aq) + 2Cl⁻(aq) + Na⁺(aq) + OH⁻(aq) —> Ca(OH)₂(s) + 2Cl⁻(aq) + Na⁺(aq)
Cancel the spectator ions (i.e Cl⁻ and Na⁺) and write 2 before OH⁻ to obtain the net ionic equation as shown below:
Ca²⁺(aq) + 2OH⁻(aq) —> Ca(OH)₂(s)Learn more: https://brainly.com/question/9489859
If you prepare a solution by adding sufficient amount of solute so that after heating and cooling the solution there is a visible amount of solid solute left in the bottom of the beaker, the solution would be considered ________.
Answer:
saturated
Explanation:
Compound H is optically active and has the molecular formula C6H10 and has a five carbon ring. On catalytic hydrogenation, H is converted to I (C6H12) and I is optically inactive. Propose structures for H and I. (Draw a three-dimensional formula for each using dashes and wedges around chiral centers.)
Answer:
Explanation:
Given that ;
Compound H is optically active and have a molecular formula of C6H10 and therefore undergo catalytic hydrogenation. Catalytic hydrogenation involves the use Platinum/Nickel to produce C6H12
i.e
[tex]C_6H_{10} +H_2 \to ^{Pt/Ni} \ \ \ C_6H_{12}[/tex]
The proposed H and I structures are shown in the diagrams attached below .
compound H represents 3- methyl cyclopentene
compound I represents methyl cyclopentane
However; 3- methyl cyclopentene posses just only one chiral carbon which is optically active at the third position and it R and S enantiomers are shown in the second diagram below.
The starting material is 3-methylcyclopentene while the optically inactive product is 1-methyl cyclopentane.
Hydrogenation refers to the addition of hydrogen across the double bond of an unsaturated compound. Hydrogenation results in the formation of a saturated compound having two more hydrogen atoms than the starting material.
The starting material is optically active 3-methylcyclopentene. The R and S enantiomers of the starting material is shown in image (1) attached. The optically inactive product is, 1-methyl cyclopentane is shown in image (2) attached.
Learn more: https://brainly.com/question/6249935