Answer:
Step-by-step explanation:
If the profit realized by the company is modelled by the equation
P (x) = −0.5x² + 120x + 2000, marginal profit occurs at dP/dx = 0
dP/dx = -x+120
P'(x) = -x+120
Company's marginal profit at the $100,000 advertising level will be expressed as;
P '(100) = -100+120
P'(100) = 20
Marginal profit at the $100,000 advertising level is $20,000
Company's marginal profit at the $140,000 advertising level will be expressed as;
P '(140) = -140+120
P'(140) = -20
Marginal profit at the $140,000 advertising level is $-20,000
Based on the marginal profit at both advertising level, I will recommend the advertising expenditure when profit between $0 and $119 is made. At any marginal profit from $120 and above, it is not advisable for the company to advertise because they will fall into a negative marginal profit which is invariably a loss.
Write an equation of a line that is parallel to the line 3y=-x+6 and passes through the point (6,2).
Answer:
y = x+2
y =-x+2 shows 0
We want to show 1 both sides
2y = x+2 shows 2
y = x+2 shows 0 as explained below.
Step-by-step explanation:
3y−x=6
Solve for y.
y=2+x3
Rewrite in slope-intercept form.
y=13x+2.
Use the slope-intercept form to find the slope and y-intercept.
Slope: 13 y-intercept: 2
Any line can be graphed using two points. Select two
x values, and plug them into the equation to find the corresponding y values.
xy 02, 33
Graph the line using the slope and the y-intercept, or the points.
Slope:
13y-intercept: 2x y (0,2) (3,3)
Eric had 8 gallons of milk. He used 2 gallons of milk for cooking and gave remaining to 7
students.
If there are 21 students, how many gallons of milk is needed?
Answer:18
Step-by-step explanation:
first : 8-2 =6 gallons
he gave 6 to 7 students
then he needs : 18 gallons for 21 students
The lines shown below are perpendicular if the green line has a slope of 3/4 what is the slopes of the red line?
Answer:
b) -4/3
Step-by-step explanation:
perpendicular lines have slopes that are opposite reciprocals. the opposite of 3/4 is -3/4, and the reciprocal of -3/4 is -4/3. hope this helps!
Answer:
It is -4/3
Step-by-step explanation:
Question 6: An experiment consists of throwing two six-sided dice and observing the number of spots on the upper faces. Determine the probability that (a) each die shows four or more spots. (b) the sum of the spots is not 3. (c) neither a one nor a six appear on each die. (d) the sum of the spots is 7
Answer:
(a) 0.25
(b) 0.944
(c) 0.444
(d) 0.167
Step-by-step explanation:
There are six possible outcomes for each die, which means that the number of possible outcomes is:
[tex]n=6*6 = 36[/tex]
(a) In order for each die to show four or more spots they will both have to land on a four, five or six. The probability of this happening is:
[tex]P(A) = \frac{3*3}{36}=0.25[/tex]
(b) There are only two possible outcomes for which the sum is three (1 and 2, or 2 and 1). The probability of the sum NOT being three is:
[tex]P(B) = 1-\frac{2}{36}=0.944[/tex]
(c) If neither a one or a six must appear, then there are 4 possible outcomes for each die, the probability is:
[tex]P(C) = \frac{4*4}{36}=0.444[/tex]
(d) For each one of the six possible numbers on the first die, there is only one on the second die for which the sum of the spots is 7, totaling six possible ways to sum 7:
[tex]P(D) = \frac{6}{36}=0.167[/tex]
The required probability output from a throw of two six sided dice are as follows :
0.25 0.9440.4440.167The sample space for two throw of a six-sided die :
Sample space = n² = 6² = 6 × 6 = 36Recall :
Probability = required outcome / Total possible outcomesA.) Obtaining 4 or more spots :
Required spot = (5, 6, 7) on each die = 3 × 3 = 9 outcomes
P(4 or more spot) = 9/36 = 0.25
B.) Sum of spot is not 3 :
Sum of spot = 3 ; (1, 2) and (2, 1) = 2 possible outcomes
P(sum not 3) = 1 - (2/36) = 1 - 1/8 = 17/18 = 0.944
C.) neither a one nor 6 appears :
Required = (2, 3, 4, 5) = 4 × 4 = 16
P(neither 6 nor 1) = 16/36 = 4/9 = 0.44
D.) Sum of spot equals 7
Required = (1, 6),(6,1),(5,2),(2,5),(3,4),(4,3) = 6 outcomes
P(sum equals 7) = 6/36 = 1/6 = 0.167
Learn more :https://brainly.com/question/18405415
What’s the correct answer for this question?
Answer:
B:
Step-by-step explanation:
According to theorem, "the angle in a semi-circle is a right angle" So,
<O = 90°
<M = 54
<K = 180-90-54
<OKM = 36°
When renting a car two options listed below are given. You need the car for 3 days. How many miles must you travel in order for option 2 to be the better option? Tell me your variable and what it represents. Then use that variable to set up an equation for each option. Graph each line and use the graph to answer the question. You will need to upload a picture or screenshot of your graphs.
Answer:
it´s b
Step-by-step explanation:
At a gas station, 50% of the customers use regular gas, 30% use mid-grade gas and 20% use premium gas. Of those customers using regular gas, only 30% fill their tanks. Of those customers using mid-grade gas, 60% fill their tanks, whereas of those using premium, 50% fill their tanks. If the next customer fills the tank, what is the probability that he uses premium gas
Answer:
The probability is 0.2326 or 23.26%.
Step-by-step explanation:
The probability that a random customer fills their tank with premium gas is:
[tex]P( prem\ \&\ fill) = 0.2*0.5=0.10[/tex]
The probability that a random customer fills their tank is given by:
[tex]P(fill)=P( reg\ \&\ fill)+P( mid\ \&\ fill)+P( prem\ \&\ fill)\\P(fill) = 0.5*0.3+0.3*0.6+0.2*0.5\\P(fill) = 0.43[/tex]
Therefore, the probability that a customer used premium gas given that hey have filled their tank is:
[tex]P(prem| fill) = \frac{P( prem\ \&\ fill) }{P(fill)} \\P(prem| fill) =\frac{0.10}{0.43}=0.2326[/tex]
The probability is 0.2326 or 23.26%.
What is the slope of the line?
A company produces product with a mean weight of 10 and a standard deviation of 0.200. A new process supposedly will produce products with the same mean and a smaller standard deviation. A sample of 20 products produced by the new method has a sample standard deviation of 0.126. At a significance level of 10%, is it appropriate to conclude that the new process is less variable than the old?
Answer:
[tex]F=\frac{s^2_1}{s^2_2}=\frac{0.2^2}{0.126^2}=2.520[/tex]
Now we can calculate the p value but first we need to calculate the degrees of freedom for the statistic. For the numerator we have [tex]n_1 -1 =10-1=9[/tex] and for the denominator we have [tex]n_2 -1 =20-1=19[/tex] and the F statistic have 9 degrees of freedom for the numerator and 19 for the denominator. And the P value is given by:
Now we can calculate the p value with this probability:
[tex]p_v =P(F_{9,19}>2.520)=0.043[/tex]
Using a significance level of 5% we see that the p value is lower than this value and we have enough evidence to reject the null hypothesis and we can conclude that the variation for the new process is lower than the new one.
Step-by-step explanation:
Information given
[tex]n_1 = 10 [/tex] represent the sampe size old
[tex]n_2 =20[/tex] represent the sample size new
[tex]s_1 = 0.2[/tex] represent the sample deviation for old
[tex]s_2 = 0.126[/tex] represent the sample deviation for new
The statistic is given by:
[tex]F=\frac{s^2_1}{s^2_2}[/tex]
Hypothesis to test
We want to test if the new process is less variable than the old, so the system of hypothesis are:
H0: [tex] \sigma^2_1 \leq \sigma^2_2[/tex]
H1: [tex] \sigma^2_1 >\sigma^2_2[/tex]
The statistic is given by:
[tex]F=\frac{s^2_1}{s^2_2}=\frac{0.2^2}{0.126^2}=2.520[/tex]
Now we can calculate the p value but first we need to calculate the degrees of freedom for the statistic. For the numerator we have [tex]n_1 -1 =10-1=9[/tex] and for the denominator we have [tex]n_2 -1 =20-1=19[/tex] and the F statistic have 9 degrees of freedom for the numerator and 19 for the denominator. And the P value is given by:
Now we can calculate the p value with this probability:
[tex]p_v =P(F_{9,19}>2.520)=0.043[/tex]
Using a significance level of 5% we see that the p value is lower than this value and we have enough evidence to reject the null hypothesis and we can conclude that the variation for the new process is lower than the new one.
A door wedge is 5 cm tall. Its has 3.7 cm high triangular bases with 2 congruent 5 cm sides and a 4 cm side. What is its surface area?
Answer:
Surface Area = 84.8 cm²
Step-by-step explanation:
This wedge is simply a triangular prism.
We are given;
Height of door wedge; H = 5 cm
Height of triangular base;h = 3.7 cm
Congruent sides; S2 = S3 = 5cm
base of triangular side;b = S1 = 4 cm
Now, formula for surface area of triangular prism is;
SA = bh + (s1 + s2 + s3)H
Thus, plugging in the relevant values, we have;
SA = (4 x 3.7) + (4 + 5 + 5)5
SA = 14.8 + 70
SA = 84.8 cm²
If y varies directly as x, and y is 48 when x is 6, which expression can be used to find the value of y when x is 2?
Answer:
When x is 2, y is 16
Step-by-step explanation:
If y is 48 and x is 6, then y is 8 when x is 1.
Because of this, when x is 2, y will be 16.
Please mark Brainliest
Find w and y, will give brainliest for the correct answer
Answer: w=12, y=6√3
Step-by-step explanation:
Looking at the figure, we can split the triangle into 2 separate triangles. One on the left and one on the left. The triangle on the right is a 30-60-90 triangle. For this triangle, the hypotenuse is 2x in length. This is directly opposite of the right angle. The leg opposite to 30° is x in length. The leg opposite 60° is x√3 in length. Once you know the length of one side, you can plug in x to find the length of the other legs.
In this case, w and y are located on the same 30-60-90 triangle. Normally we would focus on that triangle to find our values, but in this instance, we don't have any values. We have to use the left triangle to find the leg that both triangles share.
The left triangle is a 45-45-90 triangle. For this triangle, the legs opposite of 45° is x in length. The hypotenuse is x√2. Since we know the hypotenuse, we can use it to find x.
x√2=8
x=8/√2
x=5.7 or 6 [Let's use 6 so that it is easier to work with a whole number]
Now that we know x, we can find w and y. Going back to the right triangle, we know the hypotenuse is 2x. We plug in 6 to find the length.
w=2x
w=2(6)
w=12
We know the leg opposite of 60° is x√3. We can plug in x.
y=6√3
A study published in 2010 showed that city dwellers have a higher risk of developing anxiety disorders and a higher risk of developing mood disorders than those who live in the country. A follow-up study published in 2011 used brain scans of city dwellers and country dwellers as they took a difficult math test.1 To increase the stress of the participants, those conducting the study tried to humiliate the participants by telling them how poorly they were doing on the test. The brain scans showed very different levels of activity in stress centers of the brain, with the urban dwellers having greater brain activity than rural dwellers in areas that react to stress.
Required:
a. Is the 2010 study an experiment or an observational study?
i. Experiment
ii. Observational study
b. Can we conclude from the 2010 study that living in a city increases a person's likelihood of developing an anxiety disorder or mood disorder?
i. Yes
ii. No
c. Is the 2011 study an experiment or an observational study?
i. Experiment
ii. Observational study
d. Can we conclude from the 2011 study that living in a city increases activity in stress centers of the brain when a person is under stress?
i. Yes
ii. No
Step-by-step explanation:
a.It is a controlled experiment because it is clearly seen that an established hypothesis or study is being verified through an experiment, now in this case the hypothesis is tested through an experiment where excessive stress is placed on the Participants during their math exam to effectively verify that people in urban or city areas live with more stress than people in rural areas.
2..As now that the previously established hypothesis has been verified, it is concluded that people who live in the city live with more anxiety and stress than people who live in rural areas.
A hospital claims that the proportion, , of full-term babies born in their hospital that weigh more than pounds is . In a random sample of babies born in this hospital, weighed over pounds. Is there enough evidence to reject the hospital's claim at the
Complete question is:
A hospital claims that the proportion, p, of full-term babies born in their hospital that weigh more than 7 pounds is 36%. In a random sample of 170 babies born in this hospital, 56 weighed over 7 pounds. Is there enough evidence to reject the hospital's claim at the level of significance?
Answer:
Yes, there is enough evidence to reject the claim.
Step-by-step explanation:
We are given;
n = 170
x = 56
So, will use one sample proportion test to solve this.
p^ = x/n
p^ = 56/170
p^ = 0.3294
Since the proportion, p, of full-term babies born in their hospital that weigh more than 7 pounds is 36%.
Thus;
Null Hypothesis H0: p ≠ 0.36
Alternative Hypothesis Ha: p = 0.36
Formula for test statistic = (p^ - p)/√(p(1 - p)/n)
This gives;
Test statistic = (0.3294 - 0.36)/√(0.36(1 - 0.36)/170)
Test statistic = -0.8311
From z-table and online z-calculator, the p - value is 0.203.
level of significance is; α = 0.05
Now, Since the p value < α, we reject the null hypothesis .
Thus, the claim is true
NEED HELP ASAP!!! a hexagon-based pyramid has a height of 54cm. The volume of the pyramid is 1080cm3. What is the area of the base?
Answer:
32
Step-by-step explanation:
Look at the row of numbers. What number should come next?
8, 4, 2, 1, 1/2, 1/4, ?
Answer:
1/8
Step-by-step explanation
Every time the number is divided by 2 like 8 divided by 2 is 4 and 4 divided by 2 is 2 and so on so if you divide 1/4 by 2 it would be 0.125 and that in fraction would be 1/8.
A flexible cable always hangs in the shape of a catenary curve y = c + a cosh(x/a), where cand a are constants, a > 0. Suppose a telephone line hangs between two poles 18 meters apart, in the shape of the catenary y = 30 cosh(x/15) - 4, where x and y are measured in meters. a. (3 pts.) Find the slope of this curve where it meets the right pole. (Round to 3 decimal places.] b. (3 pts.) Find the angle between the line and the right pole. [Give your answer in degrees, rounded to the nearest hundredth.) Expert Answer
Answer:
The slope of this curve where it meets the right pole is 1.130
The angle between the line and the right pole is 41.51 °
Step-by-step explanation:
Given that ;
[tex]y = 30 \ cos h (\dfrac{x}{15} - 4)[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{30}{15} sinh(\dfrac{x}{15})[/tex]
[tex]\dfrac{dy}{dx}=2 \ sinh(\dfrac{x}{15})[/tex]
x = 9 m;( i.e half of the distance of the two poles at 18 meters apart.
[tex]\dfrac{dy}{dx}=2 \ sinh(\dfrac{9}{15})[/tex]
= 1.130
The slope of this curve where it meets the right pole is 1.130
The angle between the line an the right rope can be determined by using the tangent of the slope .
tan ∝ = 1.130
∝ = tan⁻¹ (1.130)
∝ = 48.49°
The angle is θ; so
θ = 90 - ∝
θ = 90 - 48.49°
θ = 41.51 °
Thus; the angle between the line and the right pole is 41.51 °
A) Divide 160km in the ratio 10:9:13
B) divide 66 in the ratio 6:15:1
Answer:
A) 50 km : 45 km : 65 km
B) 18:45:3
Step-by-step explanation:
A) 160 km in the ratio 10:9:13
10x+9x+13x= 16032x= 160x= 510:9:3 ⇔ 50 km : 45 km : 65 km
B) 66 in the ratio 6:15:1
6x+15x+x= 6622x=66x=36:15:1 ⇔ 18:45:3
Please answer this correctly
Answer:
540
Step-by-step explanation:
Since the surface area is 408, we can set up the equation
2*9*6 + 2*r*9 + 2*r*6 = 408
108 + 30r = 408
30r = 300
r = 10
The volume is length * width * height
9*6*10 = 540
The table represents a linear equation.
Which equation correctly uses point (-2, -6) to write the
equation of this line in point-slope form?
х
-4
-2
6
10
y
-11
-6
14
24
y-6 = {(x - 2)
• y-6 = (x - 2)
y +6 = } (x + 2)
y+6= {(x + 2)
Answer:
see below
Step-by-step explanation:
Considering the last two table entries, we can find the slope of the line to be ...
Δy/Δx = (24 -14)/(10 -6) = 10/4 = 5/2
The point-slope form of the equation for a line with slope m through point (h, k) is ...
y -k = m(x -h)
For (h, k) = (-2, -6) and m = 5/2, this is ...
y -(-6) = 5/2(x -(-2))
y +6 = 5/2(x +2) . . . . . matches the last choice
Answer:
d is the right choice
Step-by-step explanation:
Which linear function has initial value 4?
a. y = 3x - 4
b. y = - 3x + 4
c. y = 4x - 3
d. y = 4x + 3
Answer:
y = -3x+4
Step-by-step explanation:
An initial value of 4 would be the y intercept
The only function with a y intercept of 4
(y = mx+b where b is the y intercept)
is y = -3x+4
Given that f(x) = x² + 4x, evaluate f(-2).
Answer:
-4
Step-by-step explanation:
A science club has 16 members. How many ways can a president, a Vice President, and a treasurer be selected from the members?
Answer:
3,360
Step-by-step explanation:
We calculate the number of permutations for this problem where the order in which we accommodate people matters to us as follows:
[tex]P=\frac{n!}{(n-r)!}[/tex]
where n is the total number of options we have; the total number of members: [tex]n=16[/tex]
and r is the number of places or positions we are considering which in this case are the President position, the Vice president position and the treasurer position ⇒ 3 positions in total ⇒ [tex]r=3[/tex]
substituting n and r in the formula:
[tex]P=\frac{16!}{(16-3)!} \\\\P=\frac{16!}{13!} \\\\P=3,360[/tex]
A president, a Vice President, and a treasurer can be selected from the members in 3,360 ways
What is the graph of 3x+5y=15
Answer: y= -15 - 3x/5 is the answer.
Step-by-step explanation:
Answer:
The second graph
Step-by-step explanation:
Cheeseburgers to go has advertised for counter help. If you take the job, you will be working 18 hours
a week for $69.20 per week. How much would you make an hour?
Answer:
about $3.84
Step-by-step explanation:
you do 69.20 divided by 18
When converting measurements in the metric system, you can move the decimal point to the left or to the right. Why? Select all that apply. A. When converting from smaller to larger units, you are dividing by a power of 10. B. Moving a decimal point is the same as adding or subtracting. C. The metric system is based on powers of 10. D. When converting from larger to smaller units, you are multiplying by a power of 10.
Answer:
This has multiple answers, A, C, And D
Step-by-step explanation:
Answer:
It is definitely A, C, and D.
Step-by-step explanation:
I just answered this question and got it right. I hope this helps and please mark brainliest!
List the four possible results of the combinations of decisions and true states of nature for a test of hypothesis. Which of the following lists the four possible results of the combinations of decisions and true states of nature for a test of hypothesis? A. Reject Upper H 0H0 when Upper H 0H0 is true; insufficient evidence to reject Upper H 0H0 when Upper H 0H0 is true; reject Upper H 0H0 when Upper H Subscript aHa is true; insufficient evidence to reject Upper H 0H0 when Upper H Subscript aHa is true B. Reject Upper H 0H0 when Upper H 0H0 is true; insufficient evidence to reject Upper H 0H0 when Upper H Subscript aHa is true; reject Upper H Subscript aHa when Upper H Subscript aHa is true; insufficient evidence to reject Upper H 0H0 when Upper H 0H0 is true C. Reject Upper H 0H0 when Upper H Subscript aHa is true; insufficient evidence to reject Upper H 0H0 when Upper H 0H0 is true; reject Upper H Subscript aHa when Upper H 0H0 is true; insufficient evidence to reject Upper H 0H0 when Upper H Subscript aHa is true D. Reject Upper H 0H0 when Upper H 0H0 is true; insufficient evidence to reject Upper H 0H0 when Upper H 0H0 is true; reject Upper H 0H0 when Upper H Subscript aHa is true; accept Upper H Subscript aHa when Upper H 0H0 is true
Answer:
A
Step-by-step explanation:
The combinations of decisions and true states of nature for a test of hypothesis is given below:
When [tex]H_o[/tex] is True, Accept [tex]H_o[/tex]When [tex]H_o[/tex] is True, Reject [tex]H_o[/tex] (Type I Error)When [tex]H_o[/tex] is False, Accept [tex]H_o[/tex] (Type II Error)When [tex]H_o[/tex] is False, Reject [tex]H_o[/tex]Note that when [tex]H_o[/tex] is False, then the Alternate Hypothesis, [tex]H_a[/tex] is True.
Therefore Option A gives the possible combinations.
The possible choices in Option A are ordered below to correspond to the results above.
Insufficient evidence to reject [tex]H_o[/tex] when [tex]H_o[/tex] is true; Reject [tex]H_o[/tex] when [tex]H_o[/tex] is true; Type 1 Error Insufficient evidence to reject [tex]H_o[/tex] when [tex]H_a[/tex] is true -Type II Error Reject [tex]H_o[/tex] when [tex]H_a[/tex] is true;The function g is defined by g(x) = 1/2x - 1. What is
the value of g(6) ?
Answer:
2
Step-by-step explanation:
g(x) = 1/2x - 1
g(6= 1/2*6-1= 3-1= 2
The function f(x)=2x2−x+4; f ( x ) = 2 x 2 − x + 4 is defined over the domain 0 ≤ x ≤ 3 Find the range of this function. A. 4 < f(x) < 7 B. 4 < f(x )< 19 C. 4 ≤ f(x) ≤ 19 D. 4 ≤ f(x) ≤ 25
Answer:
C. 4 ≤ f(x) ≤ 19 . . . . . . best of bad answer choices
Step-by-step explanation:
When looking for the range of a function on an interval, one must check the function values at the ends of the interval, along with any local maxima or minima.
Here, the function values at the interval ends are ...
f(0) = 4
f(3) = 2·3² -3 +4 = 19
The axis of symmetry is located at ...
x = -b/(2a) = -(-1)/(2(2)) = 1/4
This is a value in the interval, so will be the location of the minimum value of the function.
f(1/4) = 2(1/4)² -1/4 +4 = 3.875
The range of f(x) on the interval [0, 3] is [3.875, 19]:
3.875 ≤ f(x) ≤ 19
__
All of the answer choices are incorrect. Please discuss question this with your teacher.
What’s the correct answer for this question?
Answer:
Arc EF = 11.30
Step-by-step explanation:
For Circle A
S = r∅
18.08=(8)∅
Where ∅ is the angle subtended by the Arc
So
∅ = 18.08/8
∅ = 2.26 (in radians)
Now
For Circle C
S = r∅
S = (5)(2.26)
S = 11.30