Answer:
The test statistic for the hypothesis test is -1.202.
Step-by-step explanation:
We are given that a report on the nightly news broadcast stated that 10 out of 129 households with pet dogs were burglarized and 23 out of 197 without pet dogs were burglarized.
Let [tex]p_1[/tex] = population proportion of households with pet dogs who were burglarized.
[tex]p_2[/tex] = population proportion of households without pet dogs who were burglarized.
SO, Null Hypothesis, [tex]H_0[/tex] : [tex]p_1=p_2[/tex] {means that both population proportions are equal}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]p_1\neq p_2[/tex] {means that both population proportions are not equal}
The test statistics that would be used here Two-sample z-test for proportions;
T.S. = [tex]\frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] ~ N(0,1)
where, [tex]\hat p_1[/tex] = sample proportion of households with pet dogs who were burglarized = [tex]\frac{10}{129}[/tex] = 0.08
[tex]\hat p_2[/tex] = sample proportion of households without pet dogs who were burglarized = [tex]\frac{23}{197}[/tex] = 0.12
[tex]n_1[/tex] = sample of households with pet dogs = 129
[tex]n_2[/tex] = sample of households without pet dogs = 197
So, the test statistics = [tex]\frac{(0.08-0.12)-(0)}{\sqrt{\frac{0.08(1-0.08)}{129}+\frac{0.12(1-0.12)}{197} } }[/tex]
= -1.202
The value of z test statistics is -1.202.
Isabella averages 152 points per bowling game with a standard deviation of 14.5 points. Suppose Isabella's points per bowling game are normally distributed. Let X= the number of points per bowling game. Then X∼N(152,14.5)______.
If necessary, round to three decimal places.
Suppose Isabella scores 187 points in the game on Sunday. The z-score when x=187 is ___ The mean is _________
This z-score tells you that x = 187 is _________ standard deviations.
Answer:
The z-score when x=187 is 2.41. The mean is 187. This z-score tells you that x = 187 is 2.41 standard deviations above the mean.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:
[tex]\mu = 152, \sigma = 14.5[/tex]
The z-score when x=187 is ...
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{187 - 152}{14.5}[/tex]
[tex]Z = 2.41[/tex]
The z-score when x=187 is 2.41. The mean is 187. This z-score tells you that x = 187 is 2.41 standard deviations above the mean.
What is the center of the circle?
Answer:The point from which circle is drawn is called center of circle.
Step-by-step explanation:I don't say u must have to mark my ans as brainliest but if it has really helped u plz don't forget to thnk me...
1. In an arithmetic sequence, the first term is -2, the fourth term is 16, and the n-th term is 11,998
(a) Find the common difference d
(b) Find the value of n.
pls help...
Answer:
see explanation
Step-by-step explanation:
The n th term of an arithmetic sequence is
[tex]a_{n}[/tex] = a₁ + (n - 1)d
(a)
Given a₁ = - 2 and a₄ = 16, then
a₁ + 3d = 16 , that is
- 2 + 3d = 16 ( add 2 to both sides )
3d = 18 ( divide both sides by 3 )
d = 6
--------------
(b)
Given
[tex]a_{n}[/tex] = 11998 , then
a₁ + (n - 1)d = 11998 , that is
- 2 + 6(n - 1) = 11998 ( add 2 to both sides )
6(n - 1) = 12000 ( divide both sides by 6 )
n - 1 = 2000 ( add 1 to both sides )
n = 2001
------------------
A city has just added 100 new female recruits to its police force. The city will provide a pension to each new hire who remains with the force until retirement. In addition, if the new hire is married at the time of her retirement, a second pension will be provided for her husband. A consulting actuary makes the following assumptions: (i) Each new recruit has a 0.4 probability of remaining with the police force until retirement. (ii) Given that a new recruit reaches retirement with the police force, the probability that she is not married at the time of retirement is 0.25. (iii) The events of different new hires reaching retirement and the events of different new hires being married at retirement are all mutually independent events. Calculate the probability that the city will provide at most 90 pensions to the 100 new hires and their husbands. (A) 0.60 (B) 0.67 (C) 0.75 (D) 0.93 (E) 0.99
Answer:
E) 0.99
Step-by-step explanation:
100 recruits x 0.4 chance of retiring as police officer = 40 officers
probability of being married at time of retirement = (1 - 0.25) x 40 = 30 officers
each new recruit will result in either 0, 1 or 2 new pensions
0 pensions when the recruit leaves the police force (0.6 prob.)1 pension when the recruit stays until retirement but doesn't marry (0.1 prob.)2 pensions when the recruit stays until retirement and marries (0.3 prob.)mean = µ = E(Xi) = (0 x 0.6) + (1 x 0.1) + (2 x 0.3) = 0.7
σ² = (0² x 0.6) + (1² x 0.1) + (2² x 0.3) - µ² = 0 + 0.1 + 1.2 - 0.49 = 0.81
in order for the total number of pensions (X) that the city has to provide:
the normal distribution of the pension funds = 100 new recruits x 0.7 = 70 pension funds
the standard deviation = σ = √100 x √σ² = √100 x √0.81 = 10 x 0.9 = 9
P(X ≤ 90) = P [(X - 70)/9] ≤ [(90 - 70)/9] = P [(X - 70)/9] ≤ 2.22
z value for 2.22 = 0.9868 ≈ 0.99
A statistics professor receives an average of five e-mail messages per day from students. Assume the number of messages approximates a Poisson distribution. What is the probability that on a randomly selected day she will have five messages
Answer:
The probability that on a randomly selected day the statistics professor will have five messages is 0.1755.
Step-by-step explanation:
Let the random variable X represent the number of e-mail messages per day a statistics professor receives from students.
The random variable is approximated by the Poisson Distribution with parameter λ = 5.
The probability mass function of X is as follows:
[tex]P(X=x)=\frac{e^{-5}\cdot 5^{x}}{x!};\ x=0,1,2,3...[/tex]
Compute the probability that on a randomly selected day she will have five messages as follows:
[tex]P(X=5)=\frac{e^{-5}\cdot 5^{5}}{5!}[/tex]
[tex]=\frac{0.006738\times 3125}{120}\\\\=0.17546875\\\\\approx 0.1755[/tex]
Thus, the probability that on a randomly selected day the statistics professor will have five messages is 0.1755.
HELP! Let f(x) = x + 1 and g(x)=1/x The graph of (fg)(x) is shown below.
Answer:
Step-by-step explanation:
all numbers except y = 1
because (f*g)(x) = 1+1/x
and 1/x cannot be equal to 0
Find the area of a circle with radius, r = 5.7m.
Give your answer rounded to 2 DP.
The diagram is not drawn to scale.
(I attached the diagram below!)
Answer:
the area of the circle is 102.11 square metres
A student takes a multiple-choice test that has 11 questions. Each question has five choices. The student guesses randomly at each answer. Let X be the number of questions answered correctly. (a) Find P (6). (b) Find P (More than 3). Round the answers to at least four decimal places.
Answer:
a) P(6) = 0.0097
b) P(More than 3) = 0.1611
Step-by-step explanation:
For each question, there are only two possible outcomes. Either it is guessed correctly, or it is not. Questions are independent of each other. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
A student takes a multiple-choice test that has 11 questions.
This means that [tex]n = 11[/tex]
Each question has five choices.
This means that [tex]p = \frac{1}{5} = 0.2[/tex]
(a) Find P (6)
This is P(X = 6).
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 6) = C_{11,6}.(0.2)^{6}.(0.8)^{5} = 0.0097[/tex]
P(6) = 0.0097
(b) Find P (More than 3).
Either P is 3 or less, or it is more than three. The sum of the probabilities of these outcomes is 1. So
[tex]P(X \leq 3) + P(X > 3) = 1[/tex]
We want P(X > 3). So
[tex]P(X > 3) = 1 - P(X \leq 3)[/tex]
In which
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{11,0}.(0.2)^{0}.(0.8)^{11} = 0.0859[/tex]
[tex]P(X = 1) = C_{11,1}.(0.2)^{1}.(0.8)^{10} = 0.2362[/tex]
[tex]P(X = 2) = C_{11,2}.(0.2)^{2}.(0.8)^{9} = 0.2953[/tex]
[tex]P(X = 3) = C_{11,3}.(0.2)^{3}.(0.8)^{8} = 0.2215[/tex]
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0859 + 0.2362 + 0.2953 + 0.2215 = 0.8389[/tex]
Then
[tex]P(X > 3) = 1 - P(X \leq 3) = 1 - 0.8389 = 0.1611[/tex]
P(More than 3) = 0.1611
Given that d is the midpoint of line segment ab and k is the midpoint of line segment bc, which statement must be true? (May give brainliest)
Answer:
B is the midpoint of line segment AC
Find the constant of variation for the relation and use it to write and solve the equation.
if y varies directly as x and as the square of z, and y=25/9 when x=5 and z=1, find y when x=1 and z=4
Answer:
When x = 1 and z = 4, [tex]y=\frac{80}{9}[/tex]
Step-by-step explanation:
The variation described in the problem can be written using a constant of proportionality "b" as:
[tex]y=b\,\,x\,\,z^2[/tex]
The other piece of information is that when x = 5 and z = 1, then y gives 25/9. So we use this info to find the constant "b":
[tex]y=b\,\,x\,\,z^2\\\frac{25}{9} =b\,\,(5)\,\,(1)^2\\\frac{25}{9} =b\,\,(5)\\b=\frac{5}{9}[/tex]
Knowing this constant, we can find the value of y when x=1 and z=4 as:
[tex]y=b\,\,x\,\,z^2\\y=\frac{5}{9} \,\,x\,\,z^2\\y=\frac{5}{9} \,\,(1)\,\,(4)^2\\y=\frac{5*16}{9}\\y=\frac{80}{9}[/tex]
Evaluate 1/2 + 1/2 ÷ 18
Answer:
1/18
Step-by-step explanation:
First you would add 1/2 and 1/2 to get 1 then you would divide it by 18 to get 1/18
Answer:
1/18
Step-by-step explanation:
plz mark me brainliest.
The average math SAT score is 511 with a standard deviation of 119. A particular high school claims that its students have unusually high math SAT scores. A random sample of 55 students from this school was selected, and the mean math SAT score was 528. Is the high school justified in its claim? Explain. ▼ No Yes , because the z-score ( nothing) is ▼ unusual not unusual since it ▼ does not lie lies within the range of a usual event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means. (Round to two decimal places as needed.)
Answer:
No, because the z-score of Z = 1.06 is not unusual since it does not lie within the range of a usual event, namely within 2 standard deviations of the mean of the sample means.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Unusual
If X is more than two standard deviations from the mean, x is considered unusual.
In this question:
[tex]\mu = 511, \sigma = 119, n = 55, s = \frac{119}{\sqrt{55}} = 16.046[/tex]
A random sample of 55 students from this school was selected, and the mean math SAT score was 528. Is the high school justified in its claim?
If Z is equal or greater than 2, the claim is justified.
Lets find Z.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{528 - 511}{16.046}[/tex]
[tex]Z = 1.06[/tex]
1.06 < 2, so 528 is not unusually high.
The answer is:
No, because the z-score of Z = 1.06 is not unusual since it does not lie within the range of a usual event, namely within 2 standard deviations of the mean of the sample means.
The statement that could be made regarding the high school about the justification of its claim would be:
- No, because the z-score of Z = 1.06 is not unusual since it does not lie within the range of a usual event, namely within 2 standard deviations of the mean of the sample means.
Given that,
μ = 511
σ = 119
Sample(n) = 55
and
s = [tex]119/\sqrt{55}[/tex]
[tex]= 16.046[/tex]
As we know,
The claim of the high school could be valid and justified only when
[tex]Z > 2[/tex]
To find,
The value of Z
So,
[tex]Z = (X -[/tex] μ )/σ
by putting the values using Central Limit Theorem,
[tex]Z = (528 - 511)/16.046[/tex]
∵ [tex]Z = 1.06[/tex]
Since [tex]Z < 2[/tex], the claim is not justified.
Learn more about "Standard Deviation" here:
brainly.com/question/12402189
If (x + k) is a factor of f(x), which of the following must be true?
f(K) = 0
fl-k)=0
A root of f(x) is x = k.
A y intercept of f(x) is x = -k.
Answer:
f(-k)=0Step-by-step explanation:
(x + k) is a factor of f(x)
x+k=0 => x= -k; -k is a root of f(x)
=> f(-k)=0
[tex](x + k) is a factor of f(x)x+k=0 = > x= -k; -k is a root of f(x)= > f(-k)=0[/tex]
So the correct option is B.fl-k)=0.
What is a root function example?
The cube root function is f(x)=3√x f ( x ) = x 3 . A radical function is a function that is defined by a radical expression. The following are examples of rational functions: f(x)=√2x4−5 f ( x ) = 2 x 4 − 5 ; g(x)=3√4x−7 g ( x ) = 4 x − 7 3 ; h(x)=7√−8x2+4 h ( x ) = − 8 x 2 + 4 7 .
What is the root function?
The root function is used to find a single solution to a single function with a single unknown. In later sections, we will discuss finding all the solutions to a polynomial function. We will also discuss solving multiple equations with multiple unknowns. For now, we will focus on using the root function.
Learn more about root function here: https://brainly.com/question/13136492
#SPJ2
Please answer this correctly
Answer:
Bailey: 16%
Coco: 28%
Ginger: 32%
Ruby: 24%
I hope this helps!
In a completely randomized design involving three treatments, the following information is provided: Treatment 1 Treatment 2 Treatment 3 Sample Size 5 10 5 Sample Mean 4 8 9 The overall mean for all the treatments is a. 7.00 b. 6.67 c. 7.25 d. 4.89
Answer:
c. 7.25
Step-by-step explanation:
Given the following information from an experiment:
[tex]\left\begin{array}{ccc}&$Sample Size&$Sample Mean \\$Treatment 1&5&4\\$Treatment 2&10&8\\$Treatment 3&5&9\end{array}\right[/tex]
Total Sample Size =5+10+5=20
Therefore, the overall mean
[tex]=\dfrac{(5 \times 4)+ (10 \times 8) + (5 \times 9)}{20} \\=\dfrac{145}{20}\\\\=7.25[/tex]
11+11=4
22+22=16
33+33=
What’s the answer
Answer:
what method exactly r u using ????
One number is 4 plus one half of another number. Their sum is 31. Find the numbers.
Answer:
18, 13
Step-by-step explanation:
x=4+1/2y
x+y=31
4+1/y+y=31
3/2y=27
y=18
x=31-18=13
Answer:
13 & 18
Step-by-step explanation:
Create the formulas:
0.5x+4=y
x+y=31
0.5x+4=y
Multiply both sides by 2
x+8=2y
x+y=31
Subtract 31 from both sides
x+y-31=0
Subtract y from both sides
x-31= -y
Multiply both sides by -1
-x+31=y
Multiply both sides by 2
-2x+62=2y
Combine equations:
-2x+62=x+8
Add 2x to both sides
62=3x+8
Subtract 8 from both sides
3x=54
Divide both sides by 3
x=18
0.5x+4=y
Subtract y from both sides
0.5x-y+4=0
Subtract 0.5x from both sides
-y+4= -0.5x
Multiply both sides by -1
y-4=0.5x
Multiply both sides by 2
2y-8=x
x+y=31
Subtract y from both sides
x= -y+31
Combine equations:
2y-8= -y+31
Add y to both sides
3y-8=31
Add 8 to both sides
3y=39
Divide both sides by 3
y=13
What’s the correct answer for this?
Answer:
C.
Step-by-step explanation:
Density = Mass / Volume
2.7 = 54 / V
V = 54 / 2.7
V = 20 cubic cm
Which number is irrational
Answer:
Can you give the question. Can you post the picture. I can help solve. I will edit this answer once you have given the question/picture.
Simplify the following expression:
-5[(x^3 + 1)(x + 4)]
Answer:
[tex]-5x^{4} -20x^{3} -5x-20[/tex]
Step-by-step explanation:
[tex]-5[(x^{3} +1)(x+4)][/tex]
Use the FOIL method for the last two groups.
[tex]-5(x^{4} +4x^{3} +x+4)[/tex]
Now, distribute the -5 into each term.
[tex]-5x^{4} -20x^{3} -5x-20[/tex]
The sum of two fractions can always be written as a
Answer: decimal
Step-by-step explanation:
because i did this quiz
Find an Equation of a line with the given slope that passes through the point. Write the equation in the form Ax + By=C
M=3/2, (7,-2) -problem
Bridge math sails
Module 4B2
Answer:
c = 24 can i get brainliest
Step-by-step explanation:
Suppose cattle in a large herd have a mean weight of 3181lbs and a standard deviation of 119lbs. What is the probability that the mean weight of the sample of cows would differ from the population mean by greater than 11lbs if 49 cows are sampled at random from the herd
Answer:
51.56% probability that the mean weight of the sample of cows would differ from the population mean by greater than 11lbs if 49 cows are sampled at random from the herd
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question, we have that:
[tex]\mu = 3181, \sigma = 119, n = 49, s = \frac{119}{\sqrt{49}} = 17[/tex]
What is the probability that the mean weight of the sample of cows would differ from the population mean by greater than 11lbs if 49 cows are sampled at random from the herd
Lower than 3181 - 11 = 3170 lbs or greater than 3181 + 11 = 3192 lbs. Since the normal distribution is symmetric, these probabilities are equal. So i will find one of them, and multiply by 2.
Probability of mean weight lower than 3170 lbs:
This is 1 subtracted by the pvalue of Z when X = 3170. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{3170 - 3181}{17}[/tex]
[tex]Z = -0.65[/tex]
[tex]Z = -0.65[/tex] has a pvalue of 0.2578
2*0.2578 = 0.5156
51.56% probability that the mean weight of the sample of cows would differ from the population mean by greater than 11lbs if 49 cows are sampled at random from the herd
Graph the line with slope -1/3 and y -intercept 6 .
Answer:
plot a point at 6 up from (0,0) and then go down one and over three places then plot another point- and so on - and so on
Step-by-step explanation:
To graph the line using the slope and intercept, first understand what the slope and intercept mean:
Slope is how steep or flat the line appears on the graph.
A very high or low slope (100 or -100) will be very steep on the graph.A slope very close to zero (0.0001 or -0.0001) will be very flat on the graph.A positive slope will travel northeast and southwest (for linear equations).A negative slope will travel northwest and southeast (for linear equations).The y-intercept is the point at which the line hits the y-axis. In this equation, the line hits the y-axis at positive 6, which means that the point is (0, 6).
You can use a method called "rise over run" to graph. The slope is negative one over three, so the line will "rise" negative one units after "running" three units.
So, for every one unit down, the line will travel three units to the right.
Graph this from the point (0, 6), your y-intercept, and plot the points according to the slope:
arl rides his bicycle 120 feet in 10 seconds. How many feet does he ride in 1 minute? 2 feet 12 feet 720 feet 7,200 feet
Answer: 720 ft
Step-by-step explanation: He rides 720 feet.
if 120 feet are in 10 seconds then;
60 seconds are 60/10*120=720 feet
Answer:
720
Step-by-step explanation:
120/10 to find his feet per second which is 12 feet per second
12*60
since there are 60 seconds in a minute
= 720
Write the number that is ten thousand more than
1,853,604,297:
Answer:
The answer would be 1,853,614,297
Find the general solution to y′′+6y′+13y=0. Give your answer as y=.... In your answer, use c1 and c2 to denote arbitrary constants and x the independent variable. Enter c1 as c1 and c2 as c2.
Answer:
[tex]y(x)=c_1e^{-3x} cos(2x)+c_2e^{-3x} sin(2x)[/tex]
Step-by-step explanation:
In order to find the general solution of a homogeneous second order differential equation, we need to solve the characteristic equation. This is basically as easy as solving a quadratic.
For a second order differential equation of type:
[tex]ay''+by'+cy=0[/tex]
Has characteristic equation:
[tex]a r^{2} +br+c=0[/tex]
Whose solutions [tex]r_1 , r_2 ,.., r_n[/tex] are the roots from which the general solution can be formed. There are three cases:
Real roots:
[tex]y(x)=c_1e^{r_1 x} +c_2e^{r_2 x}[/tex]
Repeated roots:
[tex]y(x)=c_1e^{r x} +c_1 xe^{r x}[/tex]
Complex roots:
[tex]y(x)=c_1e^{\lambda x}cos(\mu x) +c_2e^{\lambda x}sin(\mu x)\\\\Where:\\\\r_1_,_2=\lambda \pm \mu i[/tex]
Therefore:
The characteristic equation for:
[tex]y''+6y'+13y=0[/tex]
Is:
[tex]r^{2} +6r+13=0[/tex]
Solving for [tex]r[/tex] :
[tex]r_1_,_2= -3 \pm 2i[/tex]
So:
[tex]\mu = 2\\\\and\\\\\lambda=-3[/tex]
Hence, the general solution of the differential equation will be given by:
[tex]y(x)=c_1e^{-3x} cos(2x)+c_2e^{-3x} sin(2x)[/tex]
A spinner has 10 equally sized sections, 8 of which are gray and 2 of which are blue. The spinner is spun twice. What is the probability that the first spin lands on gray and the second spin lands on blue ? Write your answer as a fraction in simplest form.
Answer:
4/25
Step-by-step explanation:
The probability the first spin lands on gray is 8/10 = 4/5.
The probability the second spin lands on blue is 2/10 = 1/5.
The probability of both events is 4/5 × 1/5 = 4/25.
Write an
explicit formula for
ans
the nth
term of the sequence 20, -10,5, ....
Answer:an=20(-1/2)^n-1
Step-by-step explanation:
Find the measure of a positive angle and a negative angles that are coterminal with each given angle 400°
Answer: see below
Step-by-step explanation:
To find a coterminal angle, add or subtract 360° to the given angle as many times as needed to get a positive or negative angle.
I should mention that there are an infinite number of answers!
4) 400°
I can subtract 360° to get a positive angle of 40°
I can subtract another 360° to get a negative angle of -320°
5) -360°
I can subtract 360° to get a negative angle of -720°
I can add 360° twice to get a positive angle of 360°
6) -1010°
I can add 360° to get a negative angle of -650°
I can add 360° another 3 times to get a positive angle of 720°
7) 567°
I can subtract 360° to get a positive angle of 207°
I can subtract another 360° to get a negative angle of -153°
8) -164°
I can subtract 360° to get a negative angle of -524°
I can add 360° to get a positive angle of 194°
9) 358°
I can subtract 360° to get a negative angle of -2°
I can add 360° to get a positive angle of 718°