Answer:
please find attached pdf
Explanation:
2. A 2,000 kg rocket is launched 12 km straight up at a constant acceleration into the sky at which point the rocket is travelling at 750 m/s. How much work was done by the rocket? What is the magnitude of the acceleration of the rocket? And how long did the flight take?
Answer:
797700000 J
Explanation:
From the question,
The work done by the rocket, is given as,
W = Ek+Ep............. Equation 1
Where Ek and Ep are the potential and the kinetic energy of the rocket respectively.
Ep = mgh............ Equation 2
Ek = 1/2mv²............. equation 3
Substitute equation 2 and equation 3 into equation 1
W = mgh+1/2mv².............. Equation 4
Where m = mass of the rocket, h = height, v = velocity of the rocket, g = acceleration due to gravity.
Given: m = 2000 kg, h = 12 km = 12000 m, v = 750 m/s, g = 9.8 m/s²
Substitute into equation 4
W = 2000(12000)(9.8)+1/2(2000)(750²)
W = 235200000+562500000
W = 797700000 J
A diesel engine lifts the 225 kg hammer of a pile driver 20 m in 5 seconds. How much work is done on
the hammer? What is the power?
Answer:
a. Workdone = 44100 Joules
b. Power = 8820 Watts.
Explanation:
Given the following data:
Mass = 225kg
Distance = 20m
Time = 5 seconds
To find the workdone;
Workdone = force * distance
But force = mg
We know that acceleration due to gravity is equal to 9.8m/s²
Force = 225*9.8 = 2205N
Substituting the values into the equation, we have;
Workdone = 2205 * 20
Workdone = 44100 Joules
b. To find the power;
Power = workdone/time
Power = 44100/5
Power = 8820 Watts.
VP 3.12.1 Part APart complete A cyclist going around a circular track at 10.0 m/s has a centripetal acceleration of 5.00 m/s2. What is the radius of the curve? Express your answer with the appropriate units. R = 20.0 m Previous Answers Correct VP 3.12.2 Part B A race car is moving at 40.0 m/s around a circular racetrack of radius 265 m. Calculate the period of the motion. Express your answer in seconds. T = nothing s Request Answer Part C Calculate the car’s centripetal acceleration.
Answer:
A) r = 20.0 m
B) T = 41.6 s
C) = 6.1 m/s²
Explanation:
A)
The centripetal acceleration is the one that explains that even though the cyclist is moving at a constant speed, his velocity is changing the direction all the time, keeping him around a circle.This acceleration can be expressed as follows:[tex]a_{c} =\frac{v^{2}}{r} = \frac{(10.0m/s)^{2}}{r} = 5.00 m/s2 (1)[/tex]
Solving for r:[tex]r = \frac{v^{2}}{a_{c} } = \frac{(10.0m/s)^{2}}{5.00m/s2} = 20.0 m (2)[/tex]
B)
We can apply the definition of linear velocity, remembering that the period is the time needed to complete an entire circle (T).The arc around a circumference (the distance traveled) , is just 2*π*r, so applying the definition of linear velocity, we can write the following expression:[tex]v = \frac{\Delta s}{\Delta t} = \frac{2*\pi*r}{T} (3)[/tex]
Solving for T:[tex]T = \frac{\Delta s}{v} = \frac{2*\pi*r}{v} = \frac{2*\pi*265m}{40.0m/s} =41.6 s (4)[/tex]
C)
The centripetal acceleration of the car from B) can be found as follows:[tex]a_{c} =\frac{v^{2}}{r} = \frac{(40.0m/s)^{2}}{265m} = 6.1 m/s2 (5)[/tex]
What power rating of resistors would you use in the application required it to handle
0.6W?
I would use a resistor rated for 1 W or more. Not less.
The power rating of a resistor that would be used in application that requires 0.6 W must be greater than 0.6 W.
Electrical powerThe electrical power of an appliance shows the rating of the appliance, in terms of energy consumed at a given period of time.
Electrical power is calculated as follows;
P = IV
where;
V is the voltage I is the current[tex]P = (\frac{V}{R} )V\\\\P = \frac{V^2}{R}[/tex]
Thus, the power rating of a resistor that would be used in application that requires 0.6 W must be greater than 0.6 W.
Learn more about electric power here: https://brainly.com/question/25781540
because there the sperm and eggs are combining together to produce
so thats why they look alike
Answer:
yes. that is how a baby is conceived.
1. Suppose the spring in Sample Problem A is replaced with a spring that stretches
36 cm from its equilibrium position.
a. What is the spring constant in this case?
b. Is this spring stiffer or less stiff than the one in Sample Problem A?
Answer:
a. spring constant = 125 N/m
b. This spring is less stiff than the one in Sample Problem A.
Explanation:
P.S - The Sample Problem A is as follows :
Given - Sample Problem A - A load of 45 N attached to a spring that is
hanging vertically stretches the spring 0.14 m. What is the spring
constant?
Suppose the spring in Sample Problem A is replaced with a spring
that stretches 36 cm from its equilibrium position.
To find - a. What is the spring constant in this case?
b. Is this spring stiffer or less stiff than the one in Sample Problem A.
Proof -
As given,
Load = 45 N
Amplitude = 0.14 m
Let the spring constant = k
As we know that,
Load = k (Amplitude)
⇒45 = k(0.14)
⇒k = [tex]\frac{45}{0.14}[/tex] = 321.43
∴ we get
Spring constant in Sample problem A = 321.43
Now,
a.)
Given, Amplitude = 36 cm = 0.36 m
Let the spring constant = k₁
⇒45 = k₁ (0.36)
⇒k₁ = [tex]\frac{45}{0.36}[/tex] = 125 N/m
b.)
AS we can see that k₁ < k
⇒ This spring is less stiff than the one in Sample Problem A.
a. spring constant = 125 N/m
b. This spring is less stiff than the one in Sample Problem A.
what is spring constant?The spring constant generally shows the stiffness of the spring and is the ratio of the force applied to the deflection of the spring.
It is given in the question that:
Sample Problem A - A load of 45 N attached to a spring that is
hanging vertically stretches the spring 0.14 m.
Suppose the spring in Sample Problem A is replaced with a spring
that stretches 36 cm from its equilibrium position.
a. What is the spring constant in this case?
As given,
Load F = 45 N
Amplitude x= 0.14 m
Let the spring constant = k
As we know that spring force will be
[tex]F=k\times x[/tex]
[tex]45=k\times 0.14[/tex]
⇒k = 321.43N/m
∴ we get
Spring constant in Sample problem A is [tex]k=321.43\ \frac{N}{m}[/tex]
Now,
Given, Amplitude = 36 cm = 0.36 m
Let the spring constant = k₁
⇒45 = k₁ (0.36)
⇒k₁= 125 N/m
b.) Is this spring stiffer or less stiff than the one in Sample Problem A.
AS we can see that k₁ < k new spring is less stiff than the one in Sample Problem A.
To know more about spring constant follow
https://brainly.com/question/26370628
A baseball is thrown horizontally from a cliff at 30 m/s and lands 7 seconds after the baseball was thrown. Calculate the horizontal AND vertical distance.
Answer:
The horizontal and vertical distances are x = 210 m and y = -240.35 m, respectively.
Explanation:
Using the equation of the displacement in the x-direction, we have:
(let's recall we have a constant velocity in this direction)
[tex]x=v_{ix}t[/tex]
Where:
v(ix) is the initil velocity in the x direction (v(ix) = 30 m/s)t is the time (t = 7 s)[tex]x=30(7)[/tex]
[tex]x=210\: m[/tex]
Now, we need to use the equation of the displacement in the y-direction to find the vertical distance. Here we have an acceleration (g)
[tex]y=v_{iy}t-\frac{1}{2}gt^2[/tex]
Where:
v(iy) is the initial velocity at the y-direction. In this case, it will be 0t is the timeg is the acceleration of gravity (g=9.81 m/s²)Then, the vertical position at 7 s is:
[tex]y=-\frac{1}{2}(9.81)(7)^2[/tex]
[tex]y=-240.35\: m[/tex]
Therefore, the horizontal and vertical distances are x = 210 m and y = -240.35 m, respectively. The minus sign means the negative value in the y-direction.
I hope it helps you!
Which statement is correct?
A. If the electric field is zero everywhere inside a region of space, the potential must also be zero in that region.
B. When the electric field is zero at a point, the potential must also be zero there.
C. If the electrical potential in a region is constant, the electric field must be zero everywhere in that region.
D. If the electric potential at a point in space is zero, then the electric field at that point must also be zero.
Answer:
The answer is "Choice C ".
Explanation:
The relationship between the E and V can be defined as follows:
[tex]\to E= -\Delta V[/tex]
Let,
[tex]\to E= \frac{\delta V}{\delta x}[/tex]
When E=0
[tex]\to \frac{\delta V}{\delta x}=0[/tex]
v is a constant value
Therefore, In the electric potential in a region is a constant value then the electric-field must be into zero that is everywhere in the given region, that's why in this question the "choice c" is correct.
help please i will mark brainlist!!!
Answer:
.50 M
Explanation:
5*.50=2.5 + 2*.25=.5 = 3n
6*.50= 3N
Final answer is .50M
Two objects are electrically charged. The net charge on one object is doubled.
Therefore, the electric force _____.
reverses
doubles
quadruples
divides
You are designing a thin transparent reflective coating for the front surface of a sheet of glass. The index of refraction of the glass is 1.52, and when it is in use the coated glass has air on both sides. Because the coating is expensive, you want to use a layer that has the minimum thickness possible, which you determine to be 104 nmnm. Part A What should the index of refraction of the coating be if it must cancel 500-nmnm light that hits the coated surface at normal incidence
Answer:
1.32
Explanation:
Index of refraction of the glass = 1.52
Thickness = 104 nm
Length = 550 nm
Using formula of index
n = L/4t
Where, L = length
t = thickness
Substituting the values into the formula we get
n = 500/(4×104)
n= 1.32
Hence, The index of refraction of the coating is 1.32.
To understand the nature of electric fields and how to draw field lines. Electric field lines are a tool used to visualize electric fields.
a. True
b. False
Answer:
a. True
Explanation:
Electric field is a region of space where the effect of electric field lines or lines of forces are felt.
The electric field lines creates electric field and these field lines help to visualize the electric field.
Therefore, electric field lines are tool used to visualize electric fields.
a. True
The monkey experiment is an example of what?
A. top down processing
B. bottom up processing
C. inattentional blindness
D. sensory adaption
Answer:
D.) Sensory adaptation
Explanation:
Assuming you are talking about the cloth and metal monkey experiment performed in the field of psychology (not physics), the monkey formed an attachment to the cloth mother because it felt closer to it, as it was more appealing to its senses.
one car travels due east at 40 km/hr and a second car travels north at 40km/hr. Are their velocities equal?
Answer:
No.
Explanation:
Velocity is a vector quantity which means that it has a certain direction so things that move in different directions DO NOT have the same velocity.
1. Weather factors include
a. average air temperature.
b. annual precipitation.
c. humidity.
d. two of the above
2. The dew point is the temperature at which
a. dew forms on surfaces.
b. water vapor starts to condense.
c. relative humidity is 100 percent.
d. all of the above
3. Relative humidity may decrease if
a. water vapor condenses out of the air.
b. water evaporates into the air.
c. air temperature decreases.
d. two of the above
4. Which type of cloud forms at high altitudes?
a. cirrocumulus
b. altocumulus
c. stratocumulus
d. nimbostratus
5. Which type of cloud forms when strong air currents carry warm air upward?
a. cirrus
b. stratus
c. cumulus
d. cirrostratus
6. The type of fog that forms
6. The type of fog that forms when cool air moves over a warm lake is called
a. radiation fog.
b. advection fog.
c. steam fog.
d. upslope fog.
7. Rain that passes through a layer of freezing air near the ground become
a. glaze.
b. hail.
c. sleet.
d. snow.
Answer:
1. D
Climate is generally defined as the weather condition that prevails in a particular region over a long period of time. Climate is usually measured by examining the pattern of variation in several climatic factors such as rainfall, temperature, relative humidity, wind, pressure, etc. While the weather of a place can change within a space of few hours, it takes years for a change in climatic condition to occur.
2. d
3. c
4.a.
5. c
6. a.
7. c
Explanation:
The correct answers are (1) d. two of the above (average air temperature and humidity), (2)c. the relative humidity is 100 percent, (3)d. two of the above (water vapor condenses out of the air and air temperature decreases), (4)a. cirrocumulus, (5)c. cumulus, (6)c. steam fog, and (7)c. sleet.
What is temperature?Temperature is a physical quantity that measures the average kinetic energy of the particles in a substance or system. It is a measure of how hot or cold something is, and is typically measured in units such as degrees Celsius or Fahrenheit. Temperature can also be thought of as a measure of the direction in which heat energy flows, with heat energy naturally flowing from areas of higher temperature to areas of lower temperature.
Here in the Question,
1. Weather factors include d. two of the above (average air temperature and annual precipitation are two factors that affect weather, but humidity is also an important factor that can influence the feel of the air).
2. The dew point is the temperature at which b. water vapor starts to condense. When air cools, it can reach a point where it is unable to hold all of its moisture in the form of water vapor. At this point, the water vapor starts to condense into visible droplets, such as dew, and the temperature at which this happens is called the dew point. When the dew point is reached, the relative humidity is at 100 percent.
3. Relative humidity may decrease if d. two of the above (water vapor condenses out of the air and air temperature decreases) occur. If the air cools and reaches the dew point, water vapor will start to condense into droplets, which can reduce the amount of water vapor in the air and lower the relative humidity. Similarly, if the temperature drops without any change in water vapor content, the relative humidity will decrease because colder air can hold less moisture than warmer air.
4. The type of cloud that forms at high altitudes is a. cirrocumulus. These clouds are typically found at altitudes above 18,000 feet and are characterized by small, white, puffy clouds arranged in rows or ripples. They are often a sign of fair weather but can also indicate an approaching storm.
5. The type of cloud that forms when strong air currents carry warm air upward is c. cumulus. Cumulus clouds are large, puffy clouds that can develop vertically, forming a towering cloud with a flat top. They are often associated with thunderstorms and can produce heavy rain, hail, and lightning.
6. The type of fog that forms when cool air moves over a warm lake is c. steam fog. Steam fog, also called evaporation fog or sea smoke, occurs when cold, dry air moves over a warm, moist surface and causes water vapor to rise and condense into fog. This type of fog is often seen over bodies of water during the fall and winter.
7. Rain that passes through a layer of freezing air near the ground becomes c. sleet. Sleet is formed when raindrops fall through a layer of freezing air near the ground and freeze into small ice pellets before hitting the surface. It is different from hail, which forms in strong thunderstorms when updrafts carry raindrops upward into colder air where they freeze and then fall back to the ground, and snow, which forms in clouds when water vapor freezes directly into ice crystals. Glaze is a type of ice that forms when rain falls onto a surface that is below freezing, forming a layer of ice on top of the surface.
Therefore, The correct answers are:1. Weather factors include average air temperature, annual precipitation, and humidity. 2. The dew point is the temperature at which water vapor starts to condense. 3. Relative humidity may decrease if water vapor condenses out of the air or if the air temperature decreases. 4. The type of cloud that forms at high altitudes is cirrocumulus. 5. The type of cloud that forms when strong air currents carry warm air upward is cumulus. 6. The type of fog that forms when cool air moves over a warm lake is steam fog. 7. Rain that passes through a layer of freezing air near the ground becomes sleet, which is different from hail and snow.
To learn about Latent Heat click:
brainly.com/question/28044951
#SPJ2
Galileo used marbles rolling down inclined planes to deduce some basic properties of constant accelerated motion. In particular, he measured the distance a marble rolled during specific time periods. For example, suppose a marble starts from rest and begins rolling down an inclined plane with constant acceleration a. After 1 s, you find that it moved a distance .
a. In terms of x, how far does it move in the next 1 s time period—that is, in the time between 1 s and 2 s?
b. How far does it move in the next second of the motion?
c. How far does it move in the nth second of the motion?
Answer:
a) y₁ = ½ a, b) y₂ = 4 y₁, c) y₃ = 9 y₁
Explanation:
For this exercise we can use the accelerated motion relationships.
Let's set a reference system where the x axis is parallel to the plane and its positive side is going down the plane.
y = y₀ + v₀ t + ½ a t²
in that case where we throw the marble is the zero point, y₀ = 0, as part of rest its initial velocity is zero v₀ = 0 and a is the acceleration along the inclined plane
y = ½ a t²
a) in the first second t = 1
y₁ = ½ a
b) in the next second of movement
t = 2 s
y₂ = ½ a 2²
y₂ = 4 ½ a
y₂ = 4 y₁
c) for the next second
t = 3 s
y₃ = ½ a 3²
y₃ = 9 ½ a
y₃ = 9 y₁
Arun runs 9 meters across Mr. Scharff's classroom in 7.1 seconds. How fast did Arun run
Answer:
The answer would be 180 meters.
Explanation:
The First Law of Thermodynamics is the same as ______ with heat and work taken into consideration.
A. The First Law of Robotics
B. The Law of Conservation of Energy
C. Newton's First Law of Motion
D. The Law of Conservation of Momentum
Answer:
the law of conservation of energy
PLEASE HELP ASAP WILL GIVE BRAINLIEST TO WHOEVER ANSWERS FIRST!!!!
Because of the forces acting on the cart, it will
A. not accelerate
B. accelerate upwards
C. accelerate to the right
D. accelerate to the left
Answer:
D.
Explanation:
Which cell part controls all the other parts of a cell?
Answer:
Nucleus
Explanation:
Answer: Nucleolus
Explanation: The nucleolus is like the cells brain. It controls all the other organelles (cell parts).
Hope I helped!
what's the dimension symbol for thermodynamic temperature
Answer: Throughout the scientific world where measurements are nearly always made in SI units, thermodynamic temperature is measured in kelvins (symbol: K). The Rankine scale uses the degree Rankine (symbol: °R) as its unit, which is the same magnitude as the degree Fahrenheit (symbol: °F).
Explanation:
Please mark me as the Brainiest if I got it right
what's the dimension symbol for thermodynamic temperature
Answer:
°R
4.
How does the United Nations Development Program use its resources?
It provides health programs for mothers and children.
O It develops natural resources.
It works to eliminate poverty through development.
O It invests funds in industrialized nations.
Economic
Answer:
It develops natural resources.
It works to eliminate poverty through development.
Calculate the magnitude of the gravitational force exerted by Mercury on a 70 kg human standing on the surface of Mercury. (The mass of Mercury is 3.31023 kg and its radius is 2.4106 m.)
Answer:
2.66×10⁻⁹ N.
Explanation:
From the question,
Applying newton's law of universal gravitation,
Fg = GMm/r²............................... Equation 1
Where Fg = gravitational force, G = universal constant, M = mass of the mercury, m = mass of the human, r = radius of Mercury
Given: M = 3.31023 kg, M = 70 kg, r = 2.4106
Constant: G = 6.67×10⁻¹¹ Nm²/kg²
Substitute these values into equation 1
Fg = 6.67×10⁻¹¹(70×3.31023)/(2.4106²)
Fg = 2.66×10⁻⁹ N.
current must flow if 0.56 coulombs is to be transferred 35ms
Answer:
the current is 16 amphere
Explanation:
The computation of Current is shown below:
As we know that
1 ms = 0.001s
So for 35 ms = 0.035
Now the current is
= 0.56 ÷ 0.035
= 16 AMphere
Hence, the current is 16 amphere
A 120 W lightbulb and a 90 W lightbulb each operate at a voltage of 120 V. Part A Which bulb carries more current? Which bulb carries more current? 120 W lightbulb 90 W lightbulb The currents are equal. It is impossible to determine.
Answer:
120 W lightbulb
Explanation:
Let the two lightbulb be A and B respectively.
Given the following data;
Power A = 120W
Power B = 90W
Voltage = 120V
To find the current flowing through each lightbulb;
a. For lightbulb A
Power = current * voltage
120 = current * 120
Current = 120/120
Current = 1 Ampere.
b. For lightbulb B
Current = power/voltage
Current = 90/120
Current = 0.75 Amperes
Therefore, the lightbulb that carries more current is A with 1 Ampere.
The bulb that carries more current is :
- A with 1 Ampere.
Let the two lightbulb be A and B respectively.
Given :Power A = 120WPower B = 90WVoltage = 120VTo find the current flowing through each lightbulb;
a. For lightbulb APower = current * voltage120 = current * 120Current = 120/120Current = 1 Ampere.b. For lightbulb BCurrent = power/voltageCurrent = 90/120Current = 0.75 AmperesThus, the lightbulb that carries more current is A with 1 Ampere.
Learn more about "current ":
https://brainly.com/question/3029193?referrer=searchResults
Henrietta is going off to her physics class, jogging down the sidewalk at a speed of 4.20 m/sm/s. Her husband Bruce suddenly realizes that she left in such a hurry that she forgot her lunch of bagels, so he runs to the window of their apartment, which is a height 52.9 mm above the street level and directly above the sidewalk, to throw them to her. Bruce throws them horizontally at a time 4.50 ss after Henrietta has passed below the window, and she catches them on the run. You can ignore air resistance.
Required:
a. With what initial speed must Bruce throw the bagels so Henrietta can catch them just before they hit the ground?
b. Where is Henrietta when she catches the bagels?
Answer:
a) v₀ₓ = 9.9 m / s, b) x_woman = 32.7 m
Explanation:
A) In this exercise, the movement of the bagels is parabolic, we find the time it takes to reach the floor.
y = y₀ + v_{oy} t - ½ g t²
0 = y₀ + 0 - ½ gt²
t = [tex]\sqrt{2y_o/g}[/tex]
let's calculate
t = [tex]\sqrt{2 \ 52.9/9.8}[/tex]
t = 3,286 s
Now we can analyze how long Henrieta has walked, she has a walking time before the bagel movement begins (t₀ = 4.50 s)
t_woman = t₀ + t
t_woman = 4.50 + 3.286
t_woman = 7.786 s
The distance traveled in this time is
x_{woman} = v_woman t_woman
x_{woman} = 4.20 7.786
x_{woman} = 32.7 m
For her to grab the bagel, the two of them must be at this point
x_bagel = x_woman
x_bael = vox t
v₀ₓ = x_bagel / t
v₀ₓ = 32.7 / 3,286
v₀ₓ = 9.9 m / s
b) when catching the bagels this point x_woman = 32.7 m
Imagine that 10.0 g of liquid helium, initially at 4.20 K, evaporate into an empty balloon that is kept at 1.00 atm pressure. What is the volume of the balloon at (a) 25.0 K and (b) 293 K?
Answer:
(a) The volume of the liquid helium at 25 K is 5.13 L
(b) The volume of the liquid helium at 293 K is 60.14 L.
Explanation:
Given;
mass of the liquid helium, m = 10 g
initial temperature of the liquid helium, T₁ = 4.2 K
pressure of the liquid helium, P = 1.00 atm
Atomic mass of Helium, = 4 g
number of moles of Helium, n = 10 / 4 = 2.5 moles
The initial volume of the liquid helium is calculated as;
[tex]PV_1 = nRT_1\\\\V_1 = \frac{nRT_1}{P} \\\\[/tex]
where;
R is ideal gas constant, = 0.08205 L.atm./mol.K
[tex]V_1 = \frac{2.5 \times 0.08205 \times 4.2}{1 } \\\\V_1 = 0.862 \ L[/tex]
(a) The volume of the liquid helium at 25 K.
Apply Charles law;
[tex]\frac{V_1}{T_1} =\frac{V_2}{T_2} \\\\V_2 = \frac{V_1T_2}{T_1} \\\\V_2 = \frac{0.862 \times 25 }{4.2} \\\\V_2 = 5.13 \ L[/tex]
(b) The volume of the liquid helium at 293 K.
[tex]\frac{V_1}{T_1} =\frac{V_2}{T_2} \\\\V_2 = \frac{V_1T_2}{T_1} \\\\V_2 = \frac{0.862 \times 293 }{4.2} \\\\V_2 = 60.14 \ L[/tex]
The coefficient of kinetic friction between the tires of a car and a horizontal road surface is 0.52. If the car is traveling at an initial speed of 25 m/s, and then slams on the breaks so the car skids straight ahead to a stop, how far does the car skid?
Answer:
The car skids in a distance of 61.275 meters.
Explanation:
Since the only force exerted on the car is the kinetic friction between the car and the horizontal road, deceleration of the vehicle ([tex]a[/tex]), measured in meters per square second, is determined by the following expression:
[tex]a = \mu_{k}\cdot g[/tex] (1)
Where:
[tex]\mu_{k}[/tex] - Coefficient of kinetic friction, no unit.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
If we know that [tex]\mu_{k} = 0.52[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], then the net deceleration of the vehicle is:
[tex]a = 0.52\cdot \left(-9.807\,\frac{m}{s^{2}} \right)[/tex]
[tex]a = -5.1\,\frac{m}{s^{2}}[/tex]
The distance covered by the car is finally calculated by this kinematic expression:
[tex]\Delta s = \frac{v^{2}-v_{o}^{2}}{2\cdot a}[/tex] (2)
Where:
[tex]v_{o}[/tex], [tex]v[/tex] - Initial and final speed, measured in meters per second.
[tex]a[/tex] - Net deceleration, measured in meters per square second.
If we know that [tex]v_{o} = 25\,\frac{m}{s}[/tex], [tex]v = 0\,\frac{m}{s}[/tex] and [tex]a = -5.1\,\frac{m}{s^{2}}[/tex], then the distance covered by the car is:
[tex]\Delta s = \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(25\,\frac{m}{s} \right)^{2}}{2\cdot \left(-5.1\,\frac{m}{s^{2}} \right)}[/tex]
[tex]\Delta s = 61.275\,m[/tex]
The car skids in a distance of 61.275 meters.
A model shows a machine that works using electrical fields. What would this machine need for the electrical field to function properly?
at least two charged interacting parts
A wave in the ocean has a wavelength of 2 m and a frequency of 0’5 Hz. What is the speed of this wave?
Answer:
the speed of the wave =1m/s