Answer:
(a). Check attachment.
(b). 280.305 J.
(c). 31.81 kpa; 38.26K.
(d). 24.05K.
(e). 24.05k; 40kpa.
(f). -138.6J.
Explanation:
(a). Kindly check the attached picture for the diagram showing the four process.
1 - 2 = adiabatic expansion process.
2 - 3 = Isochoric process.
3 - 4 = isothermal process.
4 - 1 = isochoric process.
(b). Recall that the process from 1 to is an adiabatic expansion process.
NB: b = 5/3 for a monoatomic gas.
Then, the workdone = (1/ 1 - 1.66) [ (p1 × v1^b)/ v2^b × v2 - (p1 × v1)].
= ( 1/ 1 - 5/3) [ (101 × 5^5/3) × 10^1 -5/3] - 101 × 5.
Thus, the workdone = 280.305 J.
(c). P2 = P1 × V1^b/ V2^b = 101 × 5^5/3/ 10^5/3 = 31.81 kpa.
T2 = P2 × V2/ R × 1 = 31.81 × 10/ 8.324 = 38.36k.
(d). The process 2 - 3 is an Isochoric process, then;
T3 = T2/P2 × P3 = 38.26/ 31.82 × 20 = 24.05K.
(e). The process 3 - 4 Is an isothermal process. Then, the temperature at 4 will be the same temperature at 3. Tus, we have the temperature; point 3 = point 4 = 24.05k.
The pressure can be determine as below;
P4 = P3 × V3/ V4 = 20 × 10/ 5 = 200/ 5 = 40 kpa.
(f) workdone = xRT ln( v4/v3) = 1 × 8.314 × 24.05 × ln (5/10) = - 138.6 J
What is electronegativity
Q5. Use Superposition to V. in the circuit below? (5 points)
4 mA
12V
2 ΚΩ
2 mA
1 ΚΩ
2 ΚΩ
Answer:
4va
12va
2jk
1jk
2jk
Which of the following would have the least amount of inertia? Assume all the bags are the same size.
bag of rocks
bag of feathers
bag of bricks
bag of sand
What is net force?
OA. a push or a pull
B. A measure of how fast an object is moving
OC. The amount of energy an object has
D. The combination of all forces acting on an object.
Answer:
D
Explanation:
The net force is the combination of all forces acting on an object.
Bartender slides a beer mug at 1.1 m/s towards a customer at the end of the bar which is 1.8 m tall. The customer makes a grab for the mug and misses and mug sails at the end of the bar. a) How far away from the end of the bar does the mug hit the floor
Answer:
Δx = 0.7 m
Explanation:
Once the mug is moving in the horizontal direction, it keeps moving at the same speed of 1.1 m/s, due to no other force acts on it in this direction.Since the horizontal and vertical movements are independent each other (due to they are mutually perpendicular), in the vertical direction, the initial speed is just zero.In the vertical direction, the mug is accelerated by the force of gravity at all times, with a constant value of 9.8 m/s2, aimed downward.So, we can use the following kinematic equation in order to get the time passed from the instant that the mug left the bar, until it hit the floor, as follows:[tex]\Delta y = \frac{1}{2} * g* t^{2} = (1)[/tex]where Δy = 0-1.8m = -1.8m, g= -9.8m/s2.Replacing these values in (1) and solving for t, we get:[tex]t = \sqrt{\frac{2*1.8m}{ 9.8m/s2} } = 0.6 s (2)[/tex]
Now, since the mug obviously finishes its horizontal trip at this same time (hitting ground), we can find the horizontal distance traveled, just applying the definition of average speed, as follows:[tex]\Delta x = v_{o} * t = 1.1 m/s* 0.6 s = 0.7 m (3)[/tex]
Tell types of mirros and
each
one
Answer: We can identify the different types of mirrors without touching them by looking at the image it produces. Look into each mirror, the nature of the image produced will tell you the type of mirror it is.
- A plane mirror will produce an image of the same size as your face.
- A concave mirror will produce a magnified image of your face.
- A convex mirror will produce a diminished image of your face.
MARK ME BRAINLIST
What force causes a resistance in motion
when two surfaces are touching?
Answer:
FRICTION
Explanation:
Friction is a force, the resistance of motion when one object rubs against another.
Frictional force
Explanation:
Its the opposing force against horizontal motion
Two students are on a balcony a distance h above the street. One student throws a ball vertically downward at a speed vi; at the same time, the other student throws a ball vertically upward at the same speed. Answer the following symbolically in terms of vi, g, h, and t. (Take upward to be the positive direction.)
(a) What is the time interval between when the first ball strikes the ground and the second ball strikes the ground?
?t = ______
(b) Find the velocity of each ball as it strikes the ground.
For the ball thrown upward vf = ______
For the ball thrown downward vf = ______
(c) How far apart are the balls at a time t after they are thrown and before they strike the ground?
d = _______
Answer:
Explanation:
a )
Time for first ball to reach top position
v = u - gt
0 = vi - gt
t = vi / g
Time to reach balcony while going downwards
= vi /g
Total time = 2 vi / g
Time to go down further to the ground = t₁
Total time = 2 vi / g + t₁
Time for the other ball to go to the ground = t₁
Time difference = ( 2 vi / g + t₁ ) - t₁
= 2vi / g .
( b )
v² = u² + 2gh
For both the throw ,
final displacement = h , initial velocity downwards = vi
( For the first ball also , when it go down while passing the balcony , it acquires the same velocity vi but its direction is downwards.)
vf² = vi² + 2gh
vf = √ ( vi² + 2gh )
(c )
displacement of first ball after time t
s₁ = - vi t + 1/2 g t² [ As initial velocity is upwards , vi is negative ]
displacement of second ball after time t
s₂ = vi t + 1/2 g t²
Difference = d = s₂ - s₁
= vi t + 1/2 g t² - ( - vi t + 1/2 g t² )
d = 2 vi t .
Determine the voltage Vab for the first circuit and also determine the voltages Vab and Vcd for the second circuit
Vab= E = 20V
because I = 0 and the voltage drop across the resistances R1 and R2 is also 0.
Second circuit:
Vab = 10V (no voltage drop across R1)
Vcd= E2-E1 = 20V
Series connection of voltage sources. But the sources are connected to the contrary and voltage drop across R1 or R2 is 0 V.
A high-voltage direct-current generating station delivers 10 MW of power at 250 kV to a city, as depicted in Fig. P2.12. The city is represented by resistance RL and each of the two wires of the transmission line between the generating station and the city is represented by resistance RTL. The distance between the two locations is 2000 km and the transmission lines are made of 10 cm diameter copper wire. Determine (a) how much power is consumed by the transmission line and (b) 12 V I0 _
Answer:
The answer is below
Explanation:
The resistivity of copper is ρ = 1.72 * 10⁻⁸ Ωm, diameter d = 10 cm = 0.1 m
The resistance (R) of transmission line is given as:
Rtl = ρL / A; where ρ = resistivity of copper = 1.72 * 10⁻⁸ Ωm, L = length of transmission line = 2000 km = 2000000 m, A is the area of the wire = πd²/4 = π(0.1)²/4
[tex]R_{tl}=\frac{\rho L}{A}=\frac{1.72*10^{-8}*2000000}{\pi*0.1^2/4}=4.4 \ ohm[/tex]
Power = [tex]\frac{V_L^2}{R_L}[/tex]
Power = 10 MW = 10 * 10⁶ W
[tex]10*10^6=\frac{(250*10^3)^2}{R_L} \\\\R_L=\frac{(250*10^3)^2}{10*10^6} \\\\R_L=6250\ ohm[/tex]
[tex]I_L=\frac{V_L}{R_L} \\\\I_L=\frac{250*10^3}{6250} =40\ A[/tex]
a) Since there are two tranmission lines, the power consumed by the lines is:
[tex]P_{TL}=2*I_L^2*R_{TL}=2*40^2*4.4=14080\ W[/tex]
b) The energy generated by the source = 10 * 10⁶ W + 14080 W = 10014080 W
Fraction used = 10 * 10⁶ / 10014080 * 100% = 99.86%
Plzzz answer this question correctly
Answer:
changing the direction in which a force is exerted
Drag the tiles to the correct boxes to complete the pairs
Match the particles with their characteristics.
subatomic particles with a positive charge
subatomic particles with a negative charge
subatomic particles with no charge
made of atoms
neutrons
electrons
protons
malaria
Answer:
1. Protons.
2. Electrons.
3. Neutrons.
4. Molecules.
Explanation:
1. Protons: subatomic particles with a positive charge. They are bound together in the nucleus of an atom due to strong nuclear forces.
2. Electrons: subatomic particles with a negative charge. Electrons can be defined as subatomic particles that are negatively charged and as such has a magnitude of -1.
3. Neutrons: subatomic particles with no charge. The negative charge of the electrons cancels the positive charge of the protons.
4. Molecules: they are made of atoms.
Generally, molecules attach on the inside of a mineral to give it shape. Therefore, the molecule of a mineral is a crystal three-dimensional regular structure (arrangement) of chemical particles that are bonded together and determines its shape.
Due to the fact that these molecules are structurally arranged or ordered and are repeated by different symmetrical and translational operations they determine the shape of minerals.
at
same
5N
12N
both
act
voried
resultant
thoir
9.
b.
Their
resultant
Cos
of
and
but
point,
directionc
find greatest
possible
teast possible
forces
andl direction
of
that
and
54
find
c. If f
force.
right angles
find
at
the
their
the
size
resultan
the
horizontal
12 N
di Assuming
was
to.
resultant
is
Answer:
b
Explanation:
this because if force (f) are resultant cos then the point is proportional to the direction of c at greatest possible forces
PLZZZZ HELPPPPPPPPPppppp
what is the formular for force
Answer:
f=m*a
Explanation:
The formula for force says force is equal to mass (m) multiplied by acceleration (a)
Someone help please
Answer:
it would be downwards due to gravitational force
Which of the following diagrams would be a good, strong magnet?
A vibrating object produces periodic waves with a wavelength of 53 cm and a frequency of 15 Hz. How fast do these waves move away from the object?
Answer:
v = 7.95 m/s
Explanation:
Given that,
Wavelength of a wave, [tex]\lambda=53\ cm=0.53\ m[/tex]
Frequency of a wave, f = 15 Hz
We need to find the speed of the wave. The speed of a wave is given by :
[tex]v=f\lambda\\\\v=15\ Hz\times 0.53\ m\\\\v=7.95\ m/s[/tex]
So, the wave move with a speed of 7.95 m/s.
Plzzz help me with this
I’ll give brainliest
Answer:
(A) By reducing friction
Answer:
A
Explanation:
What does a mass extinction look like in the fossil record?
O A. A layer of rock contains only fossils of living things that no longer
exist on Earth.
B. A layer of rock contains only fossils of species that presently exist
on Earth.
O C. A younger layer of rock contains a much greater variety of fossils
than a slightly older layer of rock does.
D. An older layer of rock contains a much greater variety of fossils
than a slightly younger layer of rock does.
Answer:
the answer is D
Explanation:
Mass extinctions were first identified by the obvious traces they left in the fossil record. ... Such dramatic changes in adjacent rock layers make it clear that mass extinctions were geologically rapid and suggest that they were caused by catastrophic events (e.g., a period of intense volcanic activity).
Mass extinction events wiped out many species at the same time resulting in older rock layers having more fossil variety than younger rock layers.
What are mass extinction events?Mass extinction events are events which resulted in the mass death of many species of organisms.
Mass extinction events are presumed to have occurred in the past as seen from gaps in the fossils records.
Mass extinction events are thought to have occurred through intense volcanic activity in a particular area.
A mass extinction event in the fossil record will show an older layer of rock containing a much greater variety of fossils than a slightly younger layer of rock does.
Therefore, mass extinction events wiped out many species at the same time.
Learn more about mass extinction at: https://brainly.com/question/242208
#SPJ2
At a certain location, wind is blowing steadily at 10 m/s. Determine the mechanical energy of air per unit mass and the power generation potential of a wind turbine with 60-m-diameter blades at that location. Take the air density to be 1.25 kg/m3. Cengel, Yunus; Cengel, Yunus. Thermodynamics: An Engineering Approach (p. 98). McGraw-Hill Higher Education. Kindle Edition.
Answer:
1767Kw
Explanation:
Velocity of wind = 10 m/s
diameter of the blades= 60m
ρ= air density = 1.25 kg/m3
Acceleration due to gravity= 9.81 m/s^2
Mechanical energy of the wind can be calculated using the expression below
Energy= (e*m)
= ρ V A e............eqn(1)
Where A= area
ρ= air density
e= wind energy per unit mass of air
e= (v^2)/2..........eqn(2)
If we substitute the values into eqn (2) we have
e= [(10)^2]/2
=50J/Kg
But Area=A= (πd^2)/4
Area= ( π× 60^2)/4
Area=2827.8m^2
If we input substitute the values into eqn (1) we have
Energy= 1.25 ×10 × 50×2827.8
=1767145.7W
We can convert to kilo watt
=1767145.7W/ 1000
= 1767Kw
Hence, the mechanical energy of air per unit mass and the power generation potential of a wind turbine is 1767Kw
How long will it take an object traveling at 90 kilometers per hour to travel 910 kilometers?
Explanation:
time = distance / velocity
We know that distance = 910 km and velocity = 90 km/h.
t = d / v
t = 910 km / 90 km/h
t = 10.11 hrs
The object traveled for 10.11 hours long. Hope this helps, thank you !!
Formula One racers speed up much more quickly than normal passenger vehicles, and they also can stop in a much shorter distance. A Formula One racer traveling at 90m/s can stop in a distance of 110m. What is the magnitude of the car's acceleration as it slows during braking?
Answer:
The magnitude of the car's acceleration as it slows during braking is 36.81 m/s²
Explanation:
From the question, the given values are as follows:
Initial velocity, u = 90 m/s
final velocity, v = 0 m/s
distance, s = 110 m
acceleration, a = ?
Using the equation of motion, v² = u² + 2as
(90)² + 2 * 110 * a = 0
8100 + 220a = 0
220a = -8100
a = -8100/220
a = -36.81 m/s²
The value for acceleration is negative showing that car is decelerating to a stop. The magnitude of the car's acceleration as it slows during braking is therefore 36.81 m/s²
what is the relationship between net impulse and change in momentum?
Answer:
impulse equals the average net external force multiplied by the time this force acts. It is equal to the change in momentum.
Explanation:
The blood pressure at your heart is approximately 100 mm Hg. As blood is pumped from the left ventricle of your heart, it flows through the aorta, a single large vessel with a diameter of about 2.5 cm. The speed of blood flow in the aorta is about 60 cm/s. Any change in pressure as blood flows in the aorta is due to the change in height: the vessel is large enough that viscous drag is not a major factor into successively smaller and smaller blood vessels until it reaches the capillaries. Blood flows in the capillaries at the much lower speed of approximately 0.7 mm/s. The diameter of capillaries and other small blood vessels is so small that viscous drag is a major factor..Because the flow speed in your capillaries is much less than in the aorta, the total cross-section area of the capillaries considered together must be much larger than that of the aorta. Given the flow speeds noted, the total area of the capillaries considered together is equivalent to the cross-section area of a single vessel of approximately what diameter?
a. 25 cm
b. 50 cm
c. 75 cm
d. 100 cm
Answer:
The correct option is c. 75 for this question
Explanation:
The correct option is c. 75 for this question:
Let's see how.
Continuity Equation is given as:
AcVc = AaVa
Where,
Aa = Area of Aorta
Ac = Area of the capillary
Va = Fluid speed in Aorta
Vc = Fluid speed in Capillary
So,
Assuming the fluid is the ideal one/
[tex]\pi[/tex]/4 [tex]Dc^{2}[/tex] Vc= [tex]\pi[/tex]/4 [tex]Da^{2}[/tex] Va
[tex]Dc^{2}[/tex] Vc= [tex]Da^{2}[/tex] Va
Dc = Da x [tex]\sqrt{\frac{Va}{Vc} }[/tex]
Dc = 2.5 cm x [tex]\sqrt{\frac{60 cm}{0.07 cm } }[/tex]
Dc = 73.192 cm
Dc = 75 approximately
Hence, the diameter of the capillary = 75 cm approximately
Which of the following choices is the best example of potential energy?
Answer:
A basketball sitting still in a players hands
Explanation:
The other 3 answers have the ball in motion (going towards the basket, bouncing, and rolling) so that would be kinetic energy.
When the basketball is sitting in the player's hands, it has the potential to be in motion.
Answer:
it is D not B it D
Explanation:
A block of mass m = 150 kg rests against a spring with a spring constant of k = 880 N/m on an inclined plane which makes an angle of θ degrees with the horizontal. Assume the spring has been compressed a distance d from its neutral position.
Required:
a. Set your coordinates to have the x-axis along the surface of the plane, with up the plane as positive, and the y-axis normal to the plane, with out of the plane as positive.
b. Denoting the coefficient of static friction by μs, write an expression for the sum of the forces in the x-direction just before the block begins to slide up the inclined plane. Use defined quantities and g in your expression ΣFx = 25%
c. Assuming the plane is frictionless, what will the angle of the plane be, in degrees, if the spring is compressed by gravity a distance 0.1 m?
d. Assuming θ = 45 degrees and the surface is frictionless, how far will the spring be compressed, d in meters?
Answer:
b) k Δx - W cos θ - μ mg cos θ = m a , c) θ = 86.6º, d) Δx = 1.18 m
Explanation:
a) In the attachment we can see a diagram of the forces in this problem and the coordinate axes for its decomposition.
F is the force applied by the spring, while it is compressed, this force disappears when the block leaves the spring
b) Let's apply Newton's second law for when the spring is compressed
let's use trigonometry to break down the weight
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
Y axis
N - W_y = 0
N = W_y
N = W cos θ
X axis
F -Wₓ -fr = ma
the force applied by the spring is given by hooke's law
F = k Δx
friction force has the expression
fr = μ N
fr = μ W cos θ
we substitute
k Δx - W cos θ - μ mg cos θ = m a ( 1)
c) If the plane has no friction, what is the angle so that Δx = 0.1m
We write the equation 1, with fr = 0 and since the system is still a = 0
k Δx - W cos θ -0 = 0
cos θ = [tex]\frac{k \Delta x}{ m g}[/tex]
cos θ = [tex]\frac{880 \ 0.1}{ 150 \ 9.8}[/tex]
cos θ = 0.0598
θ = cos⁻¹ 0.0598
θ = 86.6º
d) In this part they give the angle θ = 45º and there is no friction, they ask the compression
the acceleration is zero, we substitute in 1
k Δx - W cos θ - 0 = 0
Δx = [tex]\frac{mg \ cos \ \theta}{k}[/tex]
Δx = [tex]\frac{ 150 \ 9.8 \ cos45}{880}[/tex]
Δx = 1.18 m
What is the velocity of the cart in these sections?
a-b
c-d
e-f
f-g
what is the mathematical formula associated with newton's 2nd law of motion?
Answer:
F= m x a
Explanation:
Force (f) = mass (m) x acceleration (a)
A steel cylinder of length 10 cm, mass 160 g and density 8 g/em. The radius of the cylinder is
Answer:
0.8cm
Explanation:
Volume = mass/density = 160/8 = 20cm³
Volume = πr²h
r² = v/πh = 20/10π =0.64
r = √0.64 = 0.8