To maximize the total weight of bass in the lake, we should stock 3000 smallmouth bass and 4666.67 largemouth bass
To maximize the total weight of bass in the lake, we need to find the optimal values of and that will maximize the total weight of the fish.
Let's start by writing an expression for the total weight of the fish in the lake:
Total weight = (weight of a single smallmouth bass) × (number of smallmouth bass) + (weight of a single largemouth bass) × (number of largemouth bass)
Substituting the given expressions for the weight of a single smallmouth bass and largemouth bass, we get:
Total weight = (0.5 + 0.1) × × + (1.2 + 0.2) ×
Simplifying this expression, we get:
Total weight = (0.6) × × + (1.4) ×
To find the optimal values of and that maximize the total weight, we can take the partial derivatives of this expression with respect to and and set them equal to zero:
[tex]∂ \frac{(Total weight)}{∂} = 0.6-0.0002=0[/tex]
[tex]∂ \frac{(Total weight)}{∂} = 1.4-0.0003=0[/tex]
Solving these equations simultaneously, we get:
= 3000
= 4666.67
Therefore, to maximize the total weight of bass in the lake, we should stock 3000 smallmouth bass and 4666.67 largemouth bass.
To know more about "Partial derivatives" refer here:
https://brainly.com/question/31397807#
#SPJ11
A sports arena has 40 soda vendors. Each of whom sells 200 sodas per event. Management estimates that for each additional vendor, the yield per vendor decreases by 4. How many additional vendors should management hire to maximize the number of sodas sold.
Management should hire 25 additional vendors to maximize the number of sodas sold.
Let x be the number of additional vendors that management hires. Then the total number of vendors is 40 + x, and the yield per vendor is 200 - 4x (since the yield decreases by 4 for each additional vendor).
The total number of sodas sold is the product of the number of vendors and the yield per vendor:
Total sodas sold = (40 + x) * (200 - 4x)
To maximize the number of sodas sold, we take the derivative of this expression with respect to x and set it equal to zero:
d/dx [(40 + x) * (200 - 4x)] =
Expanding and simplifying, we get:
-8x² + 120x + 8000 = 0
Dividing both sides by -8, we get:
x² - 15x - 1000 = 0
Using the quadratic formula, we solve for x:
x = (15 ± sqrt(15² + 411000)) / 2
x = (15 ± 35) / 2
x = -10 or x = 25
Since we can't hire a negative number of vendors, the only sensible solution is x = 25. Therefore, management should hire 25 additional vendors to maximize the number of sodas sold.
To learn more about quadratic formula visit: https://brainly.com/question/2615966
#SPJ11
Triangle ABC has vertices A(3, 1), B(8, y), and C(4, 6). The area of the triangle is 12 square units. Y=? The perimeter of △ABC is ? Units. Round your answer to the nearest tenth of a unit
The value of y is 50, and the perimeter of triangle ABC is approximately 49.3 units.
How to find the value of y and the perimeter of a triangle given its vertices and area?To find the value of y in the coordinate of vertex B, we can use the formula for the area of a triangle given the coordinates of its vertices:
Area =[tex]\frac{ 1}{2}[/tex] * |(x1(y2-y3) + x2(y3-y1) + x3(y1-y2))|
Let's substitute the given values into the formula:
12 = [tex]\frac{ 1}{2}[/tex]* |(3(y-6) + 8(6-1) + 4(1-y))|
Simplifying the equation:
24 = |(3y - 18 + 40 + 4 - 4y)|
24 = |(-y + 26)|
Now, we can solve the equation by considering both the positive and negative values of the absolute expression:
-y + 26 = 24
-y = -2
y = 2
-y + 26 = -24
-y = -50
y = 50
So we have two possible values for y: y = 2 or y = 50.
To determine the correct value for y, we need to analyze the given information further. Since we know that triangle ABC is not an isosceles triangle (as the base lengths differ), we can eliminate the possibility of y = 2, leaving us with y = 50.
Now, let's calculate the perimeter of triangle ABC using the coordinates of its vertices:
AB = [tex]\sqrt((8 - 3)^2 + (y - 1)^2)[/tex]
BC = [tex]\sqrt((4 - 8)^2 + (6 - y)^2)[/tex]
CA = [tex]\sqrt((3 - 4)^2 + (1 - 6)^2)[/tex]
Perimeter = AB + BC + CA
Substituting the known values:
Perimeter = [tex]\sqrt((8 - 3)^2 + (50 - 1)^2) + \sqrt((4 - 8)^2 + (6 - 50)^2) + \sqrt((3 - 4)^2 + (1 - 6)^2)[/tex]
Calculating each term:
Perimeter = [tex]\sqrt(25 + 2401) + \sqrt(16 + 2025) + \sqrt(1 + 25)[/tex]
Perimeter = [tex]\sqrt(2426) + \sqrt(2041) + \sqrt(26)[/tex]
Rounding the perimeter to the nearest tenth of a unit:
Perimeter ≈ 49.3 units
Therefore, the value of y is 50, and the perimeter of triangle ABC is approximately 49.3 units.
Learn more about the vertex and area of a triangle.
brainly.com/question/14272448
#SPJ11
1. Sally Rose's charge account statement showed a previous balance of $6,472. 82, a finance charge of $12. 95,
new purchases of $1,697. 08, and a payment of $4,900. 50. What is her new balance?
a. $3,454. 99
c. $3,566. 44
b. $3,282. 35
d. $3,112. 78
Sally Rose's new balance is $3,282.35, and option (b) is the correct answer.
Sally Rose's charge account statement contains information about her previous balance, finance charge, new purchases, and payment. To determine her new balance, we need to take the previous balance, add the finance charge and new purchases, and then subtract the payment.
Starting with the previous balance of $6,472.82, we add the finance charge of $12.95 and new purchases of $1,697.08 to get a total of:
$6,472.82 + $12.95 + $1,697.08 = $8,182.85
Next, we subtract the payment of $4,900.50 to get the new balance:
$8,182.85 - $4,900.50 = $3,282.35
It's important to keep track of credit card balances to avoid accumulating too much debt and paying high interest charges. When making credit card payments, it's a good idea to pay more than the minimum amount due, which can help reduce the balance faster and save money on interest charges over time. The answer is option b).
Know more about new balance here:
https://brainly.com/question/8549088
#SPJ11
Evaluate the repeated integral: lolla (-xy + 2 z) dz dy dx a) O 15 b) 60 c) 30 d) 36 e) O72 f) O None of these.
The evaluation of the repeated integral is None of these. (option f)
The repeated integral given is ∫∫∫(-xy + 2z) dz dy dx over the region lolla. This means that you need to integrate the function (-xy + 2z) with respect to z, then with respect to y, and finally with respect to x over the region lolla.
To evaluate this integral, you can use the method of iterated integrals. First, integrate (-xy + 2z) with respect to z, treating x and y as constants:
∫∫(-xy + 2z) dz = -xyz + z² + C
where C is the constant of integration.
Next, integrate the result of the first integral with respect to y, treating x as a constant:
∫[-xyz + z² + C] dy = -xyz + y[-xyz + z² + C] + D
where D is the constant of integration.
Finally, integrate the result of the second integral with respect to x:
∫[-xyz + y(-xyz + z² + C) + D] dx = (-1/2) x² yz + xy(-xyz + z² + C) + Dx + E
where E is the constant of integration.
Now, you need to evaluate this expression over the region lolla. Without further information about the limits of integration for each variable, it is not possible to determine the exact value of this integral.
Therefore, the correct answer is f) None of these.
To know more about integral here
https://brainly.com/question/18125359
#SPJ4
Use 40, 37, 30, 40, 39, 41, 38, n.
1. If the mean was 43, n = ____
2. If the mean was 40, n = ____
3. If the mean was 38, n = ____
Answer:
[tex]40 + 37 + 30 + 40 + 39 + 41 + 38 + n = 265 + n[/tex]
1)
[tex] \frac{265 + n}{8} = 43[/tex]
[tex]265 + n = 344[/tex]
[tex]n = 79[/tex]
2)
[tex] \frac{265 + n}{8} = 40[/tex]
[tex]265 + n = 320[/tex]
[tex]n = 55[/tex]
3)
[tex] \frac{265 + n}{8} = 38[/tex]
[tex]265 + n = 304[/tex]
[tex]n = 39[/tex]
An appliance store manager noted that
sales varied directly with the amount of money
spent on advertising. If last week's sales were
$10,000 and $2000 was spent on advertising,
what should sales be during a week that $1200
was spent on advertising?
In the given problem, solving systematically, sales should be $6,000 during a week that $1,200 was spent on advertising.
How to Calculate the Sales?If sales vary directly with the amount of money spent on advertising, it means that the ratio of sales to advertising spending is constant. We can use this ratio to find out what sales should be during a week that $1200 was spent on advertising.
Let the ratio of sales to advertising spending be denoted by k. Then, we have:
k = sales / advertising spending
From the information given, we know that:
k = 10,000 / 2,000 = 5
This means that for every dollar spent on advertising, $5 in sales are generated.
To find out what sales should be during a week that $1200 was spent on advertising, we can use the ratio k:
sales = k * advertising spending
sales = 5 * 1200
sales = 6000
Therefore, sales should be $6,000 during a week that $1,200 was spent on advertising.
Learn more about sales here: https://brainly.com/question/24951536
#SPJ1
Use the appropriate compound interest formula to find the amount that will be in each account, given the stated conditions.
$24.000 invested at 4% annual interest for 7 years compounded (a) annually: (b) semiannually
Account amount after 7 years will be approximately:
(a) $31,950.42 when compounded annually
(b) $32,166.25 when compounded semiannually
We'll be using the compound interest formula to find the amount in each account for both (a) annual compounding and (b) semiannual compounding.
The compound interest formula is: A = P(1 + r/ⁿ)ⁿᵃ
Where:
A = the future amount in the account
P = the principal (initial investment)
r = Annual interest rate
n = Interest is compounded per year in numbers
a = the number of years
(a) Annual Compounding:
In this case n = 1.
P = $24,000
r = 4% = 0.04
n = 1
t = 7
A = 24000(1 + 0.04/1)¹ˣ⁷
A = 24000(1 + 0.04)⁷
A = 24000(1.04)⁷
A ≈ $31,950.42
(b) Semiannual Compounding:
For semiannual compounding, the interest is compounded twice a year, so n = 2.
P = $24,000
r = 4% = 0.04
n = 2
t = 7
A = 24000(1 + 0.04/2)²ˣ⁷
A = 24000(1 + 0.02)¹⁴
A ≈ $32,166.25
Learn more about annual interest rate.
brainly.com/question/30573341
#SPJ11
Determine the maximum profit if the marginal cost and marginal revenue are given by C'(x) = 20+ x/20 and R'(x) = 40 and fixed cost is $100.00.
The maximum profit is $3,900 if the marginal cost and marginal revenue are given by C'(x) = 20+ x/20 and R'(x) = 40 and fixed cost is $100.00.
In order to determine the maximum profit, we need to find the quantity (x) where the marginal cost (C'(x)) equals the marginal revenue (R'(x)). This is because when these two values are equal, we are maximizing the profit. The given functions are:
C'(x) = 20 + x/20
R'(x) = 40
First, set the marginal cost equal to the marginal revenue:
20 + x/20 = 40
Now, we need to solve for x:
x/20 = 40 - 20
x/20 = 20
x = 20 * 20
x = 400
So, the maximum profit occurs at a quantity of 400 units. To find the total cost (C(x)) and total revenue (R(x)), we need to integrate the marginal cost and marginal revenue functions:
C(x) = ∫(20 + x/20) dx = 20x + x^2/40 + C₁
R(x) = ∫40 dx = 40x + C₂
Since we have a fixed cost of $100, we know that C₁ = 100. We don't need C₂ to find the profit, as it will cancel out when we calculate it. Now, let's find the total cost and total revenue for 400 units:
C(400) = 20(400) + (400)^2/40 + 100 = 8000 + 4000 + 100 = 12100
R(400) = 40(400) = 16000
Finally, calculate the profit (P(x)):
P(x) = R(x) - C(x) = 16000 - 12100 = 3900
Therefore, the maximum profit is $3,900 when producing 400 units.
To know more about maximum profit refer here:
https://brainly.com/question/8424036
#SPJ11
Mike receives a bonus every year. His bonus is calculated as 3 percent of his company's total profits. If he estimates his company's total profits to be between $500,000 and $650,000, which inequality best represents Mike's bonus, B, for the year?
Mike's bonus for the year is between $15,000 and $19,500.
The inequality that best represents Mike's bonus, B, for the year is:
$15,000 [tex]\leq B \leq[/tex] 19,500$
to see why, we are able to use the given data that Mike's bonus is calculated as 3 percent of his corporation's overall profits.
If we let P be the organization's general income, then Mike's bonus B can be expressed as:
$B = 0.03P$
We recognise that the organization's total profits are between $500,000 and $650,000, so we will write:
$500,000 [tex]\leq P \leq[/tex] 650,000$
Substituting this inequality into the equation for Mike's bonus, we get:
$15,000 [tex]\leq B \leq[/tex] 19,500$
Therefore, Mike's bonus for the year is between $15,000 and $19,500.
Learn more about inequality:-
https://brainly.com/question/30238989
#SPJ4
Learning
Diagnostic
Analytics
Recommendations
Skill plans
Math
Language arts
Common Core
Sixth grade
P. 6 Compare and order rational numbers: word problems ETK
You have prizes to reveall Go
Manuel and his friends built model cars using pieces of wood and plastic wheels. They rolled
the cars down a ramp and measured to see whose car would coast the farthest. Manuel's car
coasted 10 feet, Richard's car coasted 10. 5 feet, and Diego's car coasted 10
2
feet.
6
How many of the cars coasted more than 10. 75 feet?
Submit
Number of cars that coasted more than 10.75 feet = 1
How many of the cars coasted more than 10.75 feet?To solve this problem, you need to compare the distance each car coasted to 10.75 feet, which is the threshold for determining whether a car coasted more or less than 10.75 feet.
Manuel's car coasted 10 feet, which is less than 10.75 feet, so it did not coast more than 10.75 feet.
Richard's car coasted 10.5 feet, which is also less than 10.75 feet, so it did not coast more than 10.75 feet either.
Diego's car coasted 102 feet, which is more than 10.75 feet. Therefore, only one car coasted more than 10.75 feet, and the answer is 1.
So the answer is:
Number of cars that coasted more than 10.75 feet = 1
Learn more about the Number of cars
brainly.com/question/12603
#SPJ11
simple interest earned for principal of $2000 at and 8% rate for 5 years
Simple Interest is equal to ($800) (2000 x 8 x 5) / 100. The simple interest earned is therefore $800.
What is interest?The measure of cash returned or earned over a set period of time on a principal sum of money is referred to as interest. It is frequently stated as a share of the principal sum and it may be either simple or complicated. Compounding interest is computed on the principal amount as well as any accrued but unpaid interest, whereas simple interest is assessed just on the principal amount. Loans, investments, and bank deposits frequently include interest.
given
We can use the following calculation to determine the simple interest received for a $2000 principal at an 8% rate over a 5-year period:
S.I = (Principal x Rate x Time)/100
In this instance, Principal is $2000, Rate is 8% annually, and Term is 5 years.
With these values entered into the formula, we obtain:
Simple Interest is equal to ($800) (2000 x 8 x 5) / 100. The simple interest earned is therefore $800.
To know more about interest visit:
brainly.com/question/28792777
#SPJ1
A book club of 7 members meet at a local coffee shop. One week, 5 of the
members ordered a small cup of coffee and a muffin. The other 2 members
ordered a small cup of coffee and a piece of banana bread. The cost of a muffin,
including tax, is $3.51. The cost of piece of banana bread is $2. 16 more than
the cup of coffee. The total bill for the book club was $48. 60.
The cost of a small cup of coffee is $2.97, and the cost of a piece of banana bread is $5.13.
How to solveLet x represent the cost of a small coffee and y represent the cost of a piece of banana bread. We know:
Cost of muffin: $3.51
y = x + $2.16
5(x + $3.51) + 2(x + y) = $48.60
Substitute y with x + $2.16:
5(x + $3.51) + 2(x + (x + $2.16)) = $48.60
Solve for x:
9x + $21.87 = $48.60
9x = $26.73
x = $2.97
Find y:
y = x + $2.16
y = $2.97 + $2.16
y = $5.13
A slice of banana bread costs $5.13, while a small coffee costs $2.97.
Read more about algebra here:
https://brainly.com/question/432678
#SPJ1
Find the midpoint of the line segment joining (-4,-2) and (2,8) please show how u got your answer!!!
Answer:
(1,3)
Step-by-step explanation:
The midpoint formula is:
[tex](\frac{x1+x2}{2}),(\frac{y1+y2}{2})[/tex]
We have our 2 points, (-4,-2) and (2,8).
For this sake and for this explanation, point 1 is (-4,-2), and point 2 is (2,8).
We can substitute in our values:
[tex](\frac{-4+2}{2}),(\frac{-2+8}{2})[/tex]
substitute
[tex](\frac{2}{2}),(\frac{6}{2})[/tex]
Our midpoint is located at (1,3)
Hope this helps! :)
Answer:
(-1,3)
Step-by-step explanation:
To find the midpoint of a line segment, you want to find the change in x and y.
From (-4,-2) to (2,8), you move right by 6 and up by 10.
The midpoint is exactly half of this, meaning right by 3 and up by 5.
Therefore, the midpoint is (-1,3).
Solve the equation and justify each step.
p - 4 = -9 + p
Answer: 0= -5
Step-by-step explanation:
Your cousin is bulding a sandbox for his daughter. How much sand will he need to fill the box? Explain. How much paint will he need to paint all six surfaces of the sandbox? Explain.
The amount of paint that he will need to paint all six surfaces of the sandbox is: 68 square feet
How to find the volume of the prism?Since the image is a rectangular prism
The volume of the box can be obtained by using the formula:
Volume = l * b * h
The box has a dimension of 1ft x 4ft x 6ft
The volume of the box = 1 x 4 x 6 = 24 cubic feet
Therefore, the volume of sand needed to fill the box will be = 24 cubic feet of sand
The surface area of the box can be obtained using the formula:
2(lb + lh + bh)
= 2(1*4 + 1*6 + 4*6)
=2(4 + 6 + 24)
=2 (34)
= 68 square feet
Therefore a total surface area of 68 square feet needs to be painted
Read more about Volume of box at: https://brainly.com/question/463363
#SPJ1
Complete question is:
Your cousin is building a Sandbox for his daughter how much sand will he need to fill the Box? Explain. How much paint will he need to paint all six surface of the sandbox? Explain. 1ft 4ft 6ft not answer choices
Section 15 8: Problem 3 Previous Problem Problem List Next Problem 3 (1 point) Find the maximum value of f(x, y) = xºy® for x, y > 0 on the unit circle. = fmax
The maximum value of f(x, y) = x^y on the unit circle can be found using the constraint x^2 + y^2 = 1, which defines the unit circle. To solve this, we can use the method of Lagrange multipliers.
Let g(x, y) = x^2 + y^2 - 1. Then, the gradient of f(x, y) and the gradient of g(x, y) should be proportional:
∇f(x, y) = λ∇g(x, y)
Calculating the gradients:
∇f(x, y) = (yx^(y-1), x^y * ln(x))
∇g(x, y) = (2x, 2y)
Equating the components and dividing the equations, we get:
y * x^(y-1) / 2x = x^y * ln(x) / 2y
Simplifying, we obtain:
ln(x) = y
Now, using the constraint x^2 + y^2 = 1, we can substitute y with ln(x) and solve for x:
x^2 + (ln(x))^2 = 1
Numerically solving this equation, we get x ≈ 0.90097 and y ≈ ln(0.90097) ≈ -0.10536. Since we are only interested in positive values of x and y, this is the only solution in our domain. Now, we can find the maximum value of f(x, y):
f_max = f(0.90097, -0.10536) ≈ 0.79307
So the maximum value of f(x, y) on the unit circle is approximately 0.79307.
Learn more about maximum value, here:
brainly.com/question/24866444
#SPJ11
A quadrilateral has two consecutive right angles. If the quadrilateral is not a rectangle, can it still be a parallelogram? Explain your reasoning
The true statement is that if the quadrilateral is not a rectangle, it can still be a parallelogram
Determing if the quadrilateral can be a parallelogramThe statement in the question is given as
A quadrilateral has two consecutive right angles
By definition, the parallelograms that have two consecutive right angles are rectangles and squares
This is because all the four angles in a rectangle and a square are right angles
Using the above as a guide, we can conclude that the quadrilateral can still be a parallelogram if the quadrilateral has two consecutive right angles and if the quadrilateral is not a rectangle
Read more aout parallelogram at
https://brainly.com/question/970600
#SPJ1
(answer all for 15 points) 1) Chris went to Waffle House and his bill came out to $8. 23. He had a coupon for 40% off. How much did Leke pay for his meal?
2) To which set or sets does the number -5 belong?
3) Target bought a shirt for $4 from a factory. They mark it up 40%. How much does Target sell the shirt for? $_
1) Leke pay $4.938 for his meal after a 40% discount.
2) -5 belongs to integers, rational numbers, and real number sets.
3) Target sells the shirt for $5.6 after they mark it up for 40%
1) Bill = 8.23 , discount coupon = 40 %
The total amount paid by leke after the discount coupon = 8.23 - (40 % of 8.23)
Total amount = 8.23 - ( 8.23 × 40/100 )
Total amount = 8.23 - 3.292
The total amount paid by Leke is $4.938
2) -5 is an integer because it is a negative whole number.
-5 is a rational number because it can be written in the form of a fraction.
-5 is a real number because it is a rational number .
-5 belongs to integers, rational numbers, and real number sets.
3) Shirt price = $4 , price increased = 40%
selling price = 4 + (40% of 4)
selling price = 4 + (4 × 40/100)
selling price = 4 + 1.6
Target sell shirt for $5.6
To know more about integers click here :-
https://brainly.com/question/15276410
#SPJ4
A floor plan of a house was drawn using a scale of 1 inch:5 feet. if the kitchen is drawn 2 1/2 inches by 3 inches, what are the dimensions of the actual kitchen?
If the kitchen is drawn 2 1/2 inches by 3 inches, the actual dimensions of the kitchen are 12.5 feet by 15 feet.
The given scale of 1 inch:5 feet means that for every 1 inch on the floor plan, the actual length in real life is 5 feet. To find the actual dimensions of the kitchen, we need to convert the length and width of the kitchen on the floor plan into real-life measurements.
The length of the kitchen on the floor plan is 2 1/2 inches, which in real life would be:
2.5 inches x 5 feet/1 inch = 12.5 feet
Similarly, the width of the kitchen on the floor plan is 3 inches, which in real life would be:
3 inches x 5 feet/1 inch = 15 feet
To verify this result, we can also use the scale to convert the actual dimensions of the kitchen back into the measurements on the floor plan. The length of the kitchen in real life is 12.5 feet, which on the floor plan would be:
12.5 feet x 1 inch/5 feet = 2.5 inches
Similarly, the width of the kitchen in real life is 15 feet, which on the floor plan would be:
15 feet x 1 inch/5 feet = 3 inches
As expected, these measurements match the dimensions of the kitchen as drawn on the floor plan.
To learn more about scale click on,
https://brainly.com/question/23864395
#SPJ4
The regular price of a sofa, in dollars, is represented by p. the sale price of the sofa is 30% off the regular price. select all true statements. a. the sale price of the sofa can be represented by p-0.3p.
The sale price of the sofa can be represented by the equation p - 0.3p. This equation correctly represents the sale price after a 30% discount has been applied to the regular price.
The question is about the regular price of a sofa represented by p, and its sale price which is 30% off the regular price. You'd like to know if the statement "the sale price of the sofa can be represented by p-0.3p" is true.
Step 1: Understand the problem
The regular price of the sofa is represented by p. The sale price is 30% off the regular price.
Step 2: Represent the sale price
To find the sale price, we need to subtract the discount (30% of p) from the regular price (p).
Step 3: Calculate the discount
The discount can be calculated as 30% of p, which is 0.3 * p (or 0.3p).
Step 4: Determine the sale price
Now, subtract the discount from the regular price: p - 0.3p.
Step 5: Confirm the statement
The statement "the sale price of the sofa can be represented by p-0.3p" is indeed true.
To know more about the sale price refer to
https://brainly.com/question/7459025
#SPJ11
The equation of the line of best fit for the exam grade per hour studied is
y = 6x + 60. What is the residual for 1 hours of studying?
The predicted exam grade for 1 hour of studying is 66. Therefore the residual for 1 hours of studying can be calculated as Residual = Actual Exam Grade - 66.
To find the residual for 1 hour of studying, we first need to determine the predicted exam grade and compare it to the actual exam grade for that specific data point.
Using the line of best fit equation y = 6x + 60, we can find the predicted exam grade for 1 hour of studying:
y = 6(1) + 60
y = 6 + 60
y = 66
So, the predicted exam grade for 1 hour of studying is 66. To calculate the residual, you need the actual exam grade for 1 hour of studying. If that information is not provided, the residual cannot be calculated. If the actual grade is provided, subtract the predicted grade from the actual grade to find the residual:
Residual = Actual Exam Grade - Predicted Exam Grade
More on residual: https://brainly.com/question/14424720
#SPJ11
30. Mean IQ of Attorneys See the preceding exercise, in which we can assume that o = 15
for the IQ scores. Attorneys are a group with IQ scores that vary less than the IQ scores of the
general population. Find the sample size needed to estimate the mean IQ of attorneys, given that
we want 98% confidence that the sample mean is within 3 IQ points of the population mean.
Does the sample size appear to be practical?
A sample size of 40 attorneys is needed to estimate the mean IQ with 98% confidence and a margin of error of 3 IQ points.
To find the sample size, we use the formula:
n = (z*σ/E)²
where n is the sample size, z is the z-score for the desired level of confidence given as 98% , σ is the population standard deviation given as 15, and E is the margin of error given as 3 IQ points.
using the above values, we get:
n = (2.33*15/3)²
n = 39.05
Therefore, we need a sample size of at least 40 attorneys to estimate the mean IQ with 98% confidence and a margin of error of 3 IQ points.
Whether this sample size is practical or not depends on various factors, such as the availability of attorneys with the desired characteristics, the cost and time required to collect the data, and the resources available for analysis. In general, a sample size of 40 is considered moderate to large for many applications, and it may be feasible depending on the specific context.
A sample size of 40 attorneys is needed to estimate the mean IQ with 98% confidence and a margin of error of 3 IQ points.
To know about Sample size here
https://brainly.com/question/25894237
#SPJ4
A jury of 6 persons was selected from a group of 20 potential jurors, of whom 8 were african american and 12 were white. the jury was supposedly randomly selected, but it contained only 1 african american member. a) do you have any reason to doubt the randomness of the selection
Yes, there is reason to doubt the randomness of the jury selection based on the information provided.
Given data:
Out of the 20 potential jurors, 8 were African American and 12 were white. The probability of randomly selecting an African American juror from the pool of potential jurors would ideally be 8/20, which simplifies to 2/5 or 40%. However, the actual jury selected had only 1 African American member out of 6 jurors, which is significantly lower than the expected 40% if the selection were truly random.
This deviation from the expected probability raises questions about the randomness of the selection process. The observed outcome appears to be disproportionately skewed against the representation of African American jurors. While random variations can occur, the extent of the deviation in this case warrants further investigation into the jury selection process to determine if there were any biases or factors influencing the outcome.
To learn more about probability, refer:
https://brainly.com/question/17089724
#SPJ12
A company knows that unit cost and unit revenue from the production and sale of x units are related by C. + 10621. Find the rate of change of revenue per unit when the 102.000 cost per unit is changing by $8 and the revenue is $4,000 O A $102.00 OD $160.00 OC. $577.05 OD. $1,052.10
The rate of change of revenue per unit is $8 when the unit cost is changing by $8 and the revenue is $4,000.
We are given that the unit cost (C) and unit revenue (R) are related by the equation C = R + 10621.
We want to find the rate of change of revenue per unit, dR/dx, when the unit cost (C) is changing by $8 per unit and the revenue (R) is $4,000.
1. Differentiate the given equation with respect to x: dC/dx = dR/dx
2. Plug in the given values: dC/dx = $8 (cost per unit is changing by $8) R = $4,000 (revenue per unit)
3. Solve for the cost per unit (C) using the equation
C = R + 10621
C = $4,000 + 10621
C = $14,621
4. Since dC/dx = dR/dx, and we know dC/dx = $8,
we can find the rate of change of revenue per unit (dR/dx) when the cost per unit is changing by $8: dR/dx = $8
Thus, the rate of change of revenue per unit is $8 when the unit cost is changing by $8 and the revenue is $4,000.
Learn more about unit cost (C) and unit revenue (R),
https://brainly.com/question/15870579
#SPJ11
Find the length of side x in simplest radical
form with a rational denominator. Xsqrt3
The length of side x in simplest radical form with a rational denominator is x√3.
To find the length of side x in simplest radical form with a rational denominator given x√3, some steps need to be followed.
Steps are:
1. Identify the radical: In this case, it is √3.
2. Identify the denominator: To rationalize the denominator, we want to eliminate the radical from the denominator. Since the given expression has x√3, the denominator we need to rationalize is 1.
3. Rationalize the denominator: To do this, multiply the expression by a value that will cancel out the radical in the denominator without changing the value of the expression. Since our denominator is 1, we need to multiply the expression by √3/√3.
4. Multiply the expression: (x√3) * (√3/√3) = x√3 * √3 = x(√3)^2 = x(3).
5. Simplify the expression: x(3) = 3x.
So, the length of side x in simplest radical form with a rational denominator is 3x.
To learn more about the “denominator” refer to the https://brainly.com/question/19249494
#SPJ11
Can someone help with number 2 pls
Check the picture below.
[tex]\textit{using the pythagorean theorem} \\\\ a^2+o^2=c^2\implies o=\sqrt{c^2 - a^2} \end{array} \qquad \begin{cases} c=\stackrel{hypotenuse}{13}\\ a=\stackrel{adjacent}{5}\\ o=\stackrel{opposite}{h} \end{cases} \\\\\\ h=\sqrt{ 13^2 - 5^2}\implies h=\sqrt{ 169 - 25 } \implies h=\sqrt{ 144 }\implies h=12 \\\\[-0.35em] ~\dotfill[/tex]
[tex]\textit{volume of a pyramid}\\\\ V=\cfrac{Bh}{3} ~~ \begin{cases} B=\stackrel{base's}{area}\\ h=height\\[-0.5em] \hrulefill\\ B=\stackrel{10\times 10}{100}\\ h=12 \end{cases}\implies V=\cfrac{(100)(12)}{3}\implies V=400~in^3[/tex]
Determine Whether The Series Is Convergent Or Divergent. Σ ^n√14
Based on the Root Test, the series Σ^n√14 is convergent.
Hi! To determine if the series Σ^n√14 is convergent or divergent, we need to analyze the terms involved. The series can be written as:
Σ (n√14)
This is a sum of terms, where each term is the n-th root of 14, and we want to find out if the sum converges or diverges as n goes to infinity.
In this case, the series is a type of p-series, where the terms follow the general form of 1/n^p. To be a convergent p-series, p must be greater than 1. Here, the terms are in the form of 14^(1/n), which can be rewritten as (14^(1))^(-n) or 14^(-n). This is not a p-series, as the exponent is not in the form of 1/n^p.
To further analyze the series, we can use the Divergence Test. If the limit of the terms as n goes to infinity is not equal to zero, then the series is divergent. So, let's find the limit:
lim (n → ∞) (14^(-n))
As n approaches infinity, the exponent -n becomes increasingly negative, and 14^(-n) approaches 0. However, the Divergence Test is inconclusive in this case, as it only confirms divergence if the limit is not equal to zero.
To determine convergence or divergence, we can use the Root Test. The Root Test states that if the limit of the n-th root of the absolute value of the terms as n goes to infinity is less than 1, then the series converges. Let's find the limit:
lim (n → ∞) |(14^(-n))|^(1/n)
This simplifies to:
lim (n → ∞) 14^(-1)
Since 14^(-1) is a constant value less than 1, the limit is less than 1.
Thus, based on the Root Test, the series Σ^n√14 is convergent.
To learn more about root test, refer below:
https://brainly.com/question/30906556
#SPJ11
Select all the expressions that are equivalent to –25 (fraction 2 over 5)
(15 – 20d).
The equivalent expressions are,
A. [tex]-30 + 40d - 10c[/tex],
B. [tex]-6 + 8d - 2c[/tex]
D. [tex]6 - 8d + 2c[/tex].
What are expressions?An expression is a sentence with at least two numbers or variables having mathematical operation. Math operations can be addition, subtraction, multiplication, division.
For example, [tex]2x+3[/tex]
The given expression.
[tex]\implies -25(15 - 20d + 5c)[/tex]
[tex]\implies -125(3 - 4d + c)[/tex]
So, the given expression can be converted into
[tex]k(3 - 4d + c)[/tex]
The equivalent expressions are:
A. [tex]-30 + 40d - 10c[/tex],
B. [tex]-6 + 8d - 2c[/tex]
D. [tex]6 - 8d + 2c[/tex].
A. [tex]-30 + 40d - 10c[/tex]
[tex]\implies -30 + 40d - 10c[/tex]
[tex]\implies -10(3 - 4d + c)[/tex]
B. [tex]-6 + 8d - 2c[/tex]
[tex]\implies -6 + 8d - 2c[/tex]
[tex]\implies -2(3 - 4d + c)[/tex]
D. [tex]6 - 8d + 2c[/tex]
[tex]\implies6 - 8d + 2c[/tex]
[tex]\implies2(3 - 4d + c)[/tex]
To know more about Expressions check:
brainly.com/question/16804733
SOMEONE HELP!! giving brainlist to anyone who answers
Answer:
We can use the Pythagorean theorem to find the length of the third side of the triangle ABC:
AB^2 = AC^2 + BC^2
(29)½^2 = 5^2 + 2^2
29 = 25 + 4
29 = 29
So the triangle is a right triangle with angle A being the angle opposite the side AC. Therefore, we can use the tangent function to find tan A:
tan A = opposite/adjacent = AC/BC = 5/2
So the exact value of tan A is 5/2.
Some students were asked how many pens they were carrying in their backpacks. The data is given in this frequency table. What is the mean number of pens carried by these students in their backpacks?
A. 2
B. 3. 5
C. 4
D. 5. 5
The mean number of pens carried by these students in their backpacks is:
122 / 30 = 4.07 (rounded to two decimal places)
So the answer is closest to option C, which is 4.
What is the mean number of pens carried by students in their backpacks given the following frequency table?To find the mean number of pens carried by the students, we need to calculate the sum of all the pens and divide by the total number of students. We can use the frequency table to calculate the sum of all the pens as follows:
2 x 3 + 3 x 6 + 4 x 10 + 5 x 8 + 6 x 3 = 6 + 18 + 40 + 40 + 18 = 122
The total number of students is the sum of the frequencies, which is:
3 + 6 + 10 + 8 + 3 = 30
The mean number of pens carried by these students in their backpacks is:
122 / 30 = 4.07 (rounded to two decimal places)
Learn more about Frequency table
brainly.com/question/28931302
#SPJ11