A high diver of mass 60.0 kg steps off a board 10.0 m above the water and falls vertical to the water, starting from rest. If her downward motion is stopped 2.10 s after her feet first touch the water, what average upward force did the water exert on her

Answers

Answer 1

Answer:

The average upward force exerted by the water is 988.2 N

Explanation:

Given;

mass of the diver, m = 60 kg

height of the board above the water, h = 10 m

time when her feet touched the water, t = 2.10 s

The final velocity of the diver, when she is under the influence of acceleration of free  fall.

V² = U² + 2gh

where;

V is the final velocity

U is the initial velocity = 0

g is acceleration due gravity

h is the height of fall

V² = U² + 2gh

V² = 0 + 2 x 9.8 x 10

V² = 196

V = √196

V = 14 m/s

Acceleration of the diver during 2.10 s before her feet touched the water.

14 m/s is her initial velocity at this sage,

her final velocity at this stage is zero (0)

V = U + at

0 = 14 + 2.1(a)

2.1a = -14

a = -14 / 2.1

a = -6.67 m/s²

The average upward force exerted by the water;

[tex]F_{on\ diver} = mg - F_{ \ water}\\\\ma = mg - F_{ \ water}\\\\F_{ \ water} = mg - ma\\\\F_{ \ water} = m(g-a)\\\\F_{ \ water} = 60[9.8-(-6.67)]\\\\F_{ \ water} = 60 (9.8+6.67)\\\\F_{ \ water} = 60(16.47)\\\\F_{ \ water} = 988.2 \ N[/tex]

Therefore, the average upward force exerted by the water is 988.2 N


Related Questions

The magnitude of the magnetic field at a certain distance from a long, straight conductor is represented by B. What is the magnitude of the magnetic field at twice the distance from the conductor

Answers

Answer:

  B/4

Explanation:

The magnetic field strength is inversely proportional to the square of the distance from the current. At double the distance, the strength will be 1/2^2 = 1/4 of that at the original distance:

The field at twice the distance is B/4.

When solving vector addition problems you can use either the graphical
method or the

Answers

Answer :the resultant of two vectors can be found using either the parallelogram method or the triangle method. don't know if this was helpful ?

Explanation:

Answer:

Analytical method.

A 888 kg car is driven clockwise around a flat circular track of radius 59 m. The speed of the car is a constant 7 m/s. Which factor, when doubled, would produce the greatest change in the centripetal force acting on the car? A. Radius of the track B. Weight of the car C. Mass of the car D. Velocity of the car

Answers

Answer:

D. Velocity of the car

Explanation:

The centripetal force acting on the car is given by the following formula:

[tex]F_c=ma_c=m\frac{v^2}{r}[/tex]    (1)

m: mass of the car  = 888 kg

v: tangential speed of the car = 7 m/s

r: radius of the flat circular track = 59 m

By the form of the equation (1) you can notice that the greatest change in the centripetal force is obtained when the velocity v is twice. In fact, you have:

[tex]F_c=m\frac{(2v)^2}{r}=4m\frac{v^2}{r}=4F_c[/tex]

Then, the greatest values of the centripetal force is:

[tex]F_c=4(888kg)\frac{(7m/s)^2}{59m}=2949.96N[/tex]

The greatest change in Fc is obtained by changing the value of the speed

answer

D. Velocity of the car

ASK YOUR TEACHER A meter stick is found to balance at the 49.7-cm mark when placed on a fulcrum. When a 51.5-gram mass is attached at the 16.0-cm mark, the fulcrum must be moved to the 39.2-cm mark for balance. What is the mass of the meter stick

Answers

Answer:

0.114 kg or 114 g

Explanation:

From the diagram attaches,

Taking the moment about the fulcrum,

sum of clockwise moment = sum of anticlockwise moment.

Wd = W'd'

Where W = weight of the mass, W' = weight of the meter rule, d = distance of the mass from the fulcrum, d' = distance of the meter rule.

make W'  the subject of the equation

W' = Wd/d'................ Equation 1

Given: W = mg = 0.0515(9.8) = 0.5047 N, d = (39.2-16) = 23.2 cm, d' = (49.7-39.2) = 10.5 cm

Substitute these values into equation 1

W' = 0.5047(23.2)/10.5

W' = 1.115 N.

But,

m' = W'/g

m' = 1.115/9.8

m' = 0.114 kg

m' = 114 g

If a metal rod is moved through magnetic field, the charged particles will feel a force, and if there is a complete circuit, a current will flow. We talk about the induced emf of the rod. The rod essentially acts like a battery, and the induced emf is the voltage of the battery. A magnetic field with a strength of 0.732 T is pointing into the page and a metal rod L=0.362 m in length is moved to the right at a speed v of 15.1m/s.

Required:
a. What is the induced emf in the rod?
b. Suppose the rod is sliding on conducting rails, and a complete circuit is formed. If the load resistance is 5.74Ω , what is the magnitude and direction (clockwise or counterclockwise) of the current flowing in the circuit?

Answers

Answer:

a.  4 V

b. 0.697 A

Explanation:

Magnetic field strength B =  0.732 T

length of rod l = 0.362 m

velocity of rod v = 15.1 m/s

a.  EMF can be calculated as

E = Blv = 0.732 x 0.362 x 15.1 = 4 V

b. If the rod is connected to a conducting rail, with resistance R = 5.74Ω

current I = V/R = 4/5.74 = 0.697 A

the current flows in a clockwise direction

What’s the answer to this question?

Answers

Answer:

6 A

Explanation:

Parallel connected resistors needs to be calculated as one single resistor. To do that: [tex]\frac{1}{15}[/tex]+[tex]\frac{1}{15}[/tex]+[tex]\frac{1}{15}[/tex]=[tex]\frac{3}{15}[/tex]=[tex]R^{-1}[/tex]

[tex]\frac{3}{15} ^{-1}[/tex]= 5 Ω (total resistance)

U = R* I

[tex]\frac{U}{R}[/tex]=I

[tex]\frac{30}{5}[/tex]=6 A

What is the velocity of a car that travels 556km northwest in 3.2 hours

Answers

Answer:

173.75 km/hr in the NW direction.

Explanation:

Velocity is the time rate of change in displacement of a body. Mathematically:

v = d / t

where d = displacement

t = time

Therefore, the velocity of the car is:

v = 556 / 3.2 = 173.75 km/hr

The velocity of the car is 173.75 km/hr in the NW direction.

The velocity of a car will be "173.75 km/hr".

Displacement and Velocity,

The velocity of something like a car moving northward on something like a prominent motorway as well as the velocity of something like a rocket launching towards spacecraft both might be determined or monitored.

Displacement, d = 556 km

Time, t = 3.2 hours

We know the relation,

→ Velocity = [tex]\frac{Displacement}{Time}[/tex]

or,

→ V = [tex]\frac{d}{t}[/tex]

By substituting the values, we get

      = [tex]\frac{556}{3.2}[/tex]

      = [tex]173.75[/tex] km/hr

Thus the response above is right.

Find out more information about velocity here:

https://brainly.com/question/6504879

g A proton is held at rest in a uniform electric field. When it is released, the proton will lose... electrical potential energy. kinetic energy. both kinetic energy and electric potential energy. neither kinetic energy or electric potential energy.

Answers

Answer:

It will lose electrical potential energy.

Explanation:

A photon held at rest in a uniform electrical field will lose electrical potential energy when it is released this is because the electrical potential energy is the energy posses by the photon at rest or by virtue of the position is converted to kinetic energy which is energy posses by a body in motion.

Since the photon is released and set in motion , it now has kinetic energy and has lost the potential energy because it is set in motion.

You are on a train traveling east at speed of 19 m/s with respect to the ground. 1)If you walk east toward the front of the train, with a speed of 1.5 m/s with respect to the train, what is your velocity with respect to the ground

Answers

Answer:

Vbg = 20.5 m/s

your velocity with respect to the ground Vbg = 20.5 m/s

Explanation:

Relative velocity with respect to the ground is;

Vbg = velocity of train with respect to the ground + your velocity with respect to the train

Vbg = Vtg + Vbt ......1

Given;

velocity of train with respect to the ground;

Vtg = 19 m/s

your velocity with respect to the train;

Vbt = 1.5 m/s

Substituting the given values into the equation 1;

Vbg = 19 m/s + 1.5 m/s

Vbg = 20.5 m/s

your velocity with respect to the ground Vbg = 20.5 m/s

A 1.70 m tall woman stands 5.00 m in front of a camera with a 50.00 cm focal
length lens. Calculate the size of the image formed on flim​

Answers

Answer:

18.89cm

Explanation:

As we know that the person is standing 5m in front of the camera

[tex]d_0=5m=500cm[/tex]

The focal length of the lens =50cm

f=50 cm

By Lens formula we have:

[tex]\dfrac{1}{f} = \dfrac{1}{d_i} + \dfrac{1}{d_o}\\\dfrac{1}{50} = \dfrac{1}{d_i} + \dfrac{1}{500}\\\dfrac{1}{d_i} =\dfrac{1}{50}-\dfrac{1}{500}\\\dfrac{1}{d_i}=0.018\\d_i=55.56cm[/tex]

By the formula of magnification

[tex]\dfrac{h_i}{h_o} = \dfrac{55.56}{500}\\\\h_i = \dfrac{55.56}{500} \times h_o\\\\ h_o=1.70m=170cm\\\\Therefore: h_i=\dfrac{55.56}{500} \times$ 170 cm\\\\h_i =18.89 cm[/tex]

The height of the image formed is 18.89cm.

When the play button is pressed, a CD accelerates uniformly from rest to 430 rev/min in 4.0 revolutions. If the CD has a radius of 7.0 cm and a mass of 17 g , what is the torque exerted on it?

Answers

Answer:

The net torque exerted on CD is [tex]1.680 \times 10^{-3}\,N\cdot m[/tex].

Explanation:

As CD is acceleration uniformly, the following equation of motion can be used to determine the angular acceleration:

[tex]\dot n^{2} = \dot n_{o}^{2} + 2\cdot \ddot n \cdot \Delta n[/tex]

Where:

[tex]\dot n_{o}[/tex] - Initial angular speed, measured in revolutions per minute.

[tex]\dot n[/tex] - Final angular speed, measured in revolutions per minute.

[tex]\ddot n[/tex] - Angular acceleration, measured in revolution per square minute.

[tex]\Delta n[/tex] - Change in angular position, measured in revolutions.

The angular acceleration is cleared and calculated:

[tex]\ddot n = \frac{\dot n^{2}-\dot n_{o}^{2}}{2\cdot \Delta n}[/tex]

Given that [tex]\dot n_{o} = 0\,\frac{rev}{min}[/tex], [tex]\dot n = 430\,\frac{rev}{min}[/tex] and [tex]\Delta n = 4\, rev[/tex], the angular acceleration is:

[tex]\ddot n = \frac{\left(430\,\frac{rev}{min} \right)^{2}-\left(0\,\frac{rev}{min} \right)^{2}}{2\cdot (4\,rev)}[/tex]

[tex]\ddot n = 23112.5\,\frac{rev}{min^{2}}[/tex]

The angular accelaration measured in radians per square second is:

[tex]\alpha = \left(23112.5\,\frac{rev}{min^{2}} \right)\cdot \left(2\pi\,\frac{rad}{rev}\right)\cdot \left(\frac{1}{3600}\,\frac{min^{2}}{s^{2}} \right)[/tex]

[tex]\alpha \approx 40.339\,\frac{rad}{s^{2}}[/tex]

Net torque experimented by the CD during its accleration is equal to the product of its moment of inertia with respect to its axis of rotation and angular acceleration:

[tex]\tau = I \cdot \alpha[/tex]

Where:

[tex]I[/tex] - Moment of inertia, measured in [tex]kg \cdot m^{2}[/tex].

[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.

In addition, a CD has a form of a uniform disk, whose moment of inertia is:

[tex]I = \frac{1}{2}\cdot m \cdot r^{2}[/tex]

Where:

[tex]m[/tex] - Mass of the CD, measured in kilograms.

[tex]r[/tex] - Radius of the CD, measured in meters.

If [tex]m = 0.017\,kg[/tex] and [tex]r = 0.07\,m[/tex], then:

[tex]I = \frac{1}{2}\cdot (0.017\,kg)\cdot (0.07\,m)^{2}[/tex]

[tex]I = 4.165\times 10^{-5}\,kg\cdot m^{2}[/tex]

Now, the net torque exerted on CD is:

[tex]\tau = (4.165\times 10^{-5}\,kg\cdot m^{2})\cdot \left(40.339\,\frac{rad}{s^{2}} \right)[/tex]

[tex]\tau = 1.680\times 10^{-3}\,N\cdot m[/tex]

The net torque exerted on CD is [tex]1.680 \times 10^{-3}\,N\cdot m[/tex].

A low C (f = 65Hz) is sounded on a piano. If the length of the piano wire is 2.0 m and its mass density is 5.0 g/m2, determine the tension of the wire.

Answers

Answer:

Tension of the wire(T) = 169 N

Explanation:

Given:

f = 65Hz

Length of the piano wire (L) = 2 m

Mass density = 5.0 g/m² = 0.005 kg/m²

Find:

Tension of the wire(T)

Computation:

f = v / λ

65 = v / 2L

65 = v /(2)(2)

v = 260 m/s

T = v² (m/l)

T = (260)²(0.005/2)

T = 169 N

Tension of the wire(T) = 169 N

A ball is projected upward at time t= 0.0 s, from a point on a roof 90 m above the ground. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 36.2 m/s if air resistance is negligible. The time when the ball strikes the ground is closest to:____________A. 9.0 sB. 9.4 sC. 9.7 sD. 8.7 sE. 10 s

Answers

Answer:

B. 9.4 s

Explanation:

In order to calculate the total time taken by the ball to hit the ground, we first analyze the upward motion. We will use subscript 1 for upward motion. Now, using 1st equation of motion:

Vf₁ = Vi₁ + gt₁

where,

Vf, = Final Velocity in upward motion = 0 m/s (ball stops at highest point)

Vi = Initial Velocity in upward motion = 36.2 m/s

g = - 9.8 m/s² (negative due to upward motion)

t₁ = Time taken in upward motion = ?

Therefore,

0 m/s = 36.2 m/s + (-9.8 m/s²)(t₁)

t₁ = (36.2 m/s)/(9.8 m/s²)

t₁ = 3.7 s

Now, using 2nd equation of motion:

h₁ = (Vi₁)(t₁) + (0.5)(g)(t₁)²

where,

h₁ = distance from top of building to highest point ball reaches = ?

Therefore,

h₁ = (36.2 m/s)(3.7 s) + (0.5)(-9.8 m/s²)(3.7 s)²

h₁ = 133.58 - 66.86 m

h₁ = 66.72 m

No, considering downward motion and using subscript 2, for it.

Using 2nd equation of motion:

h₂ = (Vi₂)(t₂) + (0.5)(g)(t₂)²

where,

h₂ = height of the highest point from ground = h₁ + height of building

h₂ = 66.72 m + 90 m = 156.72 m

Vi₂ = Initial Speed during downward motion = 0 m/s (ball stops for a moment at highest point)

t₂ = Time Taken in downward motion = ?

g = 9.8 m/s²

Therefore,

156.72 m = (0 m/s)(t₂) + (0.5)(9.8 m/s²)(t₂)²

t₂² = (156.72 m)/(4.9 m/s²)

t₂ = √31.98 s²

t₂ = 5.7 s

Now, the total time taken by ball to reach the ground is"

Total Time = T = t₁ + t₂

T = 3.7 s + 5.7 s

T = 9.4 s

Therefore, the correct answer is:

B. 9.4 s

How can I show that the sphere of radius R performs a simple harmonic movement. how can i set its reference point and make the free body diagram.

I have the torque sum equation which is equal to the moment of inertia by angular acceleration

Answers

Explanation:

Draw a free body diagram of the pendulum (the combination of the sphere and the massless rod).  There are three forces on the pendulum:

Weight force mg at the center of the sphere,

Reaction force in the x direction at the pivot,

Reaction force in the y direction at the pivot.

Sum the torques about the pivot O.

∑τ = I d²θ/dt²

mg (L sin θ) = I d²θ/dt²

For small θ, sin θ ≈ θ.

mg L θ = I d²θ/dt²

Since d²θ/dt² is directly proportional to θ, this fits the definition of simple harmonic motion.

If you wish, you can use parallel axis theorem to find the moment of inertia about O:

I = Icm + md²

I = ⅖ mr² + mL²

mg L θ = (⅖ mr² + mL²) d²θ/dt²

gL θ = (⅖ r² + L²) d²θ/dt²

Now consider a different electromagnetic wave, also described by: Ex(z,t) = Eocos(kz - ω t + φ) In this equation, k = 2π/λ is the wavenumber and ω = 2π f is the angular frequency. In this case, though, assume φ = +30o and Eo = 1 kV/m. What is the value of Ex(z,t) when z/λ = 0.25 and ft = 0.125?

Answers

Answer:

Explanation:

Ex(z,t) = Eocos(kz - ω t + φ)

k = 2π/λ  , ω = 2π f

φ = +30° , E₀ = 10³ V .

z/λ = 0.25 , ft = 0.125

Ex(z,t) = Eocos(2πz/λ - 2πf t + φ)

Putting the values given above

Ex(z,t) = 10³ cos ( 2π / 4 - 2π x .125 + 30⁰ )

= 1000cos (90⁰ - 45+30)

= 1000 cos 75

=258.8  V .

Using the equation for the distance between fringes, Δy = xλ d , complete the following. (a) Calculate the distance (in cm) between fringes for 694 nm light falling on double slits separated by 0.0850 mm, located 4.00 m from a screen. cm (b) What would be the distance between fringes (in cm) if the entire apparatus were submersed in water, whose index of refraction is 1.333? cm

Answers

Answer:

Explanation:

Distance between fringe or fringe width =  xλ /  d

where x is location of screen and d is slit separation

Given x = 4 m

λ = 694 nm

d = .085 x 10⁻³ m

distance between fringes

= 4 x 694 x 10⁻⁹ / .085 x 10⁻³

= 4 x 694 x 10⁻⁹ / 85 x 10⁻⁶

= 32.66 x 10⁻³ m

= 32.66 mm .

3.267 cm

b )

when submerged in water , wavelength in water becomes as follows

wavelength in water = wave length / refractive index

= 694 / 1.333 nm

= 520.63 nm

new distance between fringes

3.267 / 1.333

= 2.45 cm .

If the radius of curvature of the cornea is 0.75 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina

Answers

Answer:

The distance from the cornea vertex to the retina is 2.36 cm

Explanation:

The question is incomplete.

The complete question is as follows;

A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.

If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?

Solution.

We use image-object reaction to calculate the distance from the cornea vertex to the retina.

Mathematically;

n1/s + n2/s’ = n2-n1/R

From the question, we identify the following;

n1 ; Refractive index of air = 1

n2 ; Refractive index of lens = 1.4

S ; Object Distance = 36 cm

S’ = ?

R ; Radius of curvature of the cornea = 0.65

Substituting these values into the equation above;

1/36 + 1.4/S’ = (1.4-1)/0.65

{S’+ 36(1.4)}/36S’ = 0.4/0.65

{S’ + 50.4}/36S’ = 0.62

S’ + 50.4 = 22.32S’

50.4 = 22.32S’ -S’

21.32S’ = 50.4

S’ = 50.4/21.32

S’ = 2.36 cm

A diver shines light up to the surface of a flat glass-bottomed boat at an angle of 30° relative to the normal. If the index of refraction of water and glass are 1.33 and 1.5, respectively, at what angle (in degrees) does the light leave the glass (relative to its normal)?
A. 26
B. 35
C. 42
D. 22
E. 48

Answers

Answer:

35

Explanation:

According to snell's law which states that the ratio of the sin of incidence (i) to the angle of refraction(n) is a constant for a given pair of media.

sini/sinr = n

n is the constant = refractive index

Since the diver shines light up to the surface of a flat glass-bottomed boat, the refractive index n = nw/ng

nw is the refractive index of water and ng is that of glass

sini/sinr = nw/ng

given i = 30°, nw = 1.33, ng = 1.5, r = angle the light leave the glass

On substitution;

sin 30/sinr = 1.33/1.5

1.5sin30 = 1.33sinr

sinr = 1.5sin30/1.33

sinr = 0.75/1.33

sinr = 0.5639

r = arcsin0.5639

r ≈35°

angle the light leave the glass is 35°

Proposed Exercise - Mass Center of a Composite Body Determine the coordinates (x, y) of the center of mass of the body illustrated in the picture below

Answers

Answer:

x = 3.76 cm

y = 3.76 cm

Explanation:

This composite shape can be modeled as a square (7.2 cm × 7.2 cm) minus a quarter circle in the lower left corner (3.6 cm radius) and a right triangle in the upper right corner (3.6 cm × 3.6 cm).

The centroid of a square (or any rectangle) is at x = b/2 and y = h/2.

The centroid of a quarter circle is at x = y = 4r/(3π).

The centroid of a right triangle is at x = b/3 and y = h/3.

Build a table listing each shape, the coordinates of its centroid (x and y), and its area (A).  Use negative areas for the shapes that are being subtracted.

Next, multiply each coordinate by the area (Ax and Ay), sum the results (∑Ax and ∑Ay), then divide by the total area (∑Ax / ∑A and ∑Ay / ∑A).  The result will be the x and y coordinates of the center of mass.

See attached image.

To practice Problem-Solving Strategy 6.1: Circular motion A highway curve with radius R = 274 m is to be banked so that a car traveling v = 25.0 m/s will not skid sideways even in the absence of friction. At what angle should the curve be banked?

Answers

Answer:

The curve should be banked at an angle of 13 degrees.

Explanation:

We have,

Radius of a highway curve is 274 m

Speed of car on this curve is 25 m/s

Let [tex]\theta[/tex] is the banking angle. On a banked curve, the angle of safe diving is given by following expression.

[tex]\tan\theta=\dfrac{v^2}{Rg}[/tex]

g = 10 m/s²

Plugging all the values in above formula,

[tex]\tan\theta=\dfrac{(25)^2}{274\times 9.8}\\\\\theta=\tan^{-1}\left(\dfrac{(25)^{2}}{274\times9.8}\right)\\\\\theta=13^{\circ}[/tex]

So, the curve should be banked at an angle of 13 degrees.

The brakes of a car are applied to give it an acceleration of -2m/s^2. The car comes to a stop in 3s. What was its speed when the brakes were applied?

Answers

Answer:

So if its acceleration is -2m/s^2 that means every second the initial velocity would be subtracted by 2. So since it took 3 seconds 2*3=6. The initial velocity was 6 m/s

Refer to a situation where you exert a force F on a crate of mass M, moving it at a speed v a distance d across a floor in a time interval t. The quantity F d/t is?
a.) kinetic energy of the crate
b.) potential energy of the crate
c.) linear momentum of the crate
d.) work you do on the crate
e.) power you supply to the crate

Answers

Answer:

e.) power you supply to the crate

Explanation:

According to given data, we have:

F = Force exerted on the crate

M = Mass of the crate

v = Speed of motion of the crate

d = Distance traveled by the crate across the floor

t = Time interval passed

Now, we try to analyze the given quantity:

=> F d/t

=> (Force)(Displacement)/(Time)

but, (Force)(Displacement) = Work Done

Therefore,

=> Work Done/Time

but, Work Done/Time = Power

Therefore,

=> Power

Hence, the quantity F d/t is:

e.) power you supply to the crate

Two spectators at a soccer game see, and a moment later hear, the ball being kicked on the playing field. The time delay for the spectator A is 0.55 s, and for the spectator B it is 0.45 s. Sight lines from the two spectators to the player kicking the ball meet at an angle of 90°. The speed of sound in the air is 343 m/s.
How far are (a) spectator A and (b) spectator B from the player?
(c) How far are the spectators from each other?

Answers

Answer:

a)188.65m

b)154.35m

c)243.7m

Explanation:

Given data:

[tex]t_A=0.55s[/tex]

[tex]t_B=0.45s[/tex]

(a) The distance from the kicker to each of the 2 spectators is given by:

[tex]d_A=v \times t_A[/tex]

where,

v= speed of sound

[tex]t_A[/tex]=time taken for the sound waves to reach the ears

[tex]d_A=343\times 0.55=188.65[/tex]m

(b)[tex]d_B=v \times t_B[/tex]

where,

v= speed of sound

[tex]t_B[/tex]=time taken for the sound waves to reach the ears

[tex]d_B=343\times 0.45=154.35m[/tex]

(c)As the angle b/w slight lines  from the two spectators to the player is right angle,

hypotenuse=the distance b/w 2 spectators

and, the slight lines are the other 2 lines

[tex]D^2=d_A^2+d_B^2\\D=\sqrt{188.65^2+154.35^2} \\D= 243.7m[/tex]

someone please help me out thanks

Answers

Answer:
Theory

Explanation:
The scientific form that is used to describe a testable model that seeks to explain natural phenomena is called theory.

Answer:

The answer is D)Theory

Explanation:

This is due because a theory is a scientific term and is a testable model that scientists seek to explain a phenomenon. You can also find out the answer by the process of elimination it can't be data because that would be something they already know and something they use to prove not explain. It can't be law because it isn't testable but can be used to explain. So that leaves you with two answers hypothesis and theory which are very similar but it isn't hypothesis because it isn't used to explain it to help the scientists come up with a theory and accumulate what might happen.

EASY! WILL REWARD BRAINLIEST!

Electrical current is defined as _____.

the capacity to store charge
the flow of electric charge per unit time
the amount of stored electric energy
the voltage of the battery

Answers

Electrical current is defined as the flow of electric charge per unit time.

A rod of mass M = 154 g and length L = 35 cm can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m = 11 g, moving with speed V = 9 m/s, strikes the rod at angle θ = 29° a distance D = L/3 from the end and sticks to the rod after the collision.Calculate the rotational kinetic energy, in joules, of the system after the collision.

Answers

Answer:

Explanation:

moment of inertia of the rod = 1/3 mL² , m is mass and L is length of rod.

1/3 x .154 x .35²

= .00629

moment of inertia  of putty about the axis of rotation

= m d² , m is mass of putty and d is distance fro axis

= .011 x( .35 / 3 )²

= .00015

Total moment of inertia I = .00644 kgm²

angular momentum of putty about the axis of rotation

= mvRsinθ

m is mass , v is velocity , R is distance where it strikes the rod and θ is angle  with the rod at which putty strikes

= .011 x 9 x .35 / 3 x sin 29

= .0056

Applying conservation of angular momentum

angular momentum of putty = angular momentum of system after of collision

.0056 =  .00644 ω where ω is angular velocity of the rod after collision

ω = .87 rad /s .

Rotational energy

= 1/2 I ω²

I is total moment of inertia

=  .5 x .00644 x .87²

= 2.44 x 10⁻³ J .

Complete the first and second sentences, choosing the correct answer from the given ones.
1. A temperature of 100 K corresponds on a Celsius scale to 100 ° C / 0 ° C / 173 ° C / -173 ° C.
2. At 50 ° C, it corresponds to a Kelvin scale of 150 K / 323 K / 273 K / 223 K.

Answers

Explanation:

Complete the first and second sentences, choosing the correct answer from the given ones.

1. T = 100 K

[tex]^{\circ}C=K-273[/tex]

Put T = 100 K

[tex]T=100-273=-173^{\circ} C[/tex]

A temperature of 100 K corresponds on a Celsius scale to (-173 °C)

2. T = 50 °C

[tex]K=^{\circ}C+273\\\\K=50+273\\\\T=323\ K[/tex]

So, At 50 °C, it corresponds to a Kelvin scale of 323 K.

A solid exerts a force of 500 N. Calculate the pressure exerted to the surface where area

of contact is 2000 cm2.

Answers

Answer:

2500 N/m²

Explanation:

Pressure: This can be defined as the force acting normally on a surface per unit area.

The expression for pressure is give as

P = F/A...................... Equation 1

Where P = pressure (N/m²), F = force (N), A = Contact area (m²)

Given: F = 500 N, A = 2000 cm² = (2000/10000) m = 0.2 m.

Substitute into equation  1

P = 500/0.2

P = 2500 N/m²

Hence the pressure exerted to the surface is 2500 N/m²

A rocket blasts off vertically from rest on the launch pad with an upward acceleration of 2.90 m/s2 . At 20.0s after blastoff, the engines suddenly fail, which means that the force they produce instantly stops.
(A) How high above the launch pad will the rocket eventually go?
(B) Find the rocket's velocity at its highest point.
(C) Find the magnitude of the rocket's acceleration at its highest point.
(D) Find the direction of the rocket's acceleration at its highest point.
(E) How long after it was launched will the rocket fall back to the launch pad?
(F) How fast will it be moving when it does so?

Answers

Answer:

A) 580m

B) 0 m/s

C) 9.8m/s^2

D) downward

E) 10.87s

F) 106.62 m/s

Explanation:

A) The distance traveled by the rocket is calculated by using the following expression:

[tex]y=\frac{1}{2}at^2[/tex]

a: acceleration of the rocket = 2.90 m/s^2

t: time of the flight = 20.0 s

[tex]y=\frac{1}{2}(2.90\frac{m}{s^2})(20.0s)^2=580m[/tex]

B) In the highest point the rocket has a velocity with magnitude zero v = 0m/s because there the rocket stops.

C) The engines of the rocket suddenly fails in the highest point. There, the acceleration of the rocket is due to the gravitational force, that is 9.8 m/s^2

D) The acceleration points downward

E) The time the rocket takes to return to the ground is given by:

[tex]t=\sqrt{\frac{2y}{g}}=\sqrt{\frac{2(580m)}{9.8m/s^2}}=10.87s[/tex]

10.87 seconds

F) The velocity just before the rocket arrives to the ground is:

[tex]v=\sqrt{2gy}=\sqrt{2(9.8m/s ^2)(580m)}=106.62\frac{m}{s}[/tex]

Use the position function s(t) = -16t + v_0t + s_0 for free falling objects. A ball is thrown straight down from the top of a 600-foot building with an initial velocity of -30 feet per second. (a) Determine the position and velocity functions for the ball. (b) Determine the average velocity on the interval [1, 3]. (c) Find the instantaneous velocities when t=1 and t=3. (d) Find the time required for the ball to reach ground level. (e) Find the velocity of the ball at impact.

Answers

Answer:

a) v = -30 - 32 t ,  s (t) = 600 - 30 t -16 t² , b) v = -32 ft / s

c) v (1) = -62 ft / s,  v (3) = -126 ft / s , d) t = 7.13 s , e)  v = -258.16 ft / s

Explanation:

a) For this exercise they give us the function of the position of the ball

          s (t) = s (o) + v_o t - 16 t²

notice that you forgot to write the super index

indicate the initial position of the ball

        s (o) = 600 ft

also indicates initial speed

        v_o = - 30 ft / s

let's substitute in the equation

        s (t) = 600 - 30 t -16 t²

to find the speed we use

       v = ds / dt

       v = v_o - 32 t

       v = -30 - 32 t

b) To find the average speed, look for the speed at the beginning and end of the time interval

t = 1 s

     v (1) = -30 -32 1

     v (1) = - 62 ft / s

t = 3 s

     v (3) = -30 -32 3

     v (3) = -126 ft / s

the average speed is

    v = (v (3) -v (1)) / (3-1)

    v = (-126 +62) / 2

    v = -32 ft / s

c) instantaneous speeds, we already calculated them

    v (1) = -62 ft / s

    v (3) = -126 ft / s

d) the time to reach the ground

in this case s = 0

    0 = 600 - 30 t -16 t²

     t² + 1,875 t - 37.5 = 0

we solve the quadratic equation

     t = [-1,875 ±√ (1,875² + 4 37.5)] / 2

     t = [1,875 ± 12.39] / 2

     t₁ = 7.13 s

     t₂ = negative

Since the time must be positive, the correct answer is t = 7.13 s

e) the speed of the ball on reaching the ground

     v = -30 - 32 t

     v = -30 - 32 7.13

      v = -258.16 ft / s

Other Questions
megan has 50 cent i nickl how much more coins douse Megan need Stream of consciousness discribes Evaluate:12.16 x .13 = What is true about the completely simplified sum of the polynomials 3x2y2 2xy5 and 3x2y2 + 3x4y?The sum is a trinomial with a degree of 5.The sum is a trinomial with a degree of 6.The sum is a binomial with a degree of 5.The sum is a binomial with a degree of 6. How many one-half cubes with dimensions of 1\2x1x1 fit in a unit cube?0 1O 2 A client who follows the islamic faith has been hospitalized what kind of medicarion would rhis client likely refuse? MedicationWith beef ingredients Medication with pork ingredientsMedication with hala ingredients or Medication with kosheR ingredients ? The mean of 3 numbers is 4The two numbers are 1,9 what is the missing number? Business process design (BPD) is also adequately named the following except:__________. a. Reengineering b. Business process innovation c. Business process engineering d. Downsizing or restructuring the table shows ordered pairs of the function y=16+0.5x. Which ordered pair could be the missing values represented by (x,y)? Count then plot the total number of atoms in the reactants to total atoms in the products for the equation 2H + O 2HO1 Reactant2 Reactants3 Reactants4 Reactants5 Reactants6 Reactants 73 The messenger RNA sequence that codes for the amino acid chainTYR-ARG-GLY-VAL-ALA-LEU is(1) UAU-CGA-GUU-UUU-UUA-CUCO (2) UAU-CGA-GGA-GUU-GCG-CUCO (3) CUC-GCG-GUU-GGA-CGA-UAUO (4) CUC-UUA-UUU-GUU-CGA-UAU 6. One 15 A general-purpose circuit should be installed per how many square feet of floor space?O A. 750OB. 400O C. 600O D. 500 The diagram shows a regular pentagon with centre O. Which choice could be a topic for an entertaining speech?A. how to make a scrapbookB. reasons to become a vegetarianC. the influence of Martin Luther King, Jr.D. my most embarrassing moment helpppp plsssssWhich helped unify China?a) new rights and power for womenb) standardized weights and measures and coinagec) an official national religiond) literature at the imperial court Consider the homogeneous second-order linear differential equation y+4y12y=0. Which of the following pairs gives two solutions to this equation? A. y1=e2x,y2=e6x B. y1=e3x,y2=e1x C. y1=e2x,y2=e2x D. y1=e12x,y2=xe12x E. y1=cos(12x),y2=sin(12x) F. y1=e4x,y2=e12x Then for these solutions find a particular solution of the form y=c1y1+c2y2 that satisfies the initial conditions y(0)=5,y(0)=0. y = y1 + y2. Dawn raises money for her school in a jog-a-thon. She will get three dollars for every lap she completes. If it takes 4 laps to jog 1 mile, and Dawn jogs a total of 12 miles, how much money will Dawn raise for her school?pls help Action and reaction forces are described by newtons what law of motion Ed Sullivan was the host of what show?O A. Toast of the TownO B. American BandstandO C. Soul TrainO D. Hit Parade aWhich of the following is not true of the terracotta soldiers?The terracotta soldiers were found in Shaanxi.b. The terracotta soldiers were originally painted, however most of the paint has worn away over time.The emperor guarded by the terracotta soldiers is considered China's strongest leader throughoutall of history,d. The terracotta soldiers carried spears, swords, daggers, and axes.C.