Answer:
The 90th percentile for the distribution of the total contributions is $6,342,525.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For sums of size n, the mean is [tex]\mu*n[/tex] and the standard deviation is [tex]s = \sqrt{n}*\sigma[/tex]
In this question:
[tex]n = 2025, \mu = 3125*2025 = 6328125, \sigma = \sqrt{2025}*250 = 11250[/tex]
The 90th percentile for the distribution of the total contributions
This is X when Z has a pvalue of 0.9. So it is X when Z = 1.28. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]1.28 = \frac{X - 6328125}{11250}[/tex]
[tex]X - 6328125 = 1.28*11250[/tex]
[tex]X = 6342525[/tex]
The 90th percentile for the distribution of the total contributions is $6,342,525.
what is the value of x
14
15
16
17
Answer:
14
Step-by-step explanation:
Opposite angles in a rhombus are congruent. Even if you didn't know that, adding up the angles in this quadrilateral would tell you that ...
(5x)° = 70°
x = 70/5 = 14 . . . . . divide by 5
The value of x is 14.
simplify 3^5•3^4
a.) 3•20
b. 3^9
c.) 6^9
d.) 3^20
Answer:
But if we are doing 3^x we need to add both of them
This is a rule you should remember if you have both same base to x power when you are multiplying
5+4 = 9
answer is 3^9 or 19683
A plane intersects the prism perpendicular to the base, intersecting opposite sides of the base. Which best describes the cross section?
Answer:
Step-by-step explanation:
For a rectangular prism, a plane intersecting this prism produces a two dimensional figure as its cross section and in this case the cross section is a rectangle.
For a triangular prism, a plane intersecting this prism produces a two dimensional figure as its cross section and in this case the cross section is a triangle.
Suppose you have a job teaching swimming lesson and get paid $6 an hour you also have a job as a chasier and get pay $8 and hour if you cannot work more than 15 hours a week what are the number you f hours you can work at each job and still make at least $100
Answer:
You can work no more than 10 hours teaching, and must work at least 5 hours cashiering. The remaining hours can be worked at the other job until the goal is reached.
Step-by-step explanation:
The restrictions give rise to two inequalities. If we ...
let x represent teaching hours
let y represent cashiering hours
then the restrictions are ...
x + y ≤ 15 . . . . total hours cannot exceed 15
6x +8y ≥ 100 . . . . you want to earn at least $100
The solution set for these inequalities is a triangular area on a graph with vertices at ...
(x, y) = (10, 5), (0, 12.5), (0, 15)
You must work at least 5 hours cashiering, and the remainder of necessary time at teaching.
If your answer is in decimal form, round to 2 decimal places. For example, if your answer is .412, enter it into the fill-in-the-blank as .41, or if your answer is 1.415, enter it into the fill-in-the-blank as 1.42. If there are no decimals in your answer, you will simply enter the number; so if your answer is 2, enter 2 with no decimals. Do not enter any extra spaces, do not enter commas or $ or % symbols.
Answer:
If there is no decimal just put number and if the number is higher than 5 you round up example 1.46 you would put 1.5
Step-by-step explanation:
HOPE IT HELPS
Peggy had four times as many quarters as nickels. She had $2.10 in all. How many nickels and how many quarters did she have?
If the variable n represents the number of nickels, then which of the following expressions represents the number of quarters?
Answer:
2 nickels8 quartersStep-by-step explanation:
If n represents the number of nickels, and the number of quarters is 4 times the number of nickels, then the number of quarters is represented by 4n.
The total value of the coins in cents is ...
5(n) +25(4n) = 210
105n = 210 . . . . . . . . collect terms
n = 210/105 = 2 . . . . number of nickels
4n = 4(2) = 8 . . . . . . number of quarters
Peggy has 2 nickels and 8 quarters.
Find the value of x from this adjoining figure
Answer:
[tex]x=15^\circ[/tex]
Step-by-step explanation:
Please refer to the attached figure for labeling of given diagram:
We are given the following angles:
[tex]\angle AOC = 3x^\circ\\\angle BOD = 2x^\circ\\\angle EOF = 7x^\circ[/tex]
Angles opposite to each other when they are formed by crossing of two lines are known as vertically opposite angles. And vertically opposite angles are always equal to each other.
Using property of vertically opposite angles:
[tex]\angle EOF = \angle AOB = 7x^\circ[/tex]
Line CD is a straight line, so [tex]\angle COD = 180^\circ[/tex]
Also,
[tex]\angle COD = \angle COA+\angle AOB+\angle BOD = 180^\circ\\\Rightarrow 3x + 7x + 2x=180^\circ\\\Rightarrow 12x =180^\circ\\\Rightarrow x = \dfrac{180}{12}\\\Rightarrow x = 15^\circ[/tex]
Hence, answer is [tex]x = 15^\circ[/tex].
Anyone Can help me? Thanks
Answer:
9.8
Step-by-step explanation:
updated
9^2=x^2+4^2
9*9=x*x+4*4
81=x*x-16
+16. +16
97=x*x
√97=√x*x
√97=x
So the answer is √97, but the question wants it rounded so it's actually 9.8
In each of the following situations, data are obtained by conducting a research study. Classify each Experimental or Correlational.
Research Study
1. A researcher is interested in whether listening to different types of music or no music while taking a test affects test scores. Students are randomly assigned to one of three groups: The first group takes a test without listening to an iPod, the second group takes the same test while listening to classical music on an iPod, and the third group takes the test while listening to rock music on an iPod. The researcher compares the test scores across the three groups.
2. A psychologist is interested in gender and cognition. She collects data on a large sample of siblings, recording their gender, birth order, and IQ.
3. A professor of ophthalmology is interested in developmental precursors of vision disorders. He collects data from a sample of teenagers on right-eye vision, left-eye vision, and whether the bedroom light was kept off or on as they slept during the night as babies.
Answer:
1. Experimental
2. Correlational
3. Experimental.
Step-by-step explanation:
1. Experimental.
Researches are interested on finding the effects of music on a test.
2. Correlational
Researchers are interested on finding the correlation of the gender and cognition from different samples
3. Experimental
The Researcher wants to know the effects of bedroom light.
Please answer this correctly
Answer:
A =12.56 m^2
Step-by-step explanation:
Find the area of a circle with radius 4
A = pi r^2
A = 3.14 * 4^2
A =50.24
Since this is 1/4 of the circle, multiply by 1/4
A = 1/4 * 50.24
A =12.56 m^2
Answer:
12.56
Step-by-step explanation:
the formula for the area of a circle is the following:
[tex]\pi r^{2}[/tex]
so divide that formula by 4 to get a quarter and plug in the radius for r.
[tex](\pi )(4^2)/4= 12.56[/tex]
Find the measure of angle x in the figure below: A triangle is shown. At the top vertex of the triangle is a horizontal line aligned to the base of the triangle. The angle formed between the horizontal line and the left edge of the triangle is shown as 56 degrees, the angle formed between the horizontal line and the right edge of the triangle is shown as 51 degrees. The angle at the top vertex of the triangle is labeled as y, and the interior angle on the right is labeled as 72 degrees. The interior angle on the left is labeled as x.
Answer:
[tex]x=35^\circ[/tex]
Step-by-step explanation:
From the diagram which I have drawn and attached below:
[tex]56^\circ+y+51^\circ=180^\circ$ (Sum of Angles on a Straight Line)\\y=180^\circ-(56^\circ+51^\circ)\\y=73^\circ[/tex]
Next, in the triangle, the sum of the three interior angles:
[tex]y+x+72^\circ=180^\circ\\$Since y=73^\circ\\73^\circ+x+72^\circ=180^\circ\\x=180^\circ-(73^\circ+72^\circ)\\x=35^\circ[/tex]
The value of angle x is 35 degrees.
6x +7y=-46 3x-2y=32 solve this system of linear equations
Hello
We have two equations and need to find x and y
(1) 6x+7y=-46
(2) 3x-2y=32
multiply (2) by 2 it gives
(2') 6x-4y=64
(1) - (2') gives
6x+7y-6x+4y=-46-64 = -110
so 11y = -110
y = -10
replace in (2) it gives
3x+20=32
3x=12
x = 12/3 = 4
the solution is (4,-10)
do not hesitate if you need further explanation
if you like my answer, tag it as the brainliest :-)
When estimating the minimum sample size for proportion, it is indicated to keep a 50/50 split between the probabilities of success (p) and failure (q), even if we know from previous studies where the split has been in the past.
a.True
b. False .
c. That's a tricky
Answer:
b) False
Explanation:
It is not needed to keep 50/50 split.
Find the value of z
Answer:
87°
Step-by-step explanation:
In the given figure, a quadrilateral is inscribed in a circle. Therefore, it is a cyclic quadrilateral.
Opposite angles of a cyclic quadrilateral are supplementary.
[tex] \therefore \: z + 93 \degree = 180 \degree \\ \therefore \: z = 180 \degree - 93 \degree \\ \huge \red{ \boxed{\therefore \: z = 87 \degree}}[/tex]
Please answer this correctly I have to finish this today as this is my deadline
Answer:
r = 1.499619733762 m There is no such thing a quarter radius!
C = 9.4223886775301 m
A = 7.065 m^2
Step-by-step explanation:
Calculate r and C | Given A
Given the area of a circle calculate the radius and circumference
r = √(A / π)
C = 2πr
Agenda:
r = radius
C = circumference
A = area
π = pi = 3.1415926535898
√ = square root
The graph of g(x) = ax^2 opens downward and is narrower than the graph of f(x) = x^2. Which of the following could be the value of a?
The value of a should be less than -1.
Equation of parabola,The equation of a parabola is given by the following function,
[tex]y=f(x)=\pm a(x-h)^2+k[/tex]
where,
(h, k) denotes the coordinates of its vertex,
a defines how narrower is the parabola, and the "-" or "+" that the parabola will open up or down.
Given to us,[tex]f(x) = x^2[/tex]
[tex]g(x)=ax^2[/tex]
SolutionFor the parabola,g(x) to be narrower than the parabola f(x) the value of a should be less than 1. also for the parabola to open downward the value of a is needed to be negative.
Hence, the value of a should be less than -1.
Learn more about Equation of parabola:
https://brainly.com/question/4443998
An unevenly heated plate has temperature T(x, y) in °C at the point (x, y). If T(2, 1) = 130, and Tx(2, 1) = 16, and Ty(2, 1) = −13, estimate the temperature at the point (2.03, 0.96). (Round your answer to 2 decimal places.)
Answer:
The estimated temperature at the point (2.03, 0.96) is 131
Step-by-step explanation:
In this question, we are to estimate the temperature at the given point using the temperature of the unevenly heated plate.
We proceed as follows;
In the question, we identify that the temperature at the point T(2,1) = 130 degrees celcius
Now, let’s look at how the temperature changes. There is a positive change of 16 units when we move across the x-axis and a negative decrease when we move up the y-axis to a tune of 16 units(negative)
Now, how does the problem wants us to move using the notation of change?
Look at the point (2.03, 0.96), since movement across the x-axis is positive, the motion here in terms of x i.e Δx is 0.03 while the corresponding motion in terms of y(albeit negative) is Δy = -0.04
Mathematically, the change in temperature is proportional to the distance traveled. What this means is that we need to multiply the changes in direction by the corresponding temperature. This is shown below;
ΔTx =Δx*Tx(2,1) => ΔTx = (0.03)*(16) = 0.48
ΔTy = Δy*Ty(2,1) => ΔTy = (-0.04)*(-13) = 0.52
We can now combine the equations above to form a single one as follows; which is an approximation;
ΔT = Δx*Tx(2,1) + Δy*Ty(2,1) => ΔT = (0.03)*(16) + (-0.04)*(-13) = 1
To arrive at the final answer, we add the change in temperature to the staring temperature which is ;
T(2.03,0.96) = T(2,1) + ΔT = 130 + 1= 131
At 2pm on Tuesday the temperature was -12
degrees. By 6pm the temperature dropped
to -20 degrees. What was the average
change in temperature each hour?
Answer:
-2×h
Step-by-step explanation:
because it drops-2 by hour so multiply-2 by the difference of hours
a business owes $8,000 on a loan. every month, the business pays half of the amount remaining on the loan. how much will the business pay in the six-month?
Answer:
$7875
Step-by-step explanation:
1 Month 4000 Paid
2 Months 2000 Paid
3 Months 1000 Paid
4 Months 500 Paid
5 Months 250 Paid
6 Months 125 paid
Total = $7875 Paid
Hope this helped ;)
I will mark you as BRANLIEST and I will give you 55 points if you answer correctly.
~Solve each system of equations using elimination. SHOW YOUR WORK
1) -4x+3y=-5
4x-5y=3
2) 2x+3y=36
10x-6y=12
Answer:
1. x = 2 y = 1
2. x = 17 y = 29/3
Step-by-step explanation:
1. Use elimination
-4x+3y=-5
4x-5y=3
x's cancel, so add them
-2y = -2
y = 1
substitute
4x -5(1) = 3
4x - 5 = 3
4x = 8
x = 2
2. Use elimination
2x+3y=36
10x-6y=12
Multiply top equasion by 5
10x+30y = 360
10x-6y = 12
x's cancel so subract
36y = 348
y = 29/3
Substitute
2x+3(2/3)=36
2x+2 = 36
2x = 34
x = 17
A newborn baby whose Apgar score is over 6 is classified as normal and this happens in 80% of births. As a quality control check, an auditor examined the records of 100 births. He would be suspicious if the number of normal births in the sample of 100 births fell below the lower limit of "usual." What is that lower limit?
Answer:
The lower limit is 72.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
If X is more than 2 standard deviations from the mean, it is unusual.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In this question, we have that:
[tex]n = 100, p = 0.8[/tex]
So
[tex]\mu = 0.8, s = \sqrt{\frac{0.8*0.2}{100}} = 0.04[/tex]
He would be suspicious if the number of normal births in the sample of 100 births fell below the lower limit of "usual." What is that lower limit?
2 standard deviations below the mean is the lower limit, so X when Z = -2.
Proportion:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]-2 = \frac{X - 0.8}{0.04}[/tex]
[tex]X - 0.8 = -2*0.04[/tex]
[tex]X = 0.72[/tex]
Out of 100:
0.72*100 = 72
The lower limit is 72.
The accompanying data are the times to failure (in millions per cycle) of high-speed turbine engine bearings made out of two different compounds. These were taken from "Analysis of Single Classification Experiments Based on Censored Samples from the Two-parameter Weibull Distribution" by J.I. McCool (The Journal of Statistical Planning and Inference, 1979) Compound 1 3.03 5.53 5.60 9.30 9.92 12.51 12.95 15.21 16.04 16.84 Compound 2 3.19 4.26 4.47 4.53 4.67 4.69 5.78 6.79 9.37 12.75 (a) Find the 0.84 quantile of the Compound 1 failure times (b) Give the coordinates of the two lower-left points that would appear on a normal plot of the compound 1 data (c) Make back-to-back stem-and-leaf plots for comparing the life length properties of bearings made from Compounds 1 and 2 (d) Make (to scale) side-by-side boxplots for comparing the life lengths for the two compounds. Mark numbers on the plots indicating the locations of their main features (e) Compute the sample means and standard deviations of the two sets of lifetimes (f) Describe what your answers to parts (c), (d), and (e) above indicate about the life lengths of these turbine bearings.
Find the given attachments
Given that f(x)=x^2+4x-32f(x)=x
2 +4x−32 and g(x)=x-4g(x)=x−4, find (f+g)(x)(f+g)(x) and express the result in standard form.
Answer:
So your question was not very clear but with (f+g) im guessing thats f(x)+g(x)
So first we add them x^2+4x-32 + x-4 then we will get x^2 + 5x - 36
Then we need to multiply both
(x^2+5x-36)(x^2+5x-36)
=
(x^2+5x-36)^2
The only reason im not solving it out is because it yields large numbers and you might not understand.
Dora likes to explore. Recently, she explored southeast Australia where she found some very large trees known as Eucalyptus regnans or Mountain Ash. She wondered if they were taller, on average, than the coastal Douglas Firs of her native state of Oregon in the United States, which have an average height of 250 feet in old growth areas. Dora measured the heights of 15 Mountain Ash trees in southeast Australia and found an average height of these trees of 293 feet. Suppose s 25 feet. Assume the heights of the 15 trees in Dora's sample are representative of the heights of all Mountain Ash trees in southeast Australia. The t-statistic for this problem is 6.661. Based on this t-statistic, which of the following is true? Choose the correct answer below.
A. With a p-value of 0.999, there is sufficient evidence to accept the null hypothesis as true.
B. With a p-value less than 0.0001, there is not sufficient evidence to reject the null hypothesis and accept the alternative as true. y
C. With a p-value less than 0.0001, there is sufficient evidence to reject the null hypothesis and accept the alternative as true.
D. With a p-value less than 0.0001, there is not sufficient evidence to accept the null hypothesis as true. 0 E. With a p-value of 0.999, there is not sufficient evidence to reject the null hypothesis and accept the alternative as true.
Answer:
C. With a p-value less than 0.0001, there is sufficient evidence to reject the null hypothesis and accept the alternative as true.
Step-by-step explanation:
She performed an hypothesis test with the sample of size n=15 that she takes. The t-statistic has a value of 6.661.
The degrees of freedom for this sample size are:
[tex]df=n-1=15-1=14[/tex]
The P-value for a statistic t=6.661 and 14 degrees of freedom is:
[tex]\text{P-value}=P(t>6.661)=0.00001[/tex]
With these P-value we know that the effect is significant and the null hypothesis is rejected. There is enough evidence to support the claim that the mean height of Mountain Ash trees is greater than the coastal Douglas Firs.
Which expression is equivalent to the given expression? (3m-4)^3(3m^5)
Answer: D.
Step-by-step explanation:
You want to cube each term in the parentheses. When you take an exponent to an exponent, you just multiply them. You get (27m^-12). In order to get rid of that negative exponent, you should put a one over the m term and make -12, +12:
[tex](\frac{27}{m^12} )(3m^5)[/tex]
Multiply the numerators to get:
[tex]81m^5[/tex]
You now have:
[tex]\frac{81m^5}{m^12}[/tex]
When you divide exponents, you subtract them. 5 - 12 = -7
You have m^-7 which is the same as 1/m^7. Finally, mulitply that by the 81 we left out to get the answer of D.
The expression equivalent to the given expression (3m⁻⁴)³(3m⁵) is 81/m⁷. So, option D is correct.
What is exponentiation?Exponentiation is a mathematical operation that involves two numbers, the base b, and the exponent or power n, and is pronounced as "b raised to the power of n." It is written as bⁿ and is pronounced as "b raised to the power of n."
When n is a positive integer, bⁿ = b × b × b ×...× b
and b⁻ⁿ = 1/bⁿ
If n = 0, then b⁰ = 1.
How to solve this problem?Here, (3m⁻⁴)³(3m⁵) = (3³)(m⁻⁴)³(3m⁵) = (27m⁻¹²)(3m⁵) = 81m⁵⁻¹² = 81/m⁷
Therefore, the expression equivalent to the given expression (3m⁻⁴)³(3m⁵) is 81/m⁷. So, option D is correct.
Learn more about exponentiation here -
https://brainly.com/question/14513824
#SPJ2
What is the value of X ?
A-12
B-17
C-23
D-25
Step-by-step explanation:
25 answer by considering
Express the function G in the form f∘g. (Enter your answers as a comma-separated list. Use non-identity functions for
f(x) and g(x).)
Answer:
i dont really know what it is
Richard and Stephen win some money and share it in the ratio 6:1. Richard gets £60 more than Stephen. How much did they get altogether?
Answer:
They got £84 altogether.
Step-by-step explanation:
We can see that Richard get's 6 parts and Stephen gets 1 part. We can subtract these two to get 5 parts. We know that five parts equals £60, so we can divide by 5 to get 1 part equals £12. We are looking for the amount they got altogether, which is equal to 7 parts, 6 parts + 1 part. We multiply £12 by 7, leaving us with £84, which is our answer.
A researcher reports that the farther college students are from their parents, the more often they communicate with their parents (either by phone or by e-mail). Is this an example of a positive correlation or a negative correlation?
Answer:
Positive correlation
Step-by-step explanation:
A positive correlation exists between two variables, when both variables tend to move along the same direction. In order words, when one particular variable increases, there is also an increase in the other variable.
The case stated above is an example of positive correlation, because, the farther the students are from their parents, the more often they communicate with them. As distance increases, so does the number of, perhaps, phone calls increases as well.
Answer:
Positive correlation
Step-by-step explanation:
A positive correlation occurs whereby in a relationship between two variables, both variable move in the same direction meaning as one increases, the other also increases.
In this study, an increase in distance enforces an increase in communication with the parents.
Given the function g(x)=2∙3x+1, Find g−1 (x)
Answer:
[tex]g^{-1}(x)=\frac{x-1}{6}[/tex]