According to the question, the gravitational force is 98 N. The frictional force is 39.2 N. The acceleration is 1.5 m/s².
What is gravitational force?Gravitational force is a natural phenomenon that exists between any two objects with mass. It is the force of attraction between two masses that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. This force is usually expressed in Newton's law of universal gravitation, where the force of gravity between two objects can be calculated by multiplying their masses and dividing by the square of the distance between them.
The gravitational force is the force of gravity that acts on the box and is equal to the mass of the box times the acceleration due to gravity.
Gravitational force = 10 kg × 9.8 m/s² = 98 N
The normal force is equal to the mass of the box times the acceleration due to gravity.
Frictional force = coefficient of friction × normal force
= 0.4 × (10 kg × 9.8 m/s²)
= 39.2 N
The acceleration of the box is calculated using Newton's second law of motion, which states that the net force on an object is equal to the mass of the object times its acceleration.
Net force = mass × acceleration
15 N = 10 kg × a
a = 1.5 m/s²
To learn more about gravitational force
https://brainly.com/question/72250
#SPJ4
Two ropes are attached to a tree, F₁=5.01+3.0/and, F₂=3.01+2.0f forces of and
are applied. The forces are coplanar (in the same plane). Find the direction of the net
force.
In physics, we use vector addition to calculate the net force direction when more than one force is applied. Given the separate x and y components of two forces, F₁ and F₂, we sum the components respectively to find the x and y components of the net force. The arctangent of the ratio Fy/Fₓ then gives the direction in degrees relative to the x-axis.
Explanation:In physics, specifically in mechanics, you can calculate the net force direction when two forces, F₁ and F₂, are being applied by using vector addition. Vector addition can be visualized graphically using arrows or mathematically using components. In this case, since the forces are given in the form of components (x and y), let's handle it mathematically, the x-component of the net force (Fₓ) will be the sum of the x-components of F₁ and F₂. Similarly, the y-component of the net force (Fy) will be the sum of the y-components of F₁ and F₂. This gives us Fₓ = 5.01N + 3.01N and Fy = 3.0N + 2.0N. The direction of the net force can then be calculated using arctangent of the ratio Fy/Fₓ. This will give the direction in degrees relative to the x-axis.
Learn more about Force calculation here:https://brainly.com/question/26066229
#SPJ1
Your firm has been hired to design a system that allows airplane pilots to make instrument landings in rain or fog. You've decided to place two radio transmitters 50 m apart on either side of the runway. These two transmitters will broadcast the same frequency, but 180 degrees out of phase with each other. This will cause a nodal line to extend straight off the end of the runway. As long as the airplane's receiver is silent, the pilot knows she's directly in line with the runway. If she drifts to one side or the other, the radio will pick up a signal and sound a warning beep. To have sufficient accuracy, the first intensity maxima need to be 58 m on either side of the nodal line at a distance of 5. 0 km
The frequency (f) using the speed of light (c ≈ 3 x 10^8 m/s): 4.67 x 10^8 Hz for the transmitters.
To design a system that allows airplane pilots to make instrument landings in rain or fog using two radio transmitters 44 m apart on either side of the runway, you need to determine the frequency for the transmitters. To have sufficient accuracy, the first intensity maxima should be 70 m on either side of the nodal line at a distance of 4.8 km.
We can use the formula for constructive interference to find the frequency:
sin(θ) = mλ / d
Here, θ is the angle between the nodal line and the location of the first intensity maxima, m is the order of the maxima (m=1 for the first maxima), λ is the wavelength, and d is the distance between the transmitters (44 m).
First, find the angle θ using the tangent function:
tan(θ) = 70 m / 4.8 km = 70 m / 4800 m
θ = arctan(70/4800) ≈ 0.0146 radians
Now, use the sin(θ) formula with m=1 and d=44 m:
sin(0.0146) = 1 * λ / 44 m
λ ≈ 0.0146 * 44 m ≈ 0.6424 m
Now that we have the wavelength, we can find the frequency (f) using the speed of light (c ≈ 3 x 10^8 m/s):
f = c / λ
f ≈ (3 x 10^8 m/s) / 0.6424 m ≈ 4.67 x 10^8 Hz
You should specify a frequency of approximately 4.67 x 10^8 Hz for the transmitters.
To know more about frequency, refer here:
https://brainly.com/question/30093033#
#SPJ11
Complete question:
Your firm has been hired to design a system that allows airplane pilots to make instrument landings in rain or fog. You've decided to place two radio transmitters 44 {\rm m} apart on either side of the runway. These two transmitters will broadcast the same frequency, but out of phase with each other. This will cause a nodal line to extend straight off the end of the runway (see Figure 21.30b). As long as the airplane's receiver is silent, the pilot knows she's directly in line with the runway. If she drifts to one side or the other, the radio will pick up a signal and sound a warning beep. To have sufficient accuracy, the first intensity maxima need to be 70 {\rm m} on either side of the nodal line at a distance of 4.8 {\rm km}.
What frequency should you specify for the transmitters?
i need help with this pls!<333 would be so appreciated
The magnitude of the combined speed is 326.15 km/hr and the direction is 2.62 degrees.
The magnitude and directionTo find the magnitude and direction of the combined speed, we can use vector addition. Let's represent the velocity of the plane as vector A, and the velocity of the wind as vector B. The magnitude of vector A is 300 km/hr, and the angle between vector A and vector B is 60 degrees.
To find the x and y components of vector B, we can use trigonometry. The angle between vector B and the x-axis is 30 degrees (90 - 60), so we have:
cos(30) = adjacent/hypotenuse
adjacent = cos(30) * 30 km/hr
adjacent = 25.98 km/hr
sin(30) = opposite/hypotenuse
opposite = sin(30) * 30 km/hr
opposite = 15 km/hr
So, vector B has an x-component of 25.98 km/hr and a y-component of 15 km/hr.
Now we can add vectors A and B by adding their x and y components separately. Let's call the resulting vector C:
Cx = Ax + Bx = 300 km/hr + 25.98 km/hr = 325.98 km/hr
Cy = Ay + By = 0 km/hr + 15 km/hr = 15 km/hr
The magnitude of vector C is given by the Pythagorean theorem:
|C| = sqrt(Cx^2 + Cy^2) = sqrt((325.98 km/hr)^2 + (15 km/hr)^2) = 326.15 km/hr
The direction of vector C can be found by taking the inverse tangent of Cy/Cx:
theta = tan^-1(Cy/Cx) = tan^-1(15 km/hr / 325.98 km/hr) = 2.62 degrees
So the magnitude of the combined speed is 326.15 km/hr and the direction is 2.62 degrees.
Learn more on magnitude and direction here https://brainly.com/question/29648549
#SPJ1
A 200-N solid sphere 0. 20 m in radius rolls without slipping 6. 0 m down a ramp that is inclined at 34° with the horizontal. What is the angular speed of the sphere at the bottom of the slope if it starts from rest?
The angular speed of the sphere at the bottom of the ramp is approximately 7.64 rad/s.
We can use the conservation of energy principle. The total mechanical energy of the system (kinetic energy + potential energy) will be conserved, assuming there is no friction.
1. Find the potential energy of the sphere at the top of the ramp:
U = mgh
where m = 200 N, g = [tex]9.8 m/s^2[/tex], and h = d*sin(θ)
h = 6.0 m * sin(34°) = 3.40 m
U = (200 N)*([tex]9.8 m/s^2[/tex])*(3.40 m) = 6616 J
2. Find the kinetic energy of the sphere at the bottom of the ramp:
[tex]K = (1/2)*I*w^2 + (1/2)*mv^2[/tex]
where I is the moment of inertia of the sphere, w is the angular speed, and v is the linear speed of the sphere.
Since the sphere is rolling without slipping, we can use the relationship between linear and angular speed:
v = r*w
Also, for a solid sphere, the moment of inertia is I = (2/5)*m*r^2.
Substituting these values, we get:
[tex]K = (1/2)*(2/5)*m*r^2*w^2 + (1/2)*mv^2[/tex]
[tex]K = (1/5)*m*r^2*w^2 + (1/2)*mv^2[/tex]
At the bottom of the ramp, the sphere has no initial linear or angular speed, so v = 0.
3. Equate the initial and final energies to find the final angular speed:
K + U = U_f
where U_f = 0 (since the sphere has reached the bottom of the ramp and has no potential energy).
Substituting the values of K and U, we get:
[tex](1/5)*m*r^2*w^2 = -U[/tex]
[tex](1/5)*200 N*(0.20 m)^2*w^2 = -6616 J[/tex]
Solving for w, we get:
[tex]w = \sqrt{(-5*6616 J / (2*200 N*(0.20 m)^2))}[/tex]
w ≈ 7.64 rad/s
To know more about energy refer here
https://brainly.com/question/41687426#
#SPJ11
If i drop a ball 15 meters off the ground what will be the velocity right before it hits the ground
The velocity of the ball right before it hits the ground is approximately 17.15 m/s.
Assuming that there is no air resistance, the velocity of the ball right before it hits the ground can be calculated using the equation v² = u² + 2as, where v is the final velocity, u is the initial velocity (which is 0 m/s in this case), a is the acceleration due to gravity (which is approximately 9.8 m/s²), and s is the distance the ball falls (which is 15 meters in this case). Plugging these values into the equation, we get:
v² = 0² + 2(9.8)(15)
v² = 294
v ≈ 17.15 m/s
the velocity of the ball right before it hits the ground is approximately 17.15 m/s.
Therefore, the velocity of the ball right before it hits the ground is approximately 17.15 m/s.
Know more about the equations of motion here:
https://brainly.com/question/14355103
#SPJ11
What ethical concepts inform your personal code of ethics? How has it changed, if at all, from Unit 1? Explain.
Ethical concepts like fairness and respect can shape a person's personal code of ethics. Fairness means treating others equally and without bias, while respect involves acknowledging and appreciating the value of every individual.
Responsibility involves being accountable for one's actions and taking steps to avoid causing harm to others, and integrity involves acting in accordance with one's values and being honest and transparent.
An individual's personal code of ethics can change over time based on experiences, education, and personal growth. Unit 1 may have introduced new ethical concepts or challenged previously held beliefs, leading to a shift in one's personal code of ethics.
Additionally, changes in personal circumstances or exposure to new environments and cultures can also shape one's ethical framework. It is important for individuals to regularly reflect on and evaluate their personal code of ethics, as it serves as a guide for decision-making and behavior in both personal and professional settings.
To know more about ethics refer here:
https://brainly.com/question/28558775#
#SPJ11
A humpback whale dove beneath the ocean's surface, and 310 seconds later it sang to
another whale that was 1,800 meters away. The song's sound wave traveled at a constant
velocity of 1,500 meters per second toward the other whale. How much time did it take the
sound wave to travel from one whale to the other?
The sound wave took 1.2 seconds to travel from one whale to the other.
Velocity is a physical quantity that describes the rate of change of an object's position with respect to time and includes both the speed and direction of motion. It is a vector quantity, meaning it has both magnitude and direction and is typically measured in meters per second (m/s) or other appropriate units.
The time it took for the sound wave to travel from one whale to the other can be calculated using the formula:
time = distance/velocity
In this case, the distance between the whales is 1,800 meters and the velocity of sound in water is 1,500 meters per second. Therefore:
time = 1,800 meters / 1,500 meters per second
time = 1.2 seconds
Hence, The distance between the two whales was covered by the sound wave in 1.2 seconds.
To learn more about the velocity-time graph click:
https://brainly.com/question/11290682
#SPJ1
Particles 91, 92, and q3 are in a straight line.
Particles q1 = -1. 60 x 10-19 C, q2 = +1. 60 x 10-19 C,
and q3 = -1. 60 x 10-19 C. Particles q1 and q2 are
separated by 0. 001 m. Particles q2 and q3 are
separated by 0. 001 m. What is the net force on q2?
Remember: Negative forces (-F) will point Left
Positive forces (+F) will point Right
-1. 60 x 10-19 C
+1. 60 x 10-19 C
-1. 60 x 10-19 C
91
+ 92
93
0. 001 m
0. 001 m
According to the question the net force on q₂ is zero.
What is forces ?Force is an interaction between two objects which causes one object to change its state of motion. It can be described as a push or a pull on an object, and is measured in units of Newtons (N). Forces can be caused by a variety of things, including gravity, friction, magnetism, and electrical charges. Forces can cause objects to accelerate, decelerate, or remain in constant motion. Examples of forces include a person pushing a box, a car’s engine pushing it forward, and a magnet attracting a piece of metal.
The net force on q₂ is zero because of the symmetry of the particles. The two negative charges are the same distance away from q₂, which creates equal and opposite forces, canceling each other out.
Similarly, the two positive charges are also the same distance away, creating equal and opposite forces that also cancel each other out. Therefore, the net force on q₂ is zero.
To learn more about forces
https://brainly.com/question/12785175
#SPJ4
A certain vibrating string on a piano has a length of 74 cm and forms a standing wave having two antinodes. (a) Which harmonic does this wave represent?
(b) Determine the wavelength of this wave
(c) how many nodes are there if 20.0 Newton find the fundamental frequency I'm the next three frequencies that could cause standing wave patterns on the street
A standing wave with two antinodes on a vibrating string represents the 1st overtone, which is also known as the 2nd harmonic. The wavelength is 148 cm. The 2nd harmonic already has two antinodes, so for the 3rd, 4th, and 5th harmonics, there will be 3, 4, and 5 antinodes, respectively.
(a) A standing wave with two antinodes on a vibrating string represents the 1st overtone, which is also known as the 2nd harmonic.
(b) To determine the wavelength of this wave, first, recall that the length of the string is half of the wavelength for the 2nd harmonic. So, we can use the following formula:
Length of the string = Wavelength / 2
Now, plug in the given values:
74 cm = Wavelength / 2
To find the wavelength, multiply both sides by 2:
Wavelength = 74 cm × 2 = 148 cm
(c) If the tension in the string is 20.0 N, first, we need to find the fundamental frequency. In a standing wave pattern with 1 antinode (1st harmonic), the length of the string is equal to half of the wavelength. So, the wavelength of the fundamental frequency is:
Wavelength (1st harmonic) = 2 × Length of the string = 2 × 74 cm = 148 cm
To find the next three frequencies that could cause standing wave patterns on the string, we will look at the 3rd, 4th, and 5th harmonics. For each harmonic, the number of nodes increases by 1. The 2nd harmonic already has two antinodes, so for the 3rd, 4th, and 5th harmonics, there will be 3, 4, and 5 antinodes, respectively.
Learn more about antinodes here:-
https://brainly.com/question/30640087
#SPJ11
What type of fit would describe the following situations. a. the cap of a ball-point pen b. the lead in a mechanical lead pencil, at the tip c. the bullet in a barrel of a gun
a. The fit between the cap and a ball-point pen can be described as a "snug" or "friction" fit, as the cap is designed to stay securely in place when not in use.
b. The fit of the lead in a mechanical pencil at the tip can be described as a "precision" fit, as the lead needs to be held firmly and accurately within the pencil to allow for smooth and consistent writing.
c. The fit of a bullet in the barrel of a gun can be described as a "tight" or "interference" fit, as the bullet must be in close contact with the barrel to ensure accurate firing and prevent gas leakage during discharge.
Visit https://brainly.com/question/16289258 to learn more about fits
#SPJ11
A silver atom at rest has a mass of about 1. 8×10−25kg. What is the rest energy of a silver atom?
The rest energy of a silver atom can be calculated using Einstein's famous equation, E=[tex]mc^{2}[/tex], where E is the energy, m is the mass and c is the speed of light.
Rest energy of a silver atom (E) = mass of silver atom (m) x speed of light [tex](c)^{2}[/tex]
= 1.8 x [tex]10^{-25}[/tex] kg x (3 x [tex]10^{8}[/tex] [tex]m/s)^{2}[/tex]
= 1.62 x [tex]10^{8}[/tex] J
This means that even when the silver atom is at rest, it has an enormous amount of energy stored in its mass due to its mass-energy equivalence.
This concept is important in understanding nuclear reactions, where a small amount of mass is converted into energy through the process of nuclear fission or fusion.
To know more about Einstein, refer here:
https://brainly.com/question/31320432#
#SPJ11
a motor supplies power to move a 1000 kg box up a frictionless incline at a constant speed. the box moves 13 m in 1 hour. if the power that needs to be supplied by the motor is 30 w, what is the angle of the incline? answer in degrees.
The angle of the incline is approximately 56.9 degrees.
To determine the angle of the incline, we need to use some basic physics equations related to work, power, and energy.
Firstly, we know that the box is moving up the incline at a constant speed, which means that the net force acting on it must be zero. Since there is no friction, the only force acting on the box is its weight, which is given by:
F = m * g
Where F is the force, m is the mass of the box, and g is the acceleration due to gravity. Substituting the given values, we get:
F = 1000 kg * 9.8 m/s^2
= 9800 N
Next, we need to determine the work done by the motor to move the box up the incline. Since the box is moving at a constant speed, the work done must be equal to the power supplied by the motor multiplied by the time taken. Using the given values, we get:
Work = Power * Time
Work = 30 W * 3600 s
= 108000 J
Finally, we can use the concept of potential energy to relate the work done to the change in height of the box. The potential energy of an object is given by:
PE = m * g * h
Where PE is the potential energy, h is the height above some reference level, and all other variables are as defined above. Since the box is moving up a frictionless incline, its potential energy is increasing by an amount equal to the work done by the motor. Thus, we have:
Work = PE_final - PE_initial
PE_final = m * g * h_final
PE_initial = m * g * h_initial
Substituting the given values, we get:
108000 J = 1000 kg * 9.8 m/s^2 * (h_final - h_initial)
Since the box is moving up the incline, its final height must be greater than its initial height. Dividing both sides by 1000 * 9.8, we get:
h_final - h_initial = 11.02 m
Now, we can use trigonometry to relate the height difference to the angle of the incline. Since the box is moving a horizontal distance of 13 m, we have:
sin(theta) = (h_final - h_initial) / 13
sin(theta) = 11.02 / 13
theta = sin^-1(11.02 / 13)
theta = 56.9 degrees (rounded to one decimal place)
Therefore, the angle of the incline is approximately 56.9 degrees.
For such more question on net force
https://brainly.com/question/14361879
#SPJ11
A 2. 99 x 10-6 C charge is moving
perpendicular (90°) to the Earth's
magnetic field (5. 00 x 10-5 T). If the
force on it is 2. 14 x 10-8 N, how fast is
it moving?
the charge is moving at a speed of 1.43 x 10^3 m/s.
To solve this problem, we can use the equation for the magnetic force on a moving charge:
F = qvB
where F is the force, q is the charge, v is the velocity, and B is the magnetic field.
Rearranging the equation to solve for velocity, we get:
v = F / (qB)
Plugging in the given values, we get:
v = (2.14 x 10^-8 N) / [(2.99 x 10^-6 C) x (5.00 x 10^-5 T)]
Simplifying, we get:
v = 1.43 x 10^3 m/s
Therefore, the charge is moving at a speed of 1.43 x 10^3 m/s.
Know more about Charge Particles and Magnetic Fields here:
https://brainly.com/question/15302071?referrer=searchResults
#SPJ11
a pollen grain is placed in water state and explain the direction in which it moves
Answer:
When a pollen grain is placed in water, it may exhibit movement due to various factors such as osmosis, surface tension, and water absorption. The direction in which the pollen grain moves can depend on these factors and the specific characteristics of the pollen grain.
Osmosis: Osmosis is the movement of water molecules across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration. If the pollen grain has a higher solute concentration than the surrounding water, water molecules will move into the pollen grain, causing it to swell or expand. This can result in movement towards areas of lower water concentration.
Surface Tension: Surface tension is the property of a liquid that allows it to resist external forces. The surface tension of water can cause the pollen grain to be pulled or dragged along the surface of the water, creating movement in a particular direction. This movement is influenced by the shape and weight distribution of the pollen grain.
Water Absorption: The outer covering of a pollen grain, called the exine, may have the ability to absorb water. As water is absorbed, the pollen grain can become hydrated and change in size and weight. This change in physical properties can lead to movement in a specific direction.
It's important to note that the direction of movement may not always be uniform or predictable, as it can be influenced by multiple factors and the unique characteristics of the pollen grain. Additionally, external factors such as water currents or agitation can also affect the movement of the pollen grain in water.
Observing the actual movement of a pollen grain in water would provide a more accurate understanding of its specific direction and behavior in that particular instance.
Part A Under what condition is the angular momentum of an object conserved? O If there are no torques acting on it. O If there is no net torque acting on it. If it is a point particle. If there is no net force acting on it. Submit Request Answer Part B On what does the angular momentum of an object depend? Select all that apply. O The axis of rotation. The shape of the object. O The mass of the object. O The rate at which that the object rotates. Submit Request Answer
Part A: The angular momentum of an object is conserved if there is no net torque acting on it.
Part B: The angular momentum of an object depends on the following factors:
a. The axis of rotation: The choice of axis around which the object rotates affects its angular momentum.
b. The shape of the object: The distribution of mass within the object and its shape impact its angular momentum.
c. The mass of the object: Objects with larger masses tend to have greater angular momentum.
d. The rate at which the object rotates: The angular velocity, which represents the rate at which the object rotates, affects its angular momentum. Higher angular velocities result in higher angular momentum.
Therefore, the factors that affect the angular momentum of an object are:
The axis of rotationThe shape of the objectThe mass of the objectThe rate at which the object rotatesTo know more about angular momentum refer here
https://brainly.com/question/29897173#
#SPJ11
A spaceship measures bright flashes of light from a distant star. The spacecraft now heads toward the star at 0. 90c.
From the spacecraft's point of view, at what speed do the pulses approach? Express your answer with the appropriate units
According to the theory of special relativity, the speed of light is constant in all inertial frames of reference. Therefore, the speed of the pulses of light measured by the spaceship will be the same as the speed of light, c.
However, since the spaceship is moving towards the distant star at 0.90c, the relative speed of the spaceship with respect to the pulses of light will be c - 0.90c = 0.10c. This means that the pulses of light will approach the spaceship at a speed of 0.10c.
To understand this concept more clearly, imagine you are standing still and someone throws a ball towards you at 10 mph. The relative speed of the ball with respect to you is 10 mph. Now, if you start walking towards the ball at 5 mph, the relative speed of the ball with respect to you will be 10 mph - 5 mph = 5 mph. Similarly, in the case of the spaceship, the relative speed of the pulses of light with respect to the spaceship will decrease as the spaceship moves towards the source of the light.
In conclusion, the pulses of light will approach the spaceship at a speed of 0.10c from the spaceship's point of view. This concept is important in understanding the effects of relative motion on the measurement of physical phenomena, and it has implications for our understanding of the nature of space and time.
To know more about special relativity refer here
https://brainly.com/question/12717449#
#SPJ11
Five seconds into her run, Selina sees a rabbit and decides to chase it. She accelerates at a rate of 0. 1m/s2. What would be her pace at 10s? Show your work
Her pace at 10 seconds is 1 m/s. We can solve this problem by using the equations of motion for constant acceleration.
First, we need to find Selina's velocity at 10 seconds. We can do this by using the equation: v = u + at, where v is the final velocity, u is the initial velocity (which is zero in this case), a is the acceleration, and t is the time.
Plugging in the values, we get: v = 0 + (0.1 m/s^2) x (10 s), v = 1 m/s
So Selina's velocity at 10 seconds is 1 m/s.
Next, we can find her pace (or speed) by dividing the distance she has traveled by the time taken.
Since we don't know the distance she has traveled, we'll assume that she has covered the same distance as she would have if she had maintained a constant speed of 1 m/s for the entire 10 seconds.
So the distance traveled, d, is: d = v x t, d = (1 m/s) x (10 s), d = 10 m
Therefore, Selina's pace at 10 seconds is: pace = distance / time, pace = 10 m / 10 s, pace = 1 m/s. So her pace at 10 seconds is 1 m/s.
To know more about equations of motion, refer here:
https://brainly.com/question/31062885#
#SPJ11
if you are an astronaut on a planet with twice the mass of the earth, but eight times the radius of the earth, how would the planet's escape velocity compare to earth's escape velocity?
The escape velocity of the planet is roughly 0.707 times that of the Earth.
What is the equation for the two planets' escape velocity?To get escape velocity, multiply 2 x G x M, divide the result by r, and then take the square root of the answer. In this equation, G stands for Newton's gravitational constant, M for the planet's mass in kilogrammes, and r for the planet's radius in metres.
v = √(2GM/r)
where M is the planet's mass, v is the escape velocity, G is the gravitational constant, and r is the planet's radius.
In this case, the planet has twice the mass of the Earth (2M) and eight times the radius of the Earth (8R).
v = √(2G(2M)/(8R))
Simplifying this expression, we get:
v = √(1/2) * √(GM/R)
Since GM/R is a constant for any planet, we can see that the escape velocity of this planet is equal to the escape velocity of Earth multiplied by √(1/2), which is approximately 0.707.
To know more about velocity visit:-
https://brainly.com/question/17127206
#SPJ1
A 500g trolley is placed on a runway that is tilted so that it makes an angle of 30° to a horizontal table
2.4N is the magnitude of the tension T in the string
Define tension force.
It is also possible to refer to tension as the action-reaction pair of forces acting at each end of the aforementioned elements. Tension is defined as the pulling force transmitted axially by a string, rope, chain, or other similar object, or by each end of a rod, truss member, or other comparable three-dimensional object.
When an object is compressed or stretched, spring forces come into play. The degree of compression or stretching has a direct relationship to the force a spring produces. In other words, the force a spring produces increases with the amount it is compressed or stretched.
T=Mgsin30−Ff +mg
T=(0.5)(9.8)sin30−1.5+(0.15)(9.8)
T=2.4 N
To learn more about tension use:
https://brainly.com/question/24994188
#SPJ4
Complete question:
A 500g trolly is placed on a runway that is tilted so that it makes an angle of 30 degrees to a horizontal table.A light inextensible string is attached to 150g mass piece.the trolly accelerates down the slope as a result of the force applied by the hanging mass piece.the frictional force between the trolly and the runway is 1.5N, what is the magnitude of the tension T in the string?
The electric field of a 460 mhz radio wave has a maximum rate of change of 4.5 × 1011 (v/m)/s. what is the wave's magnetic field amplitude?
The electric field of a 460 MHz radio wave with a maximum rate of change 4.5 × 1011 (v/m)/s. The wave's magnetic field amplitude is [tex]1.5 \times 10^{-3} T[/tex].
To determine the magnetic field amplitude of a 460 MHz radio wave with a maximum rate of change of the electric field, we can use the relationship between the electric and magnetic fields in electromagnetic waves.
The electric and magnetic fields are perpendicular to each other and travel at the speed of light. The magnetic field amplitude can be calculated using the formula:
B = E / c
Where B is the magnetic field amplitude, E is the maximum rate of change of the electric field, and c is the speed of light.
Substituting the given values, we get:
[tex]B = (4.5 \times 10^{11} V/m/s) / (3 \times 10^8 m/s)[/tex]
[tex]B = 1.5 \times 10^{-3} T[/tex]
Therefore, the magnetic field amplitude of the radio wave is [tex]1.5 \times 10^{-3} T.[/tex]
In summary, the magnetic field amplitude of a 460 MHz radio wave with a maximum rate of change of the electric field can be calculated using the relationship between the electric and magnetic fields in electromagnetic waves.
To know more about electric field refer here:
https://brainly.com/question/27897603?#
#SPJ11
A man is pulling a 20 kg cart up a hill that is 5 m high if he used 50 N force how far did he pull the cart for
The distance he pulled the cart for is 5 meters, as that is the height of the hill.
The work done by the man to pull the cart up the hill is given by the formula W = F dcos(theta), where W is the work done, F is the force applied, d is the distance traveled, and theta is the angle between the force and the direction of motion.
Since the force and the direction of motion are in the same direction, theta = 0. Therefore, W = F * d.
Substituting the given values, we get W = 50 N * 5 m = 250 J. This is the amount of work done by the man. The distance he pulled the cart for is 5 meters, as that is the height of the hill.
To know more about motion, refer here:
https://brainly.com/question/22810476#
#SPJ11
Consider the two-slit experiment. Light strikes two slits that are a distance 0. 0236 mm apart. The path to the third-order bright fringe on the screen forms an angle of 2. 09° with the horizontal. What is the wavelength of the light?
The wavelength of the light in the two-slit experiment is approximately 9.51×[tex]10^{-7}[/tex] meters or 951 nm.
To find the wavelength of the light, we can use the formula for double-slit interference:
dsin(θ) = mλ
where d is the distance between the slits (0.0236 mm),
θ is the angle to the bright fringe (2.09°),
m is the order of the fringe (third-order, so m = 3),
and λ is the wavelength of the light.
Now, we can solve for λ:
1. Convert the angle to radians:
θ = 2.09°×π÷180 = 0.0365 radians
2. Convert the distance between the slits to meters:
d = [tex]0.0236 mm(\frac{1m}{1000mm})[/tex] = 2.36×[tex]10^{-5}[/tex] m
3. Rearrange the formula to solve for λ:
λ = (dsin(θ))÷m
= [tex]\frac{2.36(10^{-5})m(sin0.0365)}{3}[/tex] =[tex]9.51[/tex]×[tex]10^{-7}[/tex] meters
= 951 nm
To know more about the calculation of wavelength visit:
https://brainly.com/question/14708169
#SPJ11
The farthest bright galaxies that modern telescopes are capable of seeing are up to:.
The farthest bright galaxies that modern telescopes are currently capable of seeing are up to several billions of light-years away. The exact distance depends on various factors such as the sensitivity and resolution of the telescope, observational techniques, and the brightness of the galaxy itself.
Modern telescopes, such as the Hubble Space Telescope and large ground-based observatories equipped with advanced instruments, have greatly advanced our ability to observe and study distant galaxies. These telescopes can detect and capture the light from galaxies that existed when the universe was relatively young.
Through deep field observations and gravitational lensing techniques, astronomers have been able to observe galaxies that are more than 13 billion light-years away. These observations provide valuable insights into the early universe and its evolution.
It's important to note that the term "bright" is relative and can vary depending on the context and specific criteria used for brightness. Additionally, ongoing advancements in telescope technology continue to push the limits of observation, and future telescopes and space missions are expected to enable us to see even farther into the universe.
To know more about telescopes refer here
https://brainly.com/question/19349900#
#SPJ11
A car of mass , initially at rest, begins to move with constant acceleration until it reaches, after a time interval , a speed 0. Then, it moves with uniform motion at speed 0 for another time interval. The total distance travelled by the car is a) 0 b) 3 2 0 c) 3 8 0 2 + 0 d) 2 /2 e) 0 2 4
The total distance travelled by the car is 0.
The correct answer is (a).
Let the acceleration of the car be a and the time interval during which it accelerates be t1. During this time, the car travels a distance d1 given by:
[tex]d1 = (1/2)at1^2[/tex]
When the car reaches a speed of 0, it continues to move with uniform motion for another time interval t2. The distance travelled during this time is given by:
d2 = 0t2 = 0
The total distance travelled by the car is therefore:
[tex]d = d1 + d2 = (1/2)at1^2[/tex]
We need to eliminate the unknown time t1 in order to express the total distance travelled in terms of the acceleration a. We can do this by using the fact that the final speed of the car is 0:
v = at1 = 0
Therefore, the time interval t1 is:
t1 = 0
Substituting this into the expression for d, we get:
[tex]d = (1/2)at1^2 = 0[/tex]
To know more about distance refer here
https://brainly.com/question/31713805#
#SPJ11
Please describe this graph
a. Explain the relationship between variables.
b. State if it is a linear or nonlinear graph
c. Give an example of what this graph could be about.
To describe the graph we need to explain the specific concepts mentioned below:
a. The relationship between variables on a graph refers to how one variable changes in response to the other. This can be positive (both variables increase or decrease together), negative (one variable increases while the other decreases), or no relationship (no discernible pattern between the two variables).
b. A graph can be classified as linear or nonlinear based on the shape of the relationship between the variables. A linear graph forms a straight line, indicating a constant rate of change between the variables. A nonlinear graph has a curve or irregular shape, indicating a variable rate of change between the variables.
c. An example of a graph could be a scatter plot of people's ages (x-axis) and their monthly income (y-axis). If the points form a straight line with a positive slope, it would indicate a linear relationship, meaning that as people's ages increase, their income generally increases as well.
For more questions on: concepts
https://brainly.com/question/18798678
#SPJ11
What magnetic field is necessary for 1. 0 m3 of that field to contain 1. 0 J of energy?
Magnetic field is necessary for 1.0 [tex]m^{3}[/tex] of that field to contain 1.0 J of energy.
The energy density u of a magnetic field is given by
u = [tex]B^{2}[/tex]/(2μ)
Where B is the magnitude of the magnetic field and μ is the permeability of free space, which is a constant equal to 4π x [tex]10^{-7}[/tex] Tm/A.
If we want 1.0 [tex]m^{3}[/tex] of the magnetic field to contain 1.0 J of energy, we can rearrange the above equation to solve for B
Substituting the given values, we get
B =[tex]\sqrt{(2*4\pi *10^{-7}Tm/A*1 J/1m^{3 }[/tex]
B = 0.00224 T
Therefore, a magnetic field of 0.00224 T is necessary for 1.0 [tex]m^{3}[/tex] of that field to contain 1.0 J of energy.
To know more about Magnetic field here
https://brainly.com/question/17223673
#SPJ4
The 300-series Shinkansen trains consist of 16 aluminum cars with a combined mass of 7. 10 X 105 kg. The reduction in mass from the 100-
series enables the 300-series trains to reach top speed of 270 km/h. What is the momentum of one of these trains at its top speed? Is the
momentum of a 300-series train greater or less than the momentum of a 100-series train traveling at its top speed?
The momentum of one 300-series Shinkansen train at its top speed of 270 km/h is 1.93 x[tex]10^{8}[/tex] kg*m/s.
Whast is Mass?
Mass is a fundamental physical property of matter that quantifies the amount of matter in an object. It is a scalar quantity that measures the resistance of an object to a change in its motion or acceleration, and is typically measured in units of kilograms (kg) in the International System of Units (SI).
The momentum (p) of an object can be calculated using the formula p = mv, where m is the mass of the object and v is its velocity. The mass of the 300-series Shinkansen train is given as 7.10 x [tex]10^{5}[/tex] kg. To calculate its momentum, we need to convert the velocity of 270 km/h to m/s. 270 km/h is equivalent to 75 m/s. Therefore, the momentum of one 300-series Shinkansen train at its top speed is:
p = mv = 7.10 x [tex]10^{5}[/tex] kg x 75 m/s = 1.93 x [tex]10^{8}[/tex] kg*m/s
Learn more about Mass from the given link
https://brainly.com/question/86444
#SPJ4
Calculate the angular momentum of a 265 kg motorcycle traveling at 25 m/s. Traveling around a circular curve 500 m in radius
The angular momentum of a 265 kg motorcycle traveling at 25 m/s around a circular curve with a radius of 500 m is [tex]3,312,500 \;kg.m^2/s.[/tex]
To calculate the angular momentum of the motorcycle, we need to first find its angular velocity. Since the motorcycle is traveling around a circular curve, we can use the formula:
[tex]v = r\omega[/tex]
where v is the velocity of the motorcycle, r is the radius of the curve, and ω is the angular velocity.
Rearranging this formula to solve for ω, we get:
[tex]\omega = v/r[/tex]
Substituting the values given, we get:
[tex]\omega = 25 \;m/s \;/ \;500 m = 0.05 \;rad/s[/tex]
Next, we can use the formula for angular momentum:
[tex]L = I\omega[/tex]
where L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.
For a point mass moving in a circular path, the moment of inertia is simply mr², where m is the mass of the motorcycle and r is the radius of the curve.
Substituting the values given, we get:
[tex]L = (265 \;kg)(500 \;m)^2(0.05 \;rad/s)[/tex]
[tex]L = 3,312,500 \;kg.m^2/s[/tex]
Therefore, the angular momentum of the motorcycle is [tex]3,312,500 \;kg.m^2/s.[/tex]
In summary, the angular momentum of a 265 kg motorcycle traveling at 25 m/s around a circular curve with a radius of 500 m is [tex]3,312,500 \;kg.m^2/s.[/tex]
To know more about angular momentum refer here:
https://brainly.com/question/29563080#
#SPJ11
Two large speakers broadcast the sound of a band tuning up before an
outdoor concert. While the band plays an A whose wavelength is 0. 773 m,
Brenda walks to the refreshment stand along a line parallel to the speakers. If
the speakers are separated by 12. 0 m and Brenda is 24. 0 m away, how far
must she walk between the "loudspots"?
Two large speakers broadcast the sound of a band tuning up before an outdoor concert.While the band plays an A whose wavelength is 0. 773 m, Brenda walks to the refreshment stand along a line parallel to the speakers. If the speakers are separated by 12. 0 m and Brenda is 24. 0 m away then 0.387 meters must she walk between the "loudspots".
Since the wavelength of the sound wave is known, we can use the concept of interference to find the distance between the "loudspots". At the point of maximum constructive interference, the waves from both speakers will add up, creating a louder sound. At the point of maximum destructive interference, the waves will cancel each other out, creating a quieter sound.
Let d be the distance that Brenda needs to walk to reach the point of maximum constructive interference between the two speakers. At this point, the waves from both speakers will add up to create a louder sound. The path difference between the waves from the two speakers at this point will be exactly one wavelength.
Using the Pythagorean theorem, we can find the distance between Brenda and each of the speakers:
Distance from Brenda to speaker 1 = [tex]\sqrt{24^{2} +6^{2} }[/tex] = 24.6 m
Distance from Brenda to speaker 2 = [tex]\sqrt{24^{2}+18^{2} }[/tex]= 30 m
The path difference between the waves from the two speakers at the point of maximum constructive interference will be:
Path difference = distance from Brenda to speaker 2 - distance from Brenda to speaker 1
Path difference = 30 m - 24.6 m = 5.4 m
Since the path difference is exactly one wavelength, we have
Wavelength = path difference = 0.773 m
Therefore, the distance that Brenda needs to walk to reach the point of maximum constructive interference is
d = wavelength/2 = 0.773 m/2 = 0.387 m
So Brenda needs to walk 0.387 meters between the "loudspots".
To know more about broadcast here
https://brainly.com/question/14696041
#SPJ4
Which landform will occur in a subduction zone where oceanic plates collide?.
When oceanic plates collide in a subduction zone, one plate is forced beneath the other, which results in the formation of a variety of landforms.
One of the most common landforms that can occur in a subduction zone is a volcanic arc. This is formed when magma rises from the subducting plate and forms a chain of volcanic islands or mountains on the overriding plate.
Examples of volcanic arcs include the Andes in South America and the Cascade Range in the western United States.
Another type of landform that can occur in a subduction zone is a deep ocean trench. This is formed when the subducting plate plunges deep beneath the overriding plate and creates a narrow, steep-sided depression in the ocean floor.
Examples of deep ocean trenches include the Mariana Trench in the Pacific Ocean and the Peru-Chile Trench in the southeastern Pacific Ocean.
In addition to volcanic arcs and deep ocean trenches, subduction zones can also create uplifted regions known as accretionary wedges.
These are formed when sediments and other materials accumulate on the overriding plate as a result of the subduction process. Over time, these materials become compacted and uplifted to form a thick, wedge-shaped mass of rock.
Overall, the specific type of landform that forms in a subduction zone where oceanic plates collide will depend on a variety of factors, including the angle of the subduction zone, the composition of the plates involved, and the amount of time that has passed since the collision began.
To know more about subduction zone refer here
https://brainly.com/question/13788626#
#SPJ11