Answer:
30.63 m
Explanation:
From the question given above, the following data were obtained:
Total time (T) spent by the ball in air = 5 s
Maximum height (h) =.?
Next, we shall determine the time taken to reach the maximum height. This can be obtained as follow:
Total time (T) spent by the ball in air = 5 s
Time (t) taken to reach the maximum height =.?
T = 2t
5 = 2t
Divide both side by 2
t = 5/2
t = 2.5 s
Thus, the time (t) taken to reach the maximum height is 2.5 s
Finally, we shall determine the maximum height reached by the ball as follow:
Time (t) taken to reach the maximum height = 2.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =.?
h = ½gt²
h = ½ × 9.8 × 2.5²
h = 4.9 × 6.25
h = 30.625 ≈ 30.63 m
Therefore, the maximum height reached by the cannon ball is 30.63 m
1
A truck increases its speed from 15 m/s to 60 m/s in 15 s. Its acceleration is
Which statement is true about the SI System?
A-Uses different base units than the English measurement system.
B-Is used in scientific
measurement.
C-Includes the meter as its base unit for length.
D-All of the above.
Answer:
maybe the answer is in is D part
Explain why a ping pong ball and bouncy ball of the same size have different weights
Answer:
the material
Explanation:
weight is defined as the amount of force on the object because of gravity. ping pong balls and bouncy balls are made out of different materials that are different weights. most bouncy balls are also not hollow, unlike ping pong balls. these factors affect the weight of these objects.
Which best describes a reference frame?
Answer: A system or frame of reference are those conventions used by an observer (usually standing at a point on the ground) to be able to measure the position and other physical magnitudes.
Answer:
C a position from which something is observed
om edu 2021
Explanation:
A car rounds a banked curve as we will discuss in class on Tuesday. The radius of curvature of the road is R and the banking angle is θ. (a) In the absence of friction, what is the safe speed for the car to take this curve? (b) Now assume the coefficient of friction between the car’s tires and the road is µs. Determine the range of speeds the car can have without slipping up or down the road. (c) What is the minimum value of µs that makes the minimum speed zero? (d) If θ = 25.0 ◦ , for what values of µs can the curve be taken at any speed? Note: The upper limit of µs you will find is practically impossible to achieve for the car’s tires and the road.
Answer:
A) v = √[(rg(tan θ - µ_s))/(1 + (µ_s•tan θ))]
B)√[(rg(tan θ - µ_s))/(1 + (µ_s•tan θ))] ≤ v ≤ v = √[(rg(tan θ + µ_s))/(1 - (µ_s•tan θ))]
C) µ_s = tan θ
D) µ_s = 0.4663
Explanation:
A) The forces acting on the car will be;
Force due to friction; F_f
Force due to Gravity; F_g
Normal Force; F_n
Now, let us take the vertical direction to be j^ and the direction approaching the centre to be i^ downwards and parallel to the road surface by k^.
Also, we will assume that initially, F_n is in the negative k^ direction and that it will have a maximum possible value of; F_f = µ_s × F_n
Thus, sum of forces about the vertical j^ direction gives;
ΣF_j^ = F_n•cos θ − mg + F_f•sin θ = 0
Since F_f = µ_s × F_n ;
F_n•cos θ − mg + (µ_s × F_n × sin θ) =0
F_n = mg/[cos θ + (µ_s•sin θ)]
Also, sum of forces about the centre i^ direction gives;
ΣF_i^ = F_n(sin θ + (µ_s•cos θ)) = mv²/r
Plugging in formula for F_n gives;
ΣF_i^ = [mg/[cos θ + (µ_s•sin θ)]] × (sin θ + (µ_s•cos θ)) = mv²/r
Making v the subject gives;
v = √[(rg(tan θ - µ_s))/(1 + (µ_s•tan θ))]
B) What we got in a above is the minimum speed the car can have while going round the turn.
The maximum speed will be gotten by making the frictional force(F_f) to point in the positive k^ direction. This means that F_f will be negative.
Now, if we change the sign in front of F_f in the equation in part a that led to the minimum velocity, we will have the maximum as;
v = √[(rg(tan θ + µ_s))/(1 - (µ_s•tan θ))]
Thus the range is;
√[(rg(tan θ - µ_s))/(1 + (µ_s•tan θ))] ≤ v ≤ v = √[(rg(tan θ + µ_s))/(1 - (µ_s•tan θ))]
C) For the minimum speed to be 0, it implies that F_f will be in the negative k^ direction. Thus, Sum of the forces in the k^ direction gives;
ΣF_k^ = mg(sin θ - µ_s•cos θ) = 0
Thus;
mg(sin θ - µ_s•cos θ) = 0
Making µ_s the subject gives;
µ_s = sin θ/cos θ
µ_s = tan θ
D) If θ = 25.0°;
Thus;
µ_s = tan 25
µ_s = 0.4663
If a person has the values for an object's density and volume, what value can be calculated?
o the object's size
o the object's mass
the shape the object forms in a container
the amount of space the object takes up
Answer:
Answer:
The object's mass.
Explanation:
The formula d=m/v.
d --> density
m--> mass
v --> volume
With density and volume given, you can calculate the mass of the object.
Explanation:
Anuja hit a golf ball on a level field at 70 degrees and 40 degrees with the same total speed as shown below.
70°
40°
Which launch angle causes the ball to be in the air for the longest time?
o not enough information
40 degrees
70 degress
times are the same
Answer:
At 40 deg Vy = V sin 40
at 70 deg Vy = V sin 70
So the ball launched at 70 deg has the greatest vertical velocity and will remain in the air the longest:
Since t = Vy / g time for to reach zero vertical velocity and also the time for the ball to reach velocity Vy on the downward path
Mathis kicked a ball on a level surface at 30∘ and 60∘ with the same total speed as shown below.
Which launch angle results in the greater maximum height for the ball?
Answer: CORRECT (SELECTED)
60
Light refracts when traveling from air into glass because light
O A Travels at the same speed in air and in glass
B Frequency is greater in air than in glass
OC Frequency is greater in glass than in air
D Travels slower in glass than in air
Answer:
the last one
Explanation:
ii took the quiz and it was right... i think
Which statement describes the direction of the current and the magnetic field when the left hand rule is being used?
Answer:
They are perpendicular.
Explanation:
Proposed Exercise: Work-Energy Theorem
In the situation illustrated in the figure below, a 365 pile hammer is used to bury a beam. The hammer is raised to a height of 3.0 (point 1) above the beam (point 2) and released from rest, sinking the beam of 7.4 (point 3). The rails exert on the hammer a constant friction force equal to 54 . Using the work-energy theorem, calculate (a) the speed of the hammer at the exact instant it reaches point 2 and (b) the mean force exerted by the hammer on the beam when moving it from position 2 to 3.
Tip: the force requested in item (b) is equal to the normal force that the beam exerts on
the hammer.
Answer:
152,000 N
Explanation:
(a) Initial potential energy = final kinetic energy
mgh = ½ mv²
v = √(2gh)
v = √(2 × 10 m/s² × 3.00 m)
v = 7.75 m/s
(b) Work done on pile hammer = change in energy
FΔy = 0 − (mgh + ½ mv²)
F (-0.074 m) = -((365 kg) (10 m/s²) (0.074 m) + ½ (365 kg) (7.75 m/s)²)
F (-0.074 m) = -11220.1 J
F ≈ 152,000 N
The perception of an image first, followed by noticing individual pieces of the
image, can be described as:
A. sensation.
B. perceptual processing.
C. top-down processing.
D. bottom-up processing.
SUBMIT
Answer:
The answer is Top-Down processing
Explanation:
I had this question on a apex quiz and i got it correct.
I don't understand why will only the 12 ohms lamps turn on when the switch is in position 2. shouldn't the current flow like this (like I highlighted in the picture)?
Temperature is a measure of
Answer:
The average kinetic energy
The amount of heat a substance has or the average kinetic energy of particles in a substance
square root of 1024 using fractorization method
Answer:
= 32Explanation:
hope that will help youElectric charges are either positive or ____
Answer:
Negative
Explanation:
duh
Answer:
:)
Explanation:
negative.
go add the snap carmel.bratz
What is the net force required to give an automobile with a mass of 2,100 kg an acceleration of 5.4 m/s^2?
Answer:
Net force = 11340 N
Explanation:
Given that,
Mass of an automobile, m = 2100 kg
Acceleration of the automobile, a = 5.4 m/s²
We need to find the net force required for the automobile. The net force is the product of mass and acceleration. It can be given by the formula as follows :
[tex]F=ma\\\\F=2100\ kg\times 5.4\ m/s^2\\\\F=11340\ N[/tex]
So, the net force is 11340 N.
Determine the ratio β = v/c for each of the following.
(a) A car traveling 120 km/h.
(b) A commercial jet airliner traveling 270 m/s.
(c) A supersonic airplane traveling mach 2.7. (Mach number = v/vsound. Assume the speed of sound is 343 m/s.)
(d) The space shuttle, traveling 27,000 km/h.
(e) An electron traveling 30 cm in 2 ns.
(f) A proton traveling across a nucleus (10-14 m) in 0.38 ✕ 10-22 s.
Answer:
a) [tex]\beta = 1.111\times 10^{-7}[/tex], b) [tex]\beta = 9\times 10^{-7}[/tex], c) [tex]\beta = 3.087\times 10^{-6}[/tex], d) [tex]\beta = 2.5\times 10^{-5}[/tex], e) [tex]\beta = 0.5[/tex], f) [tex]\beta = 0.877[/tex]
Explanation:
From relativist physics we know that [tex]c[/tex] is the symbol for the speed of light, which equal to approximately 300000 kilometers per second. (300000000 meters per second).
a) A car traveling 120 kilometers per hour:
At first we convert the car speed into meters per second:
[tex]v = \left(120\,\frac{km}{h} \right)\times \left(1000\,\frac{m}{km} \right)\times \left(\frac{1}{3600}\,\frac{h}{s} \right)[/tex]
[tex]v = 33.333\,\frac{m}{s}[/tex]
The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 33.333\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])
[tex]\beta = \frac{33.333\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]
[tex]\beta = 1.111\times 10^{-7}[/tex]
b) A commercial jet airliner traveling 270 meters per second:
The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 270\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])
[tex]\beta = \frac{270\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]
[tex]\beta = 9\times 10^{-7}[/tex]
c) A supersonic airplane traveling Mach 2.7:
At first we get the speed of the supersonic airplane from Mach's formula:
[tex]v = Ma\cdot v_{s}[/tex]
Where:
[tex]Ma[/tex] - Mach number, dimensionless.
[tex]v_{s}[/tex] - Speed of sound in air, measured in meters per second.
If we know that [tex]Ma = 2.7[/tex] and [tex]v_{s} = 343\,\frac{m}{s}[/tex], then the speed of the supersonic airplane is:
[tex]v = 2.7\cdot \left(343\,\frac{m}{s} \right)[/tex]
[tex]v = 926.1\,\frac{m}{s}[/tex]
The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 926.1\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])
[tex]\beta = \frac{926.1\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]
[tex]\beta = 3.087\times 10^{-6}[/tex]
d) The space shuttle, travelling 27000 kilometers per hour:
At first we convert the space shuttle speed into meters per second:
[tex]v = \left(27000\,\frac{km}{h} \right)\times \left(1000\,\frac{m}{km} \right)\times \left(\frac{1}{3600}\,\frac{h}{s} \right)[/tex]
[tex]v = 7500\,\frac{m}{s}[/tex]
The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 7500\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])
[tex]\beta = \frac{7500\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]
[tex]\beta = 2.5\times 10^{-5}[/tex]
e) An electron traveling 30 centimeters in 2 nanoseconds:
If we assume that electron travels at constant velocity, then speed is obtained as follows:
[tex]v = \frac{d}{t}[/tex]
Where:
[tex]v[/tex] - Speed, measured in meters per second.
[tex]d[/tex] - Travelled distance, measured in meters.
[tex]t[/tex] - Time, measured in seconds.
If we know that [tex]d = 0.3\,m[/tex] and [tex]t = 2\times 10^{-9}\,s[/tex], then speed of the electron is:
[tex]v = \frac{0.3\,m}{2\times 10^{-9}\,s}[/tex]
[tex]v = 1.50\times 10^{8}\,\frac{m}{s}[/tex]
The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 1.5\times 10^{8}\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])
[tex]\beta = \frac{1.5\times 10^{8}\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]
[tex]\beta = 0.5[/tex]
f) A proton traveling across a nucleus (10⁻¹⁴ meters) in 0.38 × 10⁻²² seconds:
If we assume that proton travels at constant velocity, then speed is obtained as follows:
[tex]v = \frac{d}{t}[/tex]
Where:
[tex]v[/tex] - Speed, measured in meters per second.
[tex]d[/tex] - Travelled distance, measured in meters.
[tex]t[/tex] - Time, measured in seconds.
If we know that [tex]d = 10^{-14}\,m[/tex] and [tex]t = 0.38\times 10^{-22}\,s[/tex], then speed of the electron is:
[tex]v = \frac{10^{-14}\,m}{0.38\times 10^{-22}\,s}[/tex]
[tex]v = 2.632\times 10^{8}\,\frac{m}{s}[/tex]
The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 2.632\times 10^{8}\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])
[tex]\beta = \frac{2.632\times 10^{8}\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]
[tex]\beta = 0.877[/tex]
when water in a brook or system of pipes flows from a wide region to a narrow region, the speed of water in the narrow region is
Answer:
more
hope this helps
plz mark brainliest
Which change(s) of state require an increase in energy?
Answer: Melting, evaporation and sublimation.
Melting, evaporation and sublimation require an increase in energy.
To determine the changes of state that require an increase in energy, we need to know about changes of state.
What are the changes of state of a substance?Melting, evaporation and sublimation are the changes of state of a substance.
How do melting, evaporation and sublimation require an increase in energy?In melting process, substance goes from solid to liquid state. In evaporation state, it goes from liquid to vapour state and in sublimation, it goes from solid to vapour state.In each of the above case, the bonds between molecules of the substance become weak due to getting of heat energy. And the heat energy is appeared as kinetic energy of the molecules.So the molecules vibrate rapidly which leads to the change of state.Thus, we can conclude that melting, evaporation and sublimation require an increase in energy.
Learn more about changes of state here:
https://brainly.com/question/18372554
#SPJ2
What does Weber's Law about 'just noticeable differences' predict about how much someone has to change the brightness of a light before we can notice the difference? a. It depends on how bright the light was in the first place - the brighter it was, the less change is needed before we realize it. b. It depends on how long we have been looking at the light - the longer we have been looking, the more change is needed. c. It is always the same amount - 7 lux. d. It depends on how bright the light was in the first place - the brighter it was, the more change is needed before we realize it.
Answer:
answer A is the correct one
Explanation:
Weber's law states that "the smallest discernible change of a stimulus and proportional to the stimulus".
Applying this law to cases of optical intensity, the ratio must be
k = cte = ΔI / I
where ΔI is the variation of the intensity and I is the value of the intensity
In general, for humans, the constant is 0.15 for the rods and 0.015 for the cones of the retina.
When reviewing the answers, answer A is the correct one, since in order for the previous relationship to be maintained, the magnitudes must rise proportionally
what is power?
a- the magnitude of a force needed to move an object
b- how much work can be done in a given time
c- the distance over time that an object moves
d- the energy needed to create work
Answer:
b- how much work can be done in a given time
how much work can be done in a given time
A block suspended from a spring is oscillating vertically with a frequency of 4 Hz and an amplitude of 7 cm. A very small rock is placed on top of the oscillating block just as it reaches its lowest point. Assume that the rock has no effect on the oscillation. At what distance above the block’s equilibrium position does the rock lose contact with the block? (hint this occurs when the rock’s acceleration equals the value of gravity) What is the speed of the rock when it leaves the block? What is the greatest distance above the block’s equilibrium position reached by the rock? (Let t = 0 be when the rock is placed on the block)
Answer:
v = - 1,715 m / s , x = 0.0156 m
Explanation:
This is an oscillatory movement exercise, which is described by the expression
x = A cos (wt + Ф)
we can assume that the block is released from its maximum elongation, so the phase constant (Ф) is zero
As we are told that the stone does not affect the movement of the spring mass system, the amplitude and angular velocity do not change, in the upward movement the stone is attached to the mass, but in the downward movement the mass has an acceleration greater than g leave the stone behind, let's look for time, for this we use the definition of speed and acceleration
v = dx / dt
v = - A w sin wt
a = - Aw² cos wt
a = -g
-g = - Aw² cos wt
wt = cos⁻¹ (g / Aw²)
t = 1 / w cos⁻¹ (g / Aw²)
angular velocity and frequency are related
w = 2π f
w = 2π 4
w = 8π rad / s
remember that the angles are in radians
t = 1 / 8π cos⁻¹ (9.8 / (0.07 64π²))
t = 0.039789 1.3473
t = 0.0536 s
let's find the speed for this time
v = - A w sin wt
v = - 0.07 8π sin (8π 0.0536)
v = - 1,715 m / s
the distance is
x = A cos wt
x = 0.07 cos (8π 0.0536)
x = 0.0156 m
Which type of force occurs between two objects at a distance?
A. Applied force
B. Contact force
C. Non-contact force
D. Normal force
If your right you get 100 points & brainliest
Answer:
it has to be b contact forces
Explanation: because the two objects are next to each other but they still have force
Answer:
c
Explanation:
Why is a control group generally very important in an experiment?
Answer: The control group is the part where you see what happens when you change a variable you want to study/examine. Basically, you need the control group because you need something to see what happens when you change something.
Hope this Helps! :))))
Help pls it’s urgent
Answer:
A
Explanation:
Refraction
PLZ EXPLAIN AND I WILL GIVE YOU BRANILEST
How do two interacting objects exert equal and opposite forces on each other when they collide, even though they have different masses?
Answer:
Did a little research.
Explanation:
The Law of Action-Reaction:
Newton's third law of motion is naturally applied to collisions between two objects. In a collision between two objects, both objects experience forces that are equal in magnitude and opposite in direction. Such forces often cause one object to speed up (gain momentum) and the other object to slow down (lose momentum). According to Newton's third law, the forces on the two objects are equal in magnitude. While the forces are equal in magnitude and opposite in direction, the accelerations of the objects are not necessarily equal in magnitude. In accord with Newton's second law of motion, the acceleration of an object is dependent upon both force and mass. Thus, if the colliding objects have unequal mass, they will have unequal accelerations as a result of the contact force that results during the collision.Consider the collision between the club head and the golf ball in the sport of golf. When the club head of a moving golf club collides with a golf ball at rest upon a tee, the force experienced by the club head is equal to the force experienced by the golf ball. Most observers of this collision have difficulty with this concept because they perceive the high speed given to the ball as the result of the collision. They are not observing unequal forces upon the ball and club head, but rather unequal accelerations. Both club head and ball experience equal forces, yet the ball experiences a greater acceleration due to its smaller mass. In a collision, there is a force on both objects that causes an acceleration of both objects. The forces are equal in magnitude and opposite in direction, yet the least massive object receives the greatest acceleration.
Consider the collision between a moving seven ball and an eight ball that is at rest in the sport of table pool. When the seven ball collides with the eight ball, each ball experiences an equal force directed in opposite directions. The rightward moving seven ball experiences a leftward force that causes it to slow down; the eight ball experiences a rightward force that causes it to speed up. Since the two balls have equal masses, they will also experience equal accelerations. In a collision, there is a force on both objects that causes an acceleration of both objects; the forces are equal in magnitude and opposite in direction. For collisions between equal-mass objects, each object experiences the same acceleration.
Because force is a vector measurement, it has both magnitude and
(HURRY I NEED HELP NOW ILL GIVE YOU BRILLIANT). Why do you think it's impossible for an element to appear on only one side of a valid
chemical equation? And I science
Answer:
i got you
Explanation:
Unfortunately, it is also an incomplete chemical equation. ... But if we count the number of oxygen atoms in the reactants and products, we find that there are two oxygen atoms in the reactants but only one oxygen atom in the products.
In the International Space Station which orbits Earth, astronauts experience apparent weightlessness because:_________
a) the astronauts and the station are in free fall towards the center of the Earth.
b) there is no gravity in space. the station is kept in orbit by a centrifugal force that counteracts the Earth's gravity.
c) the station's high speed nullifies the effects of gravity.
d) the station is so far away from the center of the Earth.
Answer:
a) the astronauts and the station are in free fall towards the center of the Earth
Explanation:
Weightlessness is only a sensation of zero weight, a body experiences when it is in free fall towards the center of the Earth, caused by lack of contact force on such body.
Weightlessness doesn't mean the object has zero actual weight, is just a sensation of no weight due to lack of contact force to produce upward reaction on the object which gives the real sense of ones weight.
Thus, the astronauts experience apparent weightlessness because:
a) the astronauts and the station are in free fall towards the center of the Earth.
what will happen if a low massive main sequence star runs out of hydrogen fuel?
Answer:
Low mass stars are: hydrogen burning in the core while on the Main Sequence. As the hydrogen fuel runs out, extreme pressure raises the temperature to 100 million degrees, where helium burning becomes possible.